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Theorem (Rupert L. Frank, 2011)

Let w be a positive function satisfying −∆w + Vw ≥ 0 in RN for some
function V . Then for all u ∈ C 1

0 (RN),∫
RN

(|∇u|2 + V |u|2)dx ≥
∫
RN

|∇(w−1u)|2w2dx .

Equality holds when −∆w + Vw = 0.

The theorem implies that∫
RN

|∇u|2dx ≥ −
∫
RN

V |u|2dx .

Choose w(x) = |x |−(N−2)/2 and V = −((N − 2)/2)2|x |−2. Then
−∆w + Vw = 0. Substituting V and w in the above theorem we get
following Hardy inequality.
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Theorem

Let N ≥ 3. Then for all u ∈ H1(RN),∫
RN

|∇u|2dx ≥
(
N − 2

2

)2 ∫
RN

|u|2

|x |2
dx .

The inequality is strict for every u 6≡ 0, but the constant ((N − 2)/2)2

cannot be replaced by a smaller constant.

Similarly one can put w(x) = e−α|x |
2/2 and V (x) = α2|x |2 − αN in the

theorem and optimizing for α we get the Heisenberg uncertainty principle(∫
RN

|∇u|2dx
)1/2(∫

RN

|x |2|u|2dx
)1/2

≥ N

2

∫
RN

|u|2dx .
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Let
RN
k+

= {(x1, ..., xN) ∈ RN : xN−k+1 > 0, ..., xN > 0}.

Theorem (Dan Su, Qiao-Hua Yang - 2012)

Let N ≥ 3. There holds, for all u ∈ C∞0 (RN
k+

),∫
RN
k+

|∇u|2dx ≥ (N − 2 + 2k)2

4

∫
RN
k+

|u|2

|x |2
dx ,

and the constant (N−2+2k)2

4 is sharp.
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Preliminaries of Dunkl Operator

For α ∈ RN \ {0}, we denote σα as the reflection in the hyper plane 〈α〉⊥
orthogonal to α, i.e.

σα(x) = x − 2
〈α, x〉
|α|2

α,

where |α| :=
√
〈α, α〉.

Definition

Let R ⊂ RN\{0} be a finite set. Then R is called a root system, if
(1) R ∩ Rα = {±α} for all α ∈ R
(2) σα(R) = R for all α ∈ R.

Anoop V.P. NISER, Bhubaneswar(Joint work with Sanjay Parui)HARDY AND FRACTIONAL HARDY INEQUALITY FOR DUNKL LAPLACIAN19 December, 2017 6 / 35



Preliminaries of Dunkl Operator

The group G = G (R) which is generated by reflections {σα : α ∈ R}
is called reflection group (or Coxeter-group) associated with R.

A G− invariant function from the root system R to R+ is called a
multiplicity function.

R = R+ t (−R+) where R+ and −R+ is separated by a hyperplane
through the origin. Such a set R+ is called positive subsystem.
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Preliminaries of Dunkl Operator

Let ∂j denotes the partial derivative corresponding to ej , and R is a
fixed root system.

Definition

Let k be a multiplicative function. Then for ej ∈ RN , the Dunkl operator
Tj := Tej (k) is defined (for f ∈ C 1(RN)) by

Tj f (x) := ∂j f (x) +
∑
α∈R+

k(α)〈α, ej〉
f (x)− f (σαx)

〈α, x〉
.

For fixed k, the associated Tj commutes.
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Preliminaries of Dunkl Operator

Associated with the reflection group and the function k , the weight
function hk is defined by

hk(x) =
∏
ν∈R+

|〈x , ν〉|kν , x ∈ RN .

This is positive homogeneous function of degree
γk :=

∑
ν∈R+

kν =
∑
ν∈R+

k(ν) and is invariant under the reflection group

G . Let us denote λk = N−2
2 + γk .

Theorem

Let k ≥ 0. Then for every f ∈ S (RN) and g ∈ C∞0 (RN),∫
RN

Tj f (x)g(x)h2
k(x)dx = −

∫
RN

f (x)Tjg(x)h2
k(x)dx .
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Preliminaries of Dunkl Operator

If f , g ∈ C 1(RN) and at least one of them is G -invariant then
Tj(fg) = Tj f .g + f .Tjg .

The Dunkl kernel Ek(., y) is defined as the unique solution of the
system,

Tj f = yj f , f (0) = 1.

Ek(x , y) is the analogous function of e〈x ,y〉 as e〈.,y〉 is the solution of
∂j f = yj f with f (0) = 1.

Dunkl gradient: ∇k = (T1,T2, · · · ,TN)

Dunkl Laplacian : ∆k =
N∑
j=1

T 2
j
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Hardy Inequality for Dunkl Laplacian

We will prove Hardy inequality in Dunkl setting and will deduce certain
related results.

Theorem

Let w be positive radial function satisfying −∆kw + Vw ≥ 0 in RN for
some function V . Then for all u ∈ C∞0 (RN),∫

RN

(|∇ku|2 + V |u|2)h2
k(x)dx ≥

∫
RN

|∇k(w−1u)|2w2h2
k(x)dx .

Equality holds when −∆kw + Vw = 0.
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Sketch of the proof

Let u = wv and w is radial. We can assume u is real valued. Then∫
RN

|∇ku|2 =

∫
RN

|w∇kv + v∇kw |2

=

∫
RN

(
|∇kv |2w2 + v2 |∇kw |2 + 2wv

N∑
j=1

TjvTjw

)
h2
k(x)dx

and estimate integral of each term separately.
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Sketch of the proof

Substitute simplify and use the Cauchy-Schwarz inequality, we obtain∫
RN

|w∇kv + v∇kw |2h2
k(x)dx

≥
∫
RN

|∇kv |2w2h2
k(x)dx −

∫
RN

wv2∆0wh
2
k(x)dx

−2γk

∫
RN

w(r)w ′(r)

r
v2(x)h2

k(x)dx

=

∫
RN

|∇kv |2w2h2
k(x)dx −

∫
RN

v2w∆kwh
2
k(x)dx

So we can conclude as∫
RN |∇ku|2h2

k(x)dx ≥
∫
RN |∇kv |2w2h2

k(x)dx −
∫
RN Vu2h2

k(x)dx
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Hardy Inequality

Choose

w(x) = |x |−λk , λk =
N − 2

2
+ γk .

Using the Dunkl Laplacian for the radial function

∆k =
d2

dr2
+

2λk + 1

r

d

dr
,

and equating ∆kw = Vw we get

V (x) = −λ2
k |x |−2.

Now use the above theorem and obtain∫
RN

|∇ku|2h2
k(x)dx ≥ λ2

k

∫
RN

|u|2

|x |2
h2
k(x)dx . (1)
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Let ∇̃k = (∇k ,
∂

∂xN+1
) be the gradient on RN+1, where ∇k is the Dunkl

gradient on RN .

Lemma

For l ∈ {1/2, 1, 3/2, 2, ...,N/2, ..} and for u ∈ C∞0 (RN
+),∫

RN+1
+

|∇̃ku|2h2
k(x)dxdxN+1 + l(l − 1)

∫
RN+1

+

|u(x)|2

x2
N+1

h2
k(x)dxdxN+1

≥ (N + 2γk + 2l − 1)2

4

∫
RN+1

+

|u(x)|2

|x |2
h2
k(x)dxdxN+1,

where (N+2γk+2l−1)2

4 is sharp.
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Sketch of the proof

The proof mainly rely on the relation

x−lN+1

( N∑
j=1

T 2
j +

∂2

∂x2
N+1

+
l(l − 1)

x2
N+1

)
x lN+1g(x)

=

( N∑
j=1

T 2
j +

∂2

∂x2
N+1

+
2l

xN+1

∂

∂xN+1

)
g(x)

AND

The Hardy inequality∫
RN

|∇ku|2h2
k(x)dx ≥ λ2

k

∫
RN

|u|2

|x |2
h2
k(x)dx .
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Hardy inequality for cone

Let ∇̃l = (∇k ,
∂

∂xN−l+1
, ..., ∂

∂xN
), where ∇k is the Dunkl gradient on RN−l .

Theorem

Let N + 2γ ≥ 3 and u ∈ C∞0 (RN
l+

). Then the following inequality holds:∫
RN
l+

|∇̃ku|2h2
k(x)dxdxN−l+1..dxN

≥ (N + 2l + 2γk − 2)2

4

∫
RN
l+

|u|2

|x |2
h2
k(x)dxdxN−l+1..dxN ,

where the constant (N+2l+2γk−2)2

4 is sharp.
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Hardy Inequality for the Dunkl fractional Laplacian

Motivated by the numerical identity

λs =
1

Γ(−s)

∫ ∞
0

(e−tλ − 1)
dt

t1+s
, λ > 0,

we can define the fractional power of the Dunkl Laplacian denoted by ∆s
k .

Definition

Bochner’s definition: For s ∈ (0, 1), the fractional Dunkl Laplacian ∆s
k is

defined by

∆s
k f (x) =

1

Γ(−s)

∫ ∞
0

(e−t∆k f (x)− f (x))
dt

t1+s
.
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Trace Hardy Inequality

Theorem

Let 0 < s < 1 and f ∈ C∞0 (RN
+). Then∫ ∞

0

∫
RN

|∇ku(x , ρ)|2ρ1−sh2
k(x)dxdρ

≥ ch
Γ(1− s

2 − γk)

Γ( s2 − γk)

Γ(N+s
2 + γk)

Γ(N−s2 + γk)

∫
RN

|u(x , 0)|2

(1 + |x |2)s
h2
k(x)dx ,

where ch =
∏
ν∈R+

ρ2k(ν).
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Sketch of the proof

Assume u is real valued. Choose v is radial and using Cauchy-Schwarz
inequality.∫ ∞

0

∫
RN

|∇ku −
u

v
∇kv |2ρah2

k(x)dxdρ

≤
∫ ∞

0

∫
RN

|∇ku|2ρah2
k(x)dxdρ+

∫ ∞
0

∫
RN

u2

v
ρaLkavh

2
k(x)dxdρ

+

∫
RN

u2(x , 0)

v(x , 0)
lim
ρ→0

(ρa
∂v

∂ρ
)(x , ρ)h2

k(x)dx

where Lka is the differential operator

Lka = ∆k + ∂2
ρ +

a

ρ
∂ρ,

and

∆k =
N∑
j=1

T 2
j .
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Sketch of the proof

Lka = ∆k + ∂2
ρ + a

ρ∂ρ.

Look for v such that Lkav = 0 with initial condition v(x , 0) = f (x).

∫ ∞
0

∫
RN

|∇ku(x , ρ)|2ρah2
k(x)dxdρ

≥ −
∫
RN

u2(x , 0)

v(x , 0)
lim
ρ→0

(ρa
∂v

∂ρ
)(x , ρ)h2

k(x)dx

a = M − 1 is a positive integer, Lka is given by the action of
∆̃k = ∆k + ∆o on RN+M on functions v(x , y) which are radial in the
y variable.
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Sketch of the proof

v(x , ρ) = (ρ2 + |x |2)−
N+M

2
−γ+1

solves Lkav = 0 even if a is not a positive integer.

Define ψα, for any α ≥ 0, ψα(x) = (1 + |x |2)−α

Write
v(x , ρ) = ρ−(N−s)−2γkψN+s

2
+γk

(ρ−1x)
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Sketch of the proof

Denote

vs,ρ = ρs(ρ2 + |x |2)−
N+s

2
−γk = ρ−N−2γkψN+s

2
+γk

(ρ−1x).

Also f ∗ vs,ρ satisfies

(∆k + ∂2
ρ +

1− s

ρ
∂ρ)u = 0.

For s ≤ N/2 we have limρ→0 f ∗k vs,ρ = aN(s)f , where

aN(s) =

∫
RN

(1 + |x |2)−
N+s

2
−γkdx
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Sketch of the proof

Now

lim
ρ→0
−ρ

1−s∂ρ(f ∗k vs,ρ)

f ∗k vs,ρ
=

Γ(1− s
2 − γk)

s
2 − γk

(∆
s/2
k f )

f

Recall that, ∫ ∞
0

∫
RN

|∇ku(x , ρ)|2ρah2
k(x)dxdρ

≥ −
∫
RN

u2(x , 0)

v(x , 0)
lim
ρ→0

(ρa
∂v

∂ρ
)(x , ρ)h2

k(x)dx
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Sketch of the proof

Now we get the following inequality:∫ ∞
0

∫
RN

|∇ku(x , ρ)|2ρ1−sh2
k(x)dxdρ

≥ ch
Γ(1− s

2 − γk)

Γ( s2 − γk)

∫
RN

u2(x , 0)

f (x)
(∆

s/2
k f )(x)h2

k(x)dx ,

where ch =
∏
ν∈R+

ρ2k(ν).

Choose f (x) = ψN−s
2

+γk
(x) = (1 + |x |2)−

N−s
2
−γk . Use

∆
s/2
k ψN−s

2
+γk

(x) =
Γ(N+s

2 + γk)

Γ(N−s2 + γk)
ψN+s

2
+γk
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Trace Hardy Inequality for Dunkl fractional Laplacian for
homogeneous weight

Theorem

For 0 < s < 1 and f ∈ C∞0 (RN
+), then∫ ∞

0

∫
RN

|∇ku(x , ρ)|2ρ1−sh2
k(x)dxdρ

≥ chw
k
N

(−i)−N

2γk+N
2

+1

Γ(1− s
2 − γk)Γ(N2 + 2γk)

Γ(N−s2 + γk)

∫
RN

u2(x , 0)

|x |s
h2
k(x)dx

Take f = ϕ ∗k u−s,δ(x) where u−s,δ(x) = (δ2 + |x |2)−
n−s

2
−γk and proceed

as in the last proof.
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Hardy Inequality for the Dunkl fractional Laplacian

The following Hardy inequality can be obtained as a corollary of the Trace
Hardy inequality.

Theorem

Let f ∈ L2(RN , h2
k(x)) be such that ∆s

k f ∈ L2(RN , h2
k(x)). For 0 < s < 1,

one has

〈∆s
k f , f 〉 ≥

Γ(N+s
2 + γk)

Γ(N−s2 + γk)

∫
RN

f (x)2

(1 + |x |2)s
h2
k(x)dx .

The non-homogeneous form of the fractional Hardy inequality for Dunkl
Laplacian is obtained from the Trace Hardy inequality with
non-homogeneous weight.
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Hardy Inequality for the Dunkl fractional Laplacian with
homogeneous weight

Theorem

Let N ≥ 1 and 0 < s < 1 be such that N/2 > s. Then for f ∈ C∞0 (RN),
we have

EN,s

∫
RN

|f (x)|2

|x |2s
h2
k(x)dx ≤ 〈∆s

k f , f 〉,

where the constant EN,s is given by

EN,s = 4s
(

Γ(N4 + γk
2 + s

2 )

Γ(N4 + γk
2 −

s
2 )

)2

.
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Remark:

Hardy inequality related to Dunkl gradient for upper half plane and
cone was proved using Hardy in equality on RN for Dunkl gradient

Fractional Hardy inequality related to Dunkl Laplacian for half-space
and cone can be obtained using fractional Hardy inequality for Dunkl
Laplacian.
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THANK YOU!
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Hardy Inequality for the Dunkl fractional Laplacian for
half-space

Theorem

Let u ∈ C∞0 (RN
+). For 0 < s < 1 and N ≥ 1, one has

〈∆̃s
k2
u, u〉RN

+
≥

Γ(N+2+2s
2 + γ)

Γ(N+2−2s
2 + γ)

∫
RN

+

u(x , xN)2

(1 + |x |2 + x2
N)2s

h2
k(x)dxdxN .
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Hardy Inequality for the Dunkl fractional Laplacian for cone

Theorem

Let 0 < s < 1 and N > s. For u ∈ C∞0 (RN
k+

), the following inequality
holds:

〈∆̃s
k2
u, u〉RN

k+
≥

Γ(N+2k+2s
2 + γ)

Γ(N+2k−2s
2 + γ)

∫
RN
k+

u2

(1 + |x |2 + x2
n )2s

h2
k(x)dxdxN .
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Hardy Inequality for the Dunkl fractional Laplacian with
homogeneous weight

Theorem

Let u ∈ C∞0 (RN) and n/2 ≥ s. Then for 0 < s < 1 we have

〈∆̃s
k2
u, u〉RN

+
≥ 4s

(
Γ(N+2

4 + γ
2 + s

2 )

Γ(N+2
4 + γ

2 −
s
2 )

)2 ∫
RN

+

|u(x , xN)|2

|x |2s
h2
k(x)dxdxN .

Anoop V.P. NISER, Bhubaneswar(Joint work with Sanjay Parui)HARDY AND FRACTIONAL HARDY INEQUALITY FOR DUNKL LAPLACIAN19 December, 2017 34 / 35



Hardy Inequality for the Dunkl fractional Laplacian for
cone with homogeneous weight

Theorem

Let u ∈ C∞0 (RN) and N/2 ≥ s. Then for 0 < s < 1 we have

〈∆̃s
k2
u, u〉RN

k+
≥ 4s

(
Γ(N+2k

4 + γ
2 + s

2 )

Γ(N+2k
4 + γ

2 −
s
2 )

)2 ∫
RN
k+

|u(x , xN)|2

|x |2s
h2
k(x)dxdxN .
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