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Theorem (Rupert L. Frank, 2011)

Let w be a positive function satisfying —Aw + Vw > 0 in RN for some
function V. Then for all u € C}(RV),

/(|Vu|2+V|u|2)dx2/ IV (wLu) Pw2dx.
RN RN

Equality holds when —Aw + Vw = 0.

The theorem implies that

/ \Vu\zdx>—/ V| ul?dx.
RN RN

Choose w(x) = |x|~(N=2/2 and V = —((N —2)/2)?|x|~2. Then
—Aw + Vw = 0. Substituting V and w in the above theorem we get
following Hardy inequality.
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Theorem
Let N > 3. Then for all u € H*(RN),

N—2)2 2
/ |V ul?dx > () / %dx.
RV 2 RN ||

The inequality is strict for every u # 0, but the constant ((N — 2)/2)?
cannot be replaced by a smaller constant.

Similarly one can put w(x) = e***/2 and V(x) = a2|x|2 — aN in the
theorem and optimizing for o we get the Heisenberg uncertainty principle

1/2 12y
(/ |Vu|2dx) (/ |x|2\u\2dx> > / |ul?dx.
RN RN 2 RN
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Let
RY

L =1{0a, . xn) € RN xy_skq1 >0, xy > 0}.

Theorem (Dan Su, Qiao-Hua Yang - 2012)
Let N > 3. There holds, for all u € Cé’o(R,’i),

N — 2+ 2k)? 2
RY 4 Ry x|
ke ke

_ 2,
and the constant w is sharp.
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Preliminaries of Dunkl Operator

For o € RV'\ {0}, we denote ,, as the reflection in the hyper plane {a)~*
orthogonal to «, i.e.

where |a| = y/{a, a).

Definition

Let R C RY\{0} be a finite set. Then R is called a root system, if
(1) RNRa = {*a} foralla € R
(2) 0u(R) = R for all a € R.
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Preliminaries of Dunkl Operator

@ The group G = G(R) which is generated by reflections {0, : @ € R}
is called reflection group (or Coxeter-group) associated with R.

@ A G— invariant function from the root system R to R is called a
multiplicity function.

© R =Ry U(—R;) where Ry and —Ry is separated by a hyperplane
through the origin. Such a set R, is called positive subsystem.
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Preliminaries of Dunkl Operator

@ Let J; denotes the partial derivative corresponding to e;, and R is a
fixed root system.

Let k be a multiplicative function. Then for ¢; € RN, the Dunkl operator
Tj := Te,(k) is defined (for £ € C*(RN)) by

Tif(x) := Z k(a)(o, €j) fd) - f(aax).

(@, x)

OéER+

@ For fixed k, the associated T; commutes.
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Preliminaries of Dunkl Operator

@ Associated with the reflection group and the function k, the weight
function hy is defined by

he(x) =[] 1660, xeRY

VvER

@ This is positive homogeneous function of degree

Y= Y, ko= >, k(v) and is invariant under the reflection group
I/ER+ V€R+

G. Let us denote A\ = % + V-

Let k > 0. Then for every f € #(RN) and g € C§°(RV),

[, T 0eem0d = - [ 0 Tig(x)a
RN RN
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Preliminaries of Dunkl Operator

o If f,g € C}(RN) and at least one of them is G-invariant then
Ti(fg)=Tif.g+f.Tig.
@ The Dunkl kernel Eg(.,y) is defined as the unique solution of the

system,
Tif = y;f, f(0)=1.

o Ei(x,y) is the analogous function of e*¥) as e{¥} is the solution of
0;f = y;f with f(0) = 1.
e Dunkl gradient: Vi = (T1, T2, , Tn)

N
@ Dunkl Laplacian : Ay = > Tj2
Jj=1
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Hardy Inequality for Dunkl Laplacian

We will prove Hardy inequality in Dunkl setting and will deduce certain
related results.

Theorem

Let w be positive radial function satisfying —Aw + Vw > 0 in RN for
some function V. Then for all u € C§°(RV),

/RN(|Vku|2 + V]u?)h2(x)dx > /RN IV i (w™tu)|?w?h2 (x)dx.

Equality holds when —Axw + Vw = 0.
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Sketch of the proof

Let v = wv and w is radial. We can assume u is real valued. Then

/ |Vku|2:/ WV v + vV w2
RN RN

N
= /RN <\Vkv]2W2 +v2 [ Vew|? + 2WVZ TjVTjW) h2(x)dx
Jj=1

and estimate integral of each term separately.
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Sketch of the proof

Substitute simplify and use the Cauchy-Schwarz inequality, we obtain
/ WV v + vV w2 h3 (x)dx
RN

> / (Vv [2w?h2 (x)dx — / wv2 Agwh? (x)dx

RN RN

/
_2%/ Mvz(x)hi(x)dx
RN r

:/ |Vkv|2w2hﬁ(x)dx—/ VWA wh? (x)dx
RN RN

So we can conclude as
Jen [ViuPhE(x)dx > [on [VivPw?h2(x)dx — [pn Vu?hZ(x)dx
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Hardy Inequality

Choose N2
w(x) = X7 A=

Using the Dunkl Laplacian for the radial function

d> 2\ +1d

A =2 <
kK= dr2 + r o dr’

and equating Agw = Vw we get
V(x) = —AZIx| 7%

Now use the above theorem and obtain

/ IV u2h2(x)dx > A2 /R :X“;hi(x)dx. (1)
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Let Vi = (Vk, ax ) be the gradient on RV*1, where V is the Dunkl
gradient on RV,

Lemma
Forl € {1/2,1,3/2,2,...,N/2,..} and for u € C§°(RY),

2
= u\x
/NH \Vkulzhi(x)dxdx,\prl—l—l(/—1)/ | (2 ) h2(x)dxdxp 1
R+

RN+1 XN+1
o (N4 2y +20- 1) ()P |
B 4 RV [x|?

( )dXdXN+1 9

(N+27,+2/—1)2
4

where is sharp.
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Sketch of the proof

The proof mainly rely on the relation

N
_ 0? I(1—1

XNJIrl (Z Tj2 + 2 + (Xz )>Xll\l+1g(x)
N+1 N+1

=1
(S g B0 e

OXFiq  XNt1OXny1

AND
@ The Hardy inequality

2
Viu 22 (x)dx > \2 Mh2 x)dx.
k k k
RN RV X2
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Hardy inequality for cone

Let V, = (Vk, ﬁ—m’ - %), where V is the Dunkl gradient on RN/

Let N+2v >3 and u € Cgo(Rﬁ). Then the following inequality holds:

/ \Vku|2h (x)dxdxp—j41..dxy
RV

L

h2 (x)dxdxp_j41..dXp,

>(N+2/+27k—2)2/ |ul?
- 4 RY |x[2

NA4-2/4-2y,—2)? .
where the constant % is sharp.
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Hardy Inequality for the Dunkl fractional Laplacian

Motivated by the numerical identity

S)/ t1+s )\>O

we can define the fractional power of the Dunkl Laplacian denoted by Aj.

Definition

Bochner's definition: For s € (0,1), the fractional Dunkl Laplacian A7 is
defined by

ALF(x) = ﬁ /0 (e B (x) — F(x))

tlts’
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Trace Hardy Inequality

Let0 <s<1andfe CORY). Then

/ / IV eu(x, )Pt (x)dxdp

1—*—'Yk) (N+S—|—'y) |U(X,O)|2 2N
M- T +%) /RN (L ) e,

> ¢cp

2k(v)

where ¢y = [[,cr, P
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Sketch of the proof

Assume u is real valued. Choose v is radial and using Cauchy-Schwarz
inequality.

/ / |VkU—HVkV|2Pahi(X)dXdP

/ / |V ul>p?h2(x) dxdp+/ / —paLkvh2 (x)dxdp

(x,0) L0V
; /R i (57 52)(x. ) ()

N V(X, 0) p—0

where LX is the differential operator
L= A+ 2+ 29,
p

and
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Sketch of the proof

Lla( = Ak—i—ag—i- %ap.

Look for v such that LXv = 0 with initial condition v(x,0) = f(x).

/ / |V iu(x, p)? p° i (x)dxdp
> L0 i (120 . ) )
R dp

v v(x,0) p—>0

@ a= M — 1is a positive integer, L is given by the action of
Ay = Ay + Ay on RVTM on functions v(x, y) which are radial in the
y variable.
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Sketch of the proof

N+M
v(x,p) = (P + xP)~"2
solves LXv = 0 even if a is not a positive integer.
o Define vy, for any a > 0, ¥, (x) = (1 + [x]?)~@
o Write
v(x,p) = p 9 kg (07 x)
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Sketch of the proof

Denote

_Nis_ _N— —
Vs,p:ps(p2+|xf2) 2 k=p N 27k¢%+7k(p lx).

Also f x vs , satisfies

S

]_ —
(Ax+ 95+ T8p)u =0.

For s < N/2 we have lim,_,o f %4 vs , = an(s)f, where

an(s) = [ (1 )5 e
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Sketch of the proof

Now "
pl_sap(f * K Vs,p) _ r(l - % - ka) (Ai f)
— Yk f

1
o
~~
*
-
o
AS)
(S0}

Recall that,
/ / IV u(x, p)|2p° 12 (x)dxdlp
0 RN

u’(x,0) ., ,0v
> - /R T lim (o) x I ()
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Sketch of the proof

Now we get the following inequality:

/ / IV ieu(x, p)|*p" i (x)dxdp

ML =3 =) [ P(60) asaey vy
>t L oy B N00R (s
2k(v)

where ¢ = [[,cg, P
Choose f(x) =tn_s, (x)=(1+ ]Xﬁf%*w. Use
2

~—

MM 4

5/2/\15
Ve ) = pms
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Trace Hardy Inequality for Dunkl fractional Laplacian for
homogeneous weight

Theorem
For0<s<1andfe CPRY), then

| [ Vet o)t
p (=) r(l—-—’Yk)r( +2’Yk)/ u2(x,0)h

2’yk+2+1 r( 2 )

>CWN

Take f = @ %4 u_g 5(x) where u_g5(x) = (62 + |x[?)~"2 7 and proceed
as in the last proof.
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Hardy Inequality for the Dunkl fractional Laplacian

The following Hardy inequality can be obtained as a corollary of the Trace
Hardy inequality.

Let f € L2(RN h2(x)) be such that ASf € L2(RN h2(x)). For0<s <1,
one has

M2 + ) FOP 2y
N—s 1 2)\s k(x) X
F(A52 4+ k) Jrw (14 [x]2)

(ARf,f) 2

The non-homogeneous form of the fractional Hardy inequality for Dunkl
Laplacian is obtained from the Trace Hardy inequality with
non-homogeneous weight.
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Hardy Inequality for the Dunkl fractional Laplacian with
homogeneous weight

Let N> 1 and 0 < s < 1 be such that N/2 > s. Then for f € C§°(RN),
we have

f 2
e [ R0 < (8311,
R

N |X|2s

where the constant Ey s is given by

(A +E+5))\°

. S

Ens =4 < (N Tk _ S)> ‘
2 T2 T2
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Remark:
@ Hardy inequality related to Dunkl gradient for upper half plane and
cone was proved using Hardy in equality on RV for Dunkl gradient

@ Fractional Hardy inequality related to Dunkl Laplacian for half-space
and cone can be obtained using fractional Hardy inequality for Dunkl

Laplacian.
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THANK YOU!
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Hardy Inequality for the Dunkl fractional Laplacian for
half-space

Let u e C§°(RY). For0 <s <1 and N> 1, one has

F(*5E2 +9) u(x, xn)?

h%(x) dxdx .
= r(N+2 25+’y) ]Rﬁ (1+|X|2+XI%/)2S k(X) Xaxy

(Afgu, u)gy >
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Hardy Inequality for the Dunkl fractional Laplacian for cone

Let0O<s<1land N>s. Forue Cgo(RkN+), the following inequality
holds:

|—( N+2é<+2s + 7)
r( N+221<72s + 7)

2
AS u 2
(A}, u, U>R’<N+ > /R{(V AT 210 hie(x)dxdxp.
+
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Hardy Inequality for the Dunkl fractional Laplacian with
homogeneous weight

Let u € C°(RN) and n/2 > s. Then for 0 < s < 1 we have

- I(
<Af<2 u, U>Rﬁ 2 4s<r
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Hardy Inequality for the Dunkl fractional Laplacian for
cone with homogeneous weight

Let u € C°(RN) and N/2 >s. Then for0 < s < 1 we have

. M g e 2, 2 lu(x, xn)|?
(A u, u)pn > 45( : 2 _ 2 ) / 2T 2 (x) dxdxy.
ko Ry, F(% + :21 _ %) Rﬁ ’X‘Zs k
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