Orthogonality and Approximation in Sobolev Spaces

Yuan Xu

Department of Mathematics
University of Oregon

Dec. 18-21, 2017/15th DMHA, Bangalore
in honor of Professor Thangavelu
Let Ω be a regular domain in \mathbb{R}^d. Let $W^r_p(\Omega)$ denote a Sobolev space of r-th differentiable functions with norm $\| \cdot \|_{W^r_p(\Omega)}$.

Let $\Pi_n^d = \text{space of polynomials of degree } \leq n \text{ in } d\text{-variables}$.

Problem: For $f \in W^r_p(\Omega)$, find a polynomial $P_n \in \Pi_n^d$ such that

$$\| \partial^\alpha f - \partial^\alpha P_n \|_p \leq c n^{-r+|\alpha|} \| f \|_{W^r_p(\Omega)}, \quad |\alpha| \leq r,$$

where $\alpha \in \mathbb{N}_0^d$ and $|\alpha| = \alpha_1 + \cdots + \alpha_d$.

Question: What $W^r_p(\Omega)$? How to construct such a P_n?

The problem is called *Simultaneous Approximation* in Approximation Theory. It arises recently from Spectral Method for numerical solution of PDE.
For \(f \in L^p[-1, 1], 1 \leq p \leq \infty \), define

\[
E_n(f)_p := \inf_{\deg P \leq n} \|f - P\|_p.
\]

A classical theorem states that, if \(f^{(r)} \in L^p[-1, 1] \), then

\[
E_n(f)_p \leq cn^{-r} \|\phi^r f^{(r)}\|_p, \quad \phi(x) = \sqrt{1 - x^2},
\]

for \(1 \leq p \leq \infty \). The polynomial that attains this approximation order can be derived from Fourier-Legendre series,

\[
f \sim \sum_{n=1}^{\infty} \hat{f}_n P_n(x), \quad \hat{f}_n = \frac{\int_{-1}^{1} f(x) P_n(x) dx}{\int_{-1}^{1} [P_n(x)]^2 dx},
\]

where \(P_n \) is the Legendre polynomial of degree \(n \), satisfying

\[
\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{2}{2n+1} \delta_{m,n}.
\]
For $p = 2$, the classical Hilbert space theory says that

$$E_n(f)_2 = \| f - S_n f \|_2,$$

where $S_n f = \sum_{k=1}^{n} \hat{f}_k P_k(x)$.

For $p \neq 2$, let η be a smooth cut-off function on \mathbb{R}: $\eta(t) = 1$ for $0 \leq t \leq 1$ and $\eta(t) = 0$ for $t \notin [0, 2]$; define

$$V_n f(x) := \sum_{k=0}^{2n} \eta \left(\frac{k}{n} \right) \hat{f}_k P_k(x).$$

Then $V_n f$ is of degree $2n$ and $V_n f = f$ if f is a polynomial of degree $\leq n$, and

$$\| V_n f - f \|_p \leq cE_n(f)_p, \quad 1 \leq p \leq \infty.$$
If $f^{(r)} \in L^p[-1, 1]$, the simultaneous approximation asks to find a polynomial P, such that

$$\|f^{(k)} - P^{(k)}_n\|_p \leq cn^{-r+k}\|f^{(r)}\|_p, \quad k = 0, 1, \ldots, r$$

or an even stronger estimate

$$\|f^{(k)} - P^{(k)}_n\|_p \leq cn^{-r+k}E_{n-r}(f^{(r)})_p, \quad k = 0, 1, \ldots, r$$

The polynomial P_n, however, cannot come from the Fourier-Legendre series. In fact, for $p = 2$, we have

$$\left\|f^{(k)} - (S_nf)^{(k)}\right\|_2 \leq cn^{-r+2k-1/2}E_{n-r}(f^{(r)})_2, \quad k = 0, 1, \ldots, r$$

and the order on n is sharp.
Approximation in Sobolev space with Jacobi weight

Let $w_{\alpha,\beta}(x) = (1 - x)^\alpha (1 + x)^\beta$, $\alpha, \beta > -1$, on $(-1, 1)$. The Jacobi polynomials $P_n^{(\alpha, \beta)}$ satisfy

$$\int_{-1}^{1} P_n^{(\alpha, \beta)}(x) P_m^{(\alpha, \beta)}(x) w_{\alpha,\beta}(x) dx = h_n^{\alpha, \beta} \delta_{n,m}.$$

All previous results extend to the space with $w_{\alpha,\beta}$. E.g.,

$$E_n(f)_{L^p(w_{\alpha,\beta})} := \inf_{p \in \Pi_n} \| f - p \|_{L^p(w_{\alpha,\beta})} \leq c n^{-r} \| \phi^r f(r) \|_{L^p(w_{\alpha,\beta})}.$$

The Fourier-Jacobi series of $f \in L^2(w_{\alpha,\beta})$ is defined by

$$f = \sum_{n=0}^{\infty} \hat{f}_n^{\alpha, \beta} P_n^{(\alpha, \beta)}, \quad \text{where} \quad \hat{f}_n^{\alpha, \beta} = \frac{\int_{-1}^{1} f(t) P_n^{(\alpha, \beta)}(t) w_{\alpha,\beta}(t) dt}{\int_{-1}^{1} [P_n^{(\alpha, \beta)}(t)]^2 w_{\alpha,\beta}(t) dt}$$

Let $S_n^{\alpha, \beta} f$ denote the n-th partial sum,

$$S_n^{\alpha, \beta} f(x) := \sum_{k=0}^{n} \hat{f}_k^{\alpha, \beta} P_k^{(\alpha, \beta)}(x).$$
Let $\partial = \frac{d}{dx}$. For $\alpha, \beta > -1$, the partial sum $S_{n}^{\alpha,\beta}$ satisfies

$$
\partial^{k} S_{n}^{\alpha,\beta} f = S_{n-k}^{\alpha+k,\beta+k} \partial^{k} f, \quad k = 0, 1, 2, \ldots
$$

It follows immediately that, for $0 \leq k \leq s$,

$$
\| \partial^{k} f - \partial^{k} S_{n}^{\alpha,\beta} f \|_{L^{2}(w_{\alpha+s,\beta+s})} \leq \| \partial^{k} f - S_{n-k}^{\alpha+k,\beta+k} f \|_{L^{2}(w_{\alpha+k,\beta+k})} = E_{n-k}(f^{(k)})_{L^{2}(w_{\alpha+k,\beta+k})} \leq cn^{-s+k} \| f^{(r)} \|_{L^{2}(w_{\alpha+s,\beta+s})}.
$$

Now, if we could choose $\alpha = \beta = -s$, this would be it.

However, $w_{\alpha,\beta}$ is NOT integrable if $a < -1$ and/or $\beta < -1$ and $P_{n}^{(-s,-s)}$ is NOT well defined for $s = 1, 2, \ldots$.

Question: Can we find an extension of $P_{n}^{(-s,-s)}$ AND an inner product to make the extension orthogonal?
Jacobi weight with negative indices

Jacobi polynomials of negative indices satisfy:

- \(\frac{d^s}{dx^s} P_n^{(-s,-s)} = c_n P_{n-s}^{(0,0)}(x). \)
- \(P_n^{(-s,-s)}(x) = (1 - x^2)^s P_{n-2s}^{(s,s)} \) for \(n \geq 2s \) (zero boundary).

Spectral method community: define

\[
\langle f, g \rangle = \int_{-1}^{1} f^{(s)}(x)g^{(s)}(x)dx
\]

work with functions that are have zero boundary conditions.

Special function community: true inner product (add boundary terms) but did not study Fourier orthogonal series.

The multiplication operator \(f \mapsto xf \) is no longer symmetric for Sobolev inner product. Consequently, NO three-term relation and NO Christopher-Darbox formula for the kernel – as in

\[
S_nf(x) = \int f(y)K_n(x, y)w(y)dy.
\]
Orthogonality in Sobolev space

For $s \in \mathbb{N}$ and $\theta \in [-1, 1]$, define an inner product in $W_2^s(w_{\alpha,\beta})$:

$$\langle f, g \rangle_{\alpha,\beta}^s := \int_{-1}^{1} f^{(s)}(t)g^{(s)}(t)w_{\alpha,\beta}(t)dt + \sum_{k=0}^{s-1} \lambda_k f^{(k)}(\theta)g^{(k)}(\theta),$$

where λ_k are positive constants.

Theorem

*For $\alpha, \beta > -1$ and $s \in \mathbb{N}$. The polynomial

$$J_n^{\alpha-s, \beta-s}(x) := \begin{cases}
\frac{(x - \theta)^n}{n!}, & 0 \leq n \leq s - 1, \\
\int_\theta^x \frac{(x - t)^{s-1}}{(s-1)!} P_{n-s}^\alpha(t)dt, & n \geq s.
\end{cases}$$

is orthogonal w.r.p. $\langle \cdot, \cdot \rangle_{\alpha,\beta}^s$ and its normal square satisfies

$$\mathcal{h}_{n}^{\alpha-s, \beta-s} = \lambda_n, \ 0 \leq n \leq s - 1, \ \text{and} \ \mathcal{h}_{n}^{\alpha-s, \beta-s} = h_{n-s}^{\alpha,\beta}, \ n \geq s.$$

Fourier expansion in Sobolev orthogonal polynomials

For $f \in W^s_p(w_{\alpha,\beta})$, consider the Fourier expansion

$$f = \sum_{n=0}^{\infty} \hat{f}_{n}^{\alpha-s,\beta-s} \mathcal{J}_{n}^{\alpha-s,\beta-s}$$

with

$$\hat{f}_{n}^{\alpha-s,\beta-s} := \frac{\langle f, \mathcal{J}_{n}^{\alpha-s,\beta-s} \rangle_{\alpha,\beta}}{\eta_{n}^{\alpha-s,\beta-s}}.$$

The n-th partial sum of this expansion is defined by

$$S_{n}^{\alpha-s,\beta-s} f := \sum_{k=0}^{n} \hat{f}_{k}^{\alpha-s,\beta-s} \mathcal{J}_{k,\theta}^{\alpha-s,\beta-s}.$$

Lemma

Let $\alpha, \beta > -1$ and $s \in \mathbb{N}$. For $f \in W^s_p(w_{\alpha,\beta})$ and $n = 0, 1, 2 \ldots$, with $m = \min\{n, s-1\}$,

1. $$S_{n}^{\alpha-s,\beta-s} f(x) = \sum_{k=0}^{m} f^{(k)}(\theta) \frac{(x-\theta)^k}{k!} + \int_{\theta}^{x} \frac{(x-t)^{s-1}}{(s-1)!} S_{n-s}^{\alpha,\beta} f(s)(t) \, dt,$$

2. $$\partial^{s} S_{n}^{\alpha-s,\beta-s} f = S_{n-s}^{\alpha,\beta} f(s) \text{ if } n \geq s.$$
Simultaneous approximation

Recall that we can define $V_n^{\alpha,\beta} f$ for $\alpha, \beta > -1$ via a cut-off function, good for approximation in L^p norm. We can define

$$V_{n,\theta}^{\alpha-s,\beta-s} f(x) := \sum_{k=0}^{s-1} f^{(k)}(\theta) \frac{(x - \theta)^k}{k!} + \int_{\theta}^{x} \frac{(x - t)^{s-1}}{(s-1)!} V_{n-s}^{\alpha,\beta} f(s)(t) dt.$$

Theorem

Let $\alpha, \beta > -1$ and $f \in W^s_p(w_{\alpha,\beta})$ for $1 \leq p \leq \infty$. Then

$$\| \partial^k f - \partial^k V_{n,\theta}^{\alpha-s,\beta-s} f \|_{L^p(w_{\alpha,\beta})} \leq c n^{-s+k} E_n(f(s))_{L^p(w_{\alpha,\beta})}, \quad 0 \leq k \leq s,$$

if either $\theta = -1$ and $\beta = 0$ or $\theta = 1$ and $\alpha = 0$. Furthermore, for $p = 2$, we can replace $V_{n,\theta}^{\alpha-s,\beta-s} f$ by $S_{n,\theta}^{\alpha-s,\beta-s} f$.
Let \(\varpi \) be a weight function define on \(\Omega \subset \mathbb{R}^d \). Let \(\mathcal{V}_n^d \) be the space of orthogonal polynomials of degree \(= n \) with respect to

\[
\langle f, g \rangle = \int_\Omega f(x)g(x)\varpi(x)dx.
\]

Let \(\{P_\alpha : |\alpha| = n, \alpha \in \mathbb{N}_0^d\} \) be an orthogonal basis of \(\mathcal{V}_n^d \). Then \(\langle P_\alpha, P_\beta \rangle = 0, \alpha \neq \beta \) and \(\deg P_\alpha = n \). Let \(\hat{f}_n^\alpha := \langle f, P_\alpha^n \rangle / \langle P_\alpha^n, P_\alpha^n \rangle \).

- The projection operator \(\text{proj}_n : L^2 \mapsto \mathcal{V}_n^d \) and the \(n \)-th partial sum \(S_n : L^2 \mapsto \Pi_n^d \) are defined by

\[
\text{proj}_n f(x) := \sum_{|\alpha|=n} \hat{f}_\alpha P_\alpha(x), \quad S_n f(x) := \sum_{m=0}^n \text{proj}_m f(x).
\]

- The Fourier orthogonal expansion of \(f \in L^2 \) is defined by

\[
L^2(\Omega, \varpi) = \bigoplus_{n=0}^{\infty} \mathcal{V}_n^d, \quad f = \sum_{n=0}^{\infty} \text{proj}_n f
\]
Classical orthogonal polynomials on the unit ball

On the unit ball \(\mathbb{B}^d = \{ x : \| x \| \leq 1 \} \) of \(\mathbb{R}^d \), define
\[
\varpi_\mu(x) = (1 - \| x \|^2)^\mu, \quad \mu > -1.
\]
A basis for \(\mathcal{V}_n^d(\varpi_\mu) \) can be given via spherical harmonics. Let \(\mathcal{H}_n^d \) be the space of spherical harmonics of degree \(n \) in \(\mathbb{R}^d \).

Theorem

For \(n \in \mathbb{N}_0 \) and \(0 \leq j \leq n/2 \), let \(\{ Y_{\ell}^{n-2j} : 1 \leq \ell \leq a_{n-2j}^d \} \) be an orthonormal basis for \(\mathcal{H}_{n-2j}^d \). Then
\[
P_{j,\ell}^{\mu,n}(x) := P_{j}^{(\mu,n-2j+\frac{d-2}{2})} (2 \| x \|^2 - 1) Y_{\ell}^{n-2j}(x).
\]

Then the set \(\{ P_{j,\ell}^{\mu,n}(x) : 1 \leq j \leq n/2, 1 \leq \ell \leq a_{n-2j}^d \} \) is an orthogonal basis of \(\mathcal{V}_n^d(\varpi_\mu) \).

Let \(\lambda_\mu = \mu + (d - 1)/2 \). These polynomials satisfy a PDE:
\[
(\Delta - \langle x, \nabla \rangle^2 - 2\lambda_\mu \langle x, \nabla \rangle)u = -n(n + \lambda_\mu)P, \quad \forall P \in \mathcal{V}_n^d(\varpi_\mu).
\]
Simultaneous approximation on the unit ball

We consider the unit ball $B^d = \{ x : \| x \| \leq 1 \}$ of \mathbb{R}^d and the Sobolev space defined by

$$W^r_p(B^d) := \{ f \in L^p(B^d) : \partial^\alpha f \in L^p(B^d), \quad |\alpha| \leq r, \alpha \in \mathbb{N}_0^d \}$$

for $1 \leq p < \infty$ and by $C^r(B^d)$ if $p = \infty$. Its norm is defined by

$$\| f \|_{W^r_p(B^d)} := \left(\sum_{|\alpha| \leq r} \| \partial^\alpha f \|_{L^p(B^d)} \right)^{1/p}.$$

We hope to find a polynomial P of degree n such that for all derivatives up to rth order (Simultaneous Approximation)

$$\| \partial^\alpha f - \partial^\alpha P \|_p \leq cn^{-r+|\alpha|} \| f \|_{W^r_p(B^d)}, \quad |\alpha| \leq r.$$

This is established again by the Sobolev orthogonality. What we need resembles taking $\mu \to -s, \ s \in \mathbb{N}$, in the classical ϖ_μ.
Consider the Dirichlet problem for the Poisson equation:

\[-\Delta u = f \quad \text{in } \mathbb{B}^d \quad \text{with} \quad u = g \quad \text{on } S^{d-1}.

In variation form, we need to find \(u \in W^1_2(\mathbb{B}^d) \) such that

\[
\langle \nabla u, \nabla v \rangle_{\mathbb{B}^d} = \langle f, v \rangle_{\mathbb{B}^d} + d \langle g, v \rangle_{S^{d-1}}, \quad v \in W^1_2(\mathbb{B}^d),
\]

where

\[
\langle f, g \rangle_{\mathbb{B}^d} = \int_{\mathbb{B}^d} f(x)g(x)dx \quad \text{and} \quad \langle f, g \rangle_{S^{d-1}} = \int_{S^{d-1}} f(\xi)g(\xi)d\sigma.
\]

The Spectral Method looks for an approximate solution

\[
u_n = \sum_{j=1}^{N} a_j P^n_j,
\]

where \(\{P^n_j : 1 \leq j \leq N = \dim \Pi^d_n \} \) is a basis of \(\Pi^d_n \), such that

\[
\langle \nabla u_n, \nabla v \rangle_{\mathbb{B}^d} = \langle f, v \rangle_{\mathbb{B}^d} + d \langle g, v \rangle_{S^{d-1}}, \quad \text{for } v = ?.
\]
Orthogonality in Sobolev Space

The Galerkin method uses $v = P^n_j$ and determines the coefficients a_j, hence u_n, from the linear system

$$\sum_{j=1}^{N} a_j \langle \nabla P^n_j, \nabla P^n_k \rangle_{B^d} = \langle f, P^n_k \rangle_{B^d} + d \langle g, P^n_k \rangle_{S^{d-1}}, \quad 1 \leq k \leq N.$$

The matrix of the system becomes diagonal if P^n_j are chosen as

$$\langle \nabla P^n_j, \nabla P^n_k \rangle_{B^d} = 0, \quad j \neq k.$$

This suggests that we consider the inner product

$$\langle f, g \rangle = \int_{B^d} \nabla f(x) \cdot \nabla g(x) \, dx + d \int_{S^{d-1}} f(\xi)g(\xi) \, d\sigma.$$

For the error estimate of this method, we could expect:

$$\| f - S_n f \|_{B^d} \leq c \, n^{-r} \| f \|_{W^r_2(B^d)}$$

$$\| \partial_i f - \partial_i S_n f \|_{B^d} \leq c \, n^{-r+1} \| f \|_{W^r_2(B^d)}, \quad 1 \leq i \leq d.$$
For $m = 1, 2, 3, \ldots$, let $\nabla^{2m} := \Delta^m$ and $\nabla^{2m+1} := \nabla \Delta^m$. For $\lambda_1, \ldots, \lambda_{\left\lceil \frac{s}{2} \right\rceil - 1} > 0$, define the inner product of $W^s_2(\mathbb{B}^d)$ by

$$\langle f, g \rangle_{-s} := \langle \nabla^s f, \nabla^s g \rangle_{\mathbb{B}^d} + \sum_{k=0}^{\left\lceil \frac{s}{2} \right\rceil - 1} \lambda_k \langle \Delta^k f, \Delta^k g \rangle_{\mathbb{S}^{d-1}}.$$

Let $\mathcal{V}_n^d(\mathcal{W}_{-s})$ denote the space of OP with respect to $\langle \cdot, \cdot \rangle_{-s}$.

- An orthogonal basis of $\mathcal{V}_n^d(\mathcal{W}_{-s})$ can be given explicitly. Denote these basis by $Q^{-s,n}_{j,\ell}(x)$, indexed again by $1 \leq \ell \leq a^d_{n-2j} = \dim \mathcal{H}^d_{n-2j}$ and $0 \leq j \leq n/2$ as $P_{j,\ell}^{\mu,n}$.

- $Q^{-s,n}_{j,\ell}$ are given in terms of Jacobi polynomials $P_n^{(-s,\beta)}$ and spherical harmonics, but the formulation is complicated.
Define the projection operator $\text{proj}_n^{-s} : W^s_2(\mathbb{B}^d) \rightarrow \mathcal{V}_n^d(\varpi_s)$ by

$$\text{proj}_n^{-s} f(x) := \sum_{0 \leq j \leq \frac{n}{2}} \sum_{\ell} \hat{f}_{j,\ell}^{-s,n} Q_{j,\ell}^{-s,n}(x), \quad \hat{f}_{j,\ell}^{-s,n} = \frac{\langle f, Q_{j,\ell}^{-s,n} \rangle_{-s}}{\langle Q_{j,\ell}^{-s,n}, Q_{j,\ell}^{-s,n} \rangle_{-s}}.$$

Unlike $[-1, 1]$, no nice formula for $\text{proj}_n^{-s} f$ is known for $d > 1$. Let $\text{proj}_n^0 : L^2(\mathbb{B}^d) \rightarrow \mathcal{V}_n^d$ be the classical operator ($\varpi_0(x) = 1$).

Lemma

Let $n, s \in \mathbb{N}_0$ and $n \geq s$. If s is even, then

$$\Delta_2^s \text{proj}_n^{-s} f = \text{proj}_n^0 \Delta_2^s f.$$

If s is odd, then

$$\partial_i \Delta_2^{\frac{s-1}{2}} \text{proj}_n^{-s} f = \text{proj}_n^0 \partial_i \Delta_2^{\frac{s-1}{2}} f, \quad i = 1, 2, \ldots, d.$$

This lemma is crucial for proving simultaneous approximation.
Simultaneous Approximation on the Ball

The partial sum and its analog defined via cut-off functions are

\[S_n^{-s}f(x) := \sum_{k=0}^{n} \text{proj}_{n}^{-s} f(x), \quad V_n^{-s}f(x) := \sum_{k=0}^{2n} \eta \left(\frac{k}{n} \right) \text{proj}_{n}^{-s} f(x). \]

Theorem

Let \(r, s \in \mathbb{N} \) and \(r \geq s \). If \(f \in \mathcal{W}_p^r(\mathbb{B}^d) \), \(1 < p < \infty \), then for \(n \geq s \)

\[\| \partial^k f - \partial^k V_n^{-s} f \|_{L^p(\mathbb{B}^d)} \leq cn^{-r+k} \| f \|_{W_p^r(\mathbb{B}^d)}, \quad k = 0, 1, \ldots, s, \]

and \(V_n^{-s} f \) can be replaced by \(S_n^{-s} f \) if \(p = 2 \).

The proof relies on the Aubin-Nitsche duality argument in PDE, applied to a BVP of the equation \(\Delta^s u = v \) on \(\mathbb{B}^d \).

Simultaneous approximation on triangle

The study on triangle is far from complete. We state one result.

On the triangle $\triangle := \{(x, y) : x \geq 0, y \geq 0, x + y \leq 1\}$, define
\[\partial_3 = \partial_2 - \partial_1. \]

We consider approximation in the norm of the Sobolev space
\[\mathcal{W}_2^2 = \{ f \in L^2(\triangle) : \partial_i \partial_j f \in L^2(\triangle) : i, j = 1, 2 \}. \]

The classical weight function on the triangle is defined by
\[\varpi_{\alpha, \beta, \gamma}(x, y) := x^\alpha y^\beta (1 - x - y)^\gamma, \quad \alpha, \beta, \gamma > -1. \]

Let $\mathcal{V}_n(\varpi_{\alpha, \beta, \gamma})$ = space of orthogonal polynomials of degree n. Several bases can be given via Jacobi polynomials. It is known
\[\partial_1 : \mathcal{V}_n(\varpi_{\alpha, \beta, \gamma}) \mapsto \mathcal{V}_{n-1}(\varpi_{\alpha+1, \beta, \gamma+1}) \]
\[\partial_2 : \mathcal{V}_n(\varpi_{\alpha, \beta, \gamma}) \mapsto \mathcal{V}_{n-1}(\varpi_{\alpha, \beta+1, \gamma+1}) \]
\[\partial_3 : \mathcal{V}_n(\varpi_{\alpha, \beta, \gamma}) \mapsto \mathcal{V}_{n-1}(\varpi_{\alpha+1, \beta+1, \gamma}) \]
Sobolev orthogonality on triangle

For simultaneous approximation in W^2_2, we need to consider the Sobolev orthogonality in a new space W^4_2, defined by

$$W^4_2 = \{ f : \partial^2_1 \partial^2_2 \in L^2(\mathcal{W}_{0,0,2}), \partial^2_2 \partial^3_3 \in L^2(\mathcal{W}_{2,0,0}), \partial^2_3 \partial^2_1 \in L^2(\mathcal{W}_{0,2,0}) \}.$$

This amounts to:

- Define an inner product $\langle f, g \rangle_{-2,-2,-2}$ on the triangle (involving 4th order derivatives)
- Find a sequence of orthogonal polynomials on the triangle
- Let $S_{n}^{-2,-2,-2}$ be the n-th partial sum operator of the Fourier orthogonal expansion,

$$\begin{align*}
\partial^2_1 \partial^2_2 S_n^{0,0,2} f &= S_{n-4}^{0,0,2} \partial^2_1 \partial^2_2 f, \\
\partial^2_2 \partial^3_3 S_n^{0,2,0} f &= S_{n-4}^{0,2,0} \partial^2_2 \partial^3_3 f, \\
\partial^2_3 \partial^2_1 S_n^{2,0,0} f &= S_{n-4}^{2,0,0} \partial^2_3 \partial^2_1 f,
\end{align*}$$

where $S_n^{\alpha,\beta,\gamma} f$ in the RHS are partial sums for the Fourier series in classical orthogonal polynomials.
Simultaneous approximation on triangle

Let $E_n(f)_{\alpha, \beta, \gamma}$ denote the error of best approximation

$$E_n(f)_{\alpha, \beta, \gamma} := \inf_{P \in \Pi_n^2} \| f - P \|_{L^2(\mathcal{W}_{\alpha, \beta, \gamma})},$$

and write $E_n(f) = E_n(f)_{0,0,0}$. Define

$$\mathcal{E}_n(f) = E_n(\partial^2_1 \partial^2_2 f)_{0,0,2} + E_n(\partial^2_2 \partial^2_3 f)_{0,2,0} + E_n(\partial^2_3 \partial^2_1 f)_{2,0,0}.$$

Theorem

For $f \in \mathcal{W}^4_2$, *let* $p_n = S_n^{-2,-2,-2} f$. *Then*

\[
\begin{align*}
\| f - p_n \| & \leq \frac{c_1}{n^3} E_{n-3}(\partial_1 \partial_2 \partial_3) + \frac{c_2}{n^4} \mathcal{E}_{n-4}(f), \\
\| \partial_i f - \partial_i p_n \| & \leq \frac{c_1}{n^2} E_{n-3}(\partial_1 \partial_2 \partial_3) + \frac{c_2}{n^3} \mathcal{E}_{n-4}(f), \\
\| \partial_i \partial_j f - \partial_i \partial_j p_n \| & \leq \frac{c_1}{n} E_{n-3}(\partial_1 \partial_2 \partial_3) + \frac{c_2}{n^2} \mathcal{E}_{n-4}(f), \quad 1 \leq i, j \leq 3.
\end{align*}
\]

Xu, Constr. Approx. [2017]
Thank You

Happy 60, Thangavelu