Sparse bounds and sharp weighted inequalities

Andrei Lerner
Bar-Ilan University
15th Discussion meeting in Harmonic Analysis Bangalore
December 18-21, 2017

Sparse families and sparse bounds

- Given $0<\eta \leqslant 1$, we say that a family \mathcal{S} of cubes from \mathbb{R}^{n} is η-sparse if for any $Q \in \mathcal{S}$ there exists a subset $E_{Q} \subset Q$ such that
- $\left|E_{Q}\right| \geqslant \eta|Q|$;
- the sets $\left\{E_{Q}\right\}_{Q \in \mathcal{S}}$ are pairwise disjoint.

Sparse families and sparse bounds

- Given $0<\eta \leqslant 1$, we say that a family \mathcal{S} of cubes from \mathbb{R}^{n} is η-sparse if for any $Q \in \mathcal{S}$ there exists a subset $E_{Q} \subset Q$ such that
- $\left|E_{Q}\right| \geqslant \eta|Q|$;
- the sets $\left\{E_{Q}\right\}_{Q \in \mathcal{S}}$ are pairwise disjoint.
- Examples:
(1) Any family of pairwise disjoint cubes is trivially 1-sparse.

Sparse families and sparse bounds

- Given $0<\eta \leqslant 1$, we say that a family \mathcal{S} of cubes from \mathbb{R}^{n} is η-sparse if for any $Q \in \mathcal{S}$ there exists a subset $E_{Q} \subset Q$ such that
- $\left|E_{Q}\right| \geqslant \eta|Q|$;
- the sets $\left\{E_{Q}\right\}_{Q \in \mathcal{S}}$ are pairwise disjoint.
- Examples:
(1) Any family of pairwise disjoint cubes is trivially 1 -sparse.
(2) A family of the intervals $\left\{\left[0,2^{k}\right), k \in \mathbb{Z}\right\}$ is $\frac{1}{2}$-sparse (the corresponding pairwise disjoint sets are $\left\{\left[2^{k-1}, 2^{k}\right), k \in \mathbb{Z}\right\}$).

Sparse families and sparse bounds

- Given $0<\eta \leqslant 1$, we say that a family \mathcal{S} of cubes from \mathbb{R}^{n} is η-sparse if for any $Q \in \mathcal{S}$ there exists a subset $E_{Q} \subset Q$ such that
- $\left|E_{Q}\right| \geqslant \eta|Q|$;
- the sets $\left\{E_{Q}\right\}_{Q \in \mathcal{S}}$ are pairwise disjoint.
- Examples:
(1) Any family of pairwise disjoint cubes is trivially 1 -sparse.
(2) A family of the intervals $\left\{\left[0,2^{k}\right), k \in \mathbb{Z}\right\}$ is $\frac{1}{2}$-sparse (the corresponding pairwise disjoint sets are $\left\{\left[2^{k-1}, 2^{k}\right), k \in \mathbb{Z}\right\}$).
(3) Fix a cube $Q_{0} \subset \mathbb{R}^{n}$. Take an arbitrary collection of pairwise disjoint cubes $Q_{1}^{j} \subset Q_{0}$ such that $\sum_{j}\left|Q_{1}^{j}\right| \leqslant(1-\eta)\left|Q_{0}\right|$. In a similar way take collections of cubes in every Q_{1}^{j}, and so on. Then the resulting family of all the cubes appearing in the process will be η-sparse.

Sparse families and sparse bounds

- Given $0<\eta \leqslant 1$, we say that a family \mathcal{S} of cubes from \mathbb{R}^{n} is η-sparse if for any $Q \in \mathcal{S}$ there exists a subset $E_{Q} \subset Q$ such that
- $\left|E_{Q}\right| \geqslant \eta|Q|$;
- the sets $\left\{E_{Q}\right\}_{Q \in \mathcal{S}}$ are pairwise disjoint.
- Examples:
(1) Any family of pairwise disjoint cubes is trivially 1 -sparse.
(2) A family of the intervals $\left\{\left[0,2^{k}\right), k \in \mathbb{Z}\right\}$ is $\frac{1}{2}$-sparse (the corresponding pairwise disjoint sets are $\left\{\left[2^{k-1}, 2^{k}\right), k \in \mathbb{Z}\right\}$).
(3) Fix a cube $Q_{0} \subset \mathbb{R}^{n}$. Take an arbitrary collection of pairwise disjoint cubes $Q_{1}^{j} \subset Q_{0}$ such that $\sum_{j}\left|Q_{1}^{j}\right| \leqslant(1-\eta)\left|Q_{0}\right|$. In a similar way take collections of cubes in every Q_{1}^{j}, and so on. Then the resulting family of all the cubes appearing in the process will be η-sparse.
(4) Define the dyadic maximal operator

$$
M^{\mathcal{D}} f(x)=\sup _{Q \ni x, Q \in \mathcal{D}} \frac{1}{|Q|} \int_{Q}|f|,
$$

and consider the sets $\Omega_{k}=\left\{x: M^{\mathcal{D}} f(x)>2^{(n+1) k}\right\}, k \in \mathbb{Z}$.

Sparse families and sparse bounds

- Given $0<\eta \leqslant 1$, we say that a family \mathcal{S} of cubes from \mathbb{R}^{n} is η-sparse if for any $Q \in \mathcal{S}$ there exists a subset $E_{Q} \subset Q$ such that
- $\left|E_{Q}\right| \geqslant \eta|Q|$;
- the sets $\left\{E_{Q}\right\}_{Q \in \mathcal{S}}$ are pairwise disjoint.
- Examples:
(1) Any family of pairwise disjoint cubes is trivially 1 -sparse.
(2) A family of the intervals $\left\{\left[0,2^{k}\right), k \in \mathbb{Z}\right\}$ is $\frac{1}{2}$-sparse (the corresponding pairwise disjoint sets are $\left\{\left[2^{k-1}, 2^{k}\right), k \in \mathbb{Z}\right\}$).
(3) Fix a cube $Q_{0} \subset \mathbb{R}^{n}$. Take an arbitrary collection of pairwise disjoint cubes $Q_{1}^{j} \subset Q_{0}$ such that $\sum_{j}\left|Q_{1}^{j}\right| \leqslant(1-\eta)\left|Q_{0}\right|$. In a similar way take collections of cubes in every Q_{1}^{j}, and so on. Then the resulting family of all the cubes appearing in the process will be η-sparse.
(4) Define the dyadic maximal operator

$$
M^{\mathcal{D}} f(x)=\sup _{Q \ni x, Q \in \mathcal{D}} \frac{1}{|Q|} \int_{Q}|f|,
$$

and consider the sets $\Omega_{k}=\left\{x: M^{\mathcal{D}} f(x)>2^{(n+1) k}\right\}, k \in \mathbb{Z}$. Then Ω_{k} can be written as $\Omega_{k}=\cup_{j} Q_{j}^{k}$, and the family $\left\{Q_{j}^{k}, k \in \mathbb{Z}\right\}$ is $\frac{1}{2}$-sparse.

Sparse families and sparse bounds

- Given $0<\eta \leqslant 1$, we say that a family \mathcal{S} of cubes from \mathbb{R}^{n} is η-sparse if for any $Q \in \mathcal{S}$ there exists a subset $E_{Q} \subset Q$ such that
- $\left|E_{Q}\right| \geqslant \eta|Q|$;
- the sets $\left\{E_{Q}\right\}_{Q \in \mathcal{S}}$ are pairwise disjoint.
- The name "sparse" for such families was given first in the work by M. Lacey and T. Hytönen (2011).

Sparse families and sparse bounds

- Given $0<\eta \leqslant 1$, we say that a family \mathcal{S} of cubes from \mathbb{R}^{n} is η-sparse if for any $Q \in \mathcal{S}$ there exists a subset $E_{Q} \subset Q$ such that
- $\left|E_{Q}\right| \geqslant \eta|Q|$;
- the sets $\left\{E_{Q}\right\}_{Q \in \mathcal{S}}$ are pairwise disjoint.
- The name "sparse" for such families was given first in the work by M. Lacey and T. Hytönen (2011).
- For $p \geqslant 1$ denote

$$
\langle f\rangle_{p, Q}=\left(\frac{1}{|Q|} \int_{Q}|f|^{p}\right)^{1 / p}
$$

Sparse families and sparse bounds

- Given $0<\eta \leqslant 1$, we say that a family \mathcal{S} of cubes from \mathbb{R}^{n} is η-sparse if for any $Q \in \mathcal{S}$ there exists a subset $E_{Q} \subset Q$ such that
- $\left|E_{Q}\right| \geqslant \eta|Q| ;$
- the sets $\left\{E_{Q}\right\}_{Q \in \mathcal{S}}$ are pairwise disjoint.
- The name "sparse" for such families was given first in the work by M. Lacey and T. Hytönen (2011).
- For $p \geqslant 1$ denote

$$
\langle f\rangle_{p, Q}=\left(\frac{1}{|Q|} \int_{Q}|f|^{p}\right)^{1 / p}
$$

- The operator

$$
A_{p, \mathcal{S}} f(x)=\sum_{Q \in \mathcal{S}}\langle f\rangle_{p, Q} \chi_{Q}(x)
$$

where \mathcal{S} is a sparse family, is called the sparse operator.

Sparse families and sparse bounds

- The name "sparse" for such families was given first in the work by M. Lacey and T. Hytönen (2011).
- For $p \geqslant 1$ denote

$$
\langle f\rangle_{p, Q}=\left(\frac{1}{|Q|} \int_{Q}|f|^{p}\right)^{1 / p}
$$

- The operator

$$
A_{p, \mathcal{S}} f(x)=\sum_{Q \in \mathcal{S}}\langle f\rangle_{p, Q} \chi_{Q}(x)
$$

where \mathcal{S} is a sparse family, is called the sparse operator.

- By a sparse bound (or a sparse domination) for a given operator T one typically means an estimate of the form

$$
|\langle T f, g\rangle| \leqslant C \sum_{Q \in \mathcal{S}}\langle f\rangle_{p, Q}\langle g\rangle_{r, Q}|Q| \quad(1 \leqslant p, r<\infty)
$$

where \mathcal{S} is a sparse family (depending on f and g but with an absolute sparseness constant).

Sparse families and sparse bounds

- For $p \geqslant 1$ denote

$$
\langle f\rangle_{p, Q}=\left(\frac{1}{|Q|} \int_{Q}|f|^{p}\right)^{1 / p}
$$

- The operator

$$
A_{p, \mathcal{S}} f(x)=\sum_{Q \in \mathcal{S}}\langle f\rangle_{p, Q} \chi_{Q}(x)
$$

where \mathcal{S} is a sparse family, is called the sparse operator.

- By a sparse bound (or a sparse domination) for a given operator T one typically means an estimate of the form

$$
|\langle T f, g\rangle| \leqslant C \sum_{Q \in \mathcal{S}}\langle f\rangle_{p, Q}\langle g\rangle_{r, Q}|Q| \quad(1 \leqslant p, r<\infty)
$$

where \mathcal{S} is a sparse family (depending on f and g but with an absolute sparseness constant).

- It has been observed that such an estimate with the best possible (that is, the smallest possible) p and r typically yields the sharp quantitative weighted inequalities for T.

Some basic operators

- Define the Hardy-Littlewood maximal operator by

$$
M f(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|f| .
$$

Some basic operators

- Define the Hardy-Littlewood maximal operator by

$$
M f(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|f| .
$$

- We say that T is an ω-Calderón-Zygmund operator if
(1) T is L^{2} bounded;
(2) T is represented as

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x, y) f(y) d y \quad \text { for all } x \notin \operatorname{supp} f
$$

(3) K satisfies the size condition $|K(x, y)| \leqslant \frac{C_{K}}{|x-y|^{n}}, x \neq y$;
(4) K satisfies the regularity condition

$$
\begin{aligned}
& \left|K(x, y)-K\left(x^{\prime}, y\right)\right|+\left|K(y, x)-K\left(y, x^{\prime}\right)\right| \leqslant \omega\left(\frac{\left|x-x^{\prime}\right|}{|x-y|}\right) \frac{1}{|x-y|^{n}} \\
& \text { for }|x-y|>2\left|x-x^{\prime}\right| \text {, where } \omega:[0,1] \rightarrow[0, \infty) \text { is continuous, } \\
& \text { increasing, subadditive and } \omega(0)=0 \text {. }
\end{aligned}
$$

Some basic operators

- Define the Hardy-Littlewood maximal operator by

$$
M f(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|f| .
$$

- We say that T is an ω-Calderón-Zygmund operator if
(1) T is L^{2} bounded;
(2) T is represented as

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x, y) f(y) d y \quad \text { for all } x \notin \operatorname{supp} f
$$

(3) K satisfies the size condition $|K(x, y)| \leqslant \frac{C_{K}}{|x-y|^{n}}, x \neq y$;
(4) K satisfies the regularity condition

$$
\begin{aligned}
& \left|K(x, y)-K\left(x^{\prime}, y\right)\right|+\left|K(y, x)-K\left(y, x^{\prime}\right)\right| \leqslant \omega\left(\frac{\left|x-x^{\prime}\right|}{|x-y|}\right) \frac{1}{|x-y|^{n}} \\
& \text { for }|x-y|>2\left|x-x^{\prime}\right| \text {, where } \omega:[0,1] \rightarrow[0, \infty) \text { is continuous, } \\
& \text { increasing, subadditive and } \omega(0)=0 \text {. }
\end{aligned}
$$

- The standard assumption on ω is that $\omega(t)=C t^{\delta}, 0<\delta \leqslant 1$. In this case we will skip ω.

Some basic operators

- We say that T is an ω-Calderón-Zygmund operator if
(1) T is L^{2} bounded;
(2) T is represented as

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x, y) f(y) d y \quad \text { for all } x \notin \operatorname{supp} f
$$

(3) K satisfies the size condition $|K(x, y)| \leqslant \frac{C_{K}}{|x-y|^{n}}, x \neq y$;
(4) K satisfies the regularity condition

$$
\left|K(x, y)-K\left(x^{\prime}, y\right)\right|+\left|K(y, x)-K\left(y, x^{\prime}\right)\right| \leqslant \omega\left(\frac{\left|x-x^{\prime}\right|}{|x-y|}\right) \frac{1}{|x-y|^{n}}
$$

for $|x-y|>2\left|x-x^{\prime}\right|$, where $\omega:[0,1] \rightarrow[0, \infty)$ is continuous, increasing, subadditive and $\omega(0)=0$.

- The standard assumption on ω is that $\omega(t)=C t^{\delta}, 0<\delta \leqslant 1$. In this case we will skip ω. More general assumptions are

$$
\begin{equation*}
\int_{0}^{1} \omega(t) \log \frac{1}{t} \frac{d t}{t}<\infty \quad(\log -\text { Dini }), \quad \int_{0}^{1} \omega(t) \frac{d t}{t}<\infty \tag{Dini}
\end{equation*}
$$

Sharp quantitative weighted inequalities

- By a weight we mean a non-negative, locally integrable function. Given a weight w, set

$$
\|f\|_{L^{p}(w)}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right)^{1 / p} \quad(1 \leqslant p<\infty)
$$

Sharp quantitative weighted inequalities

- By a weight we mean a non-negative, locally integrable function. Given a weight w, set

$$
\|f\|_{L^{p}(w)}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right)^{1 / p} \quad(1 \leqslant p<\infty)
$$

- We say that a weight w satisfies the $A_{p}, 1<p<\infty$, condition if

$$
[w]_{A_{p}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w\right)\left(\frac{1}{|Q|} \int_{Q} w^{-\frac{1}{p-1}}\right)^{p-1}<\infty
$$

The constant $[w]_{A_{p}}$ is called the A_{p} constant of w.

Sharp quantitative weighted inequalities

- By a weight we mean a non-negative, locally integrable function. Given a weight w, set

$$
\|f\|_{L^{p}(w)}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right)^{1 / p} \quad(1 \leqslant p<\infty)
$$

- We say that a weight w satisfies the $A_{p}, 1<p<\infty$, condition if

$$
[w]_{A_{p}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w\right)\left(\frac{1}{|Q|} \int_{Q} w^{-\frac{1}{p-1}}\right)^{p-1}<\infty
$$

The constant $[w]_{A_{p}}$ is called the A_{p} constant of w.

- R. Hunt, B. Muckenhoupt, R. Wheeden, R. Coifman, C. Fefferman (1972-1974): if $w \in A_{p}$, then the maximal operator M and Calderón-Zygmund operators T are bounded on $L^{p}(w)$.

Sharp quantitative weighted inequalities

- By a weight we mean a non-negative, locally integrable function. Given a weight w, set

$$
\|f\|_{L^{p}(w)}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right)^{1 / p} \quad(1 \leqslant p<\infty)
$$

- We say that a weight w satisfies the $A_{p}, 1<p<\infty$, condition if

$$
[w]_{A_{p}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w\right)\left(\frac{1}{|Q|} \int_{Q} w^{-\frac{1}{p-1}}\right)^{p-1}<\infty
$$

The constant $[w]_{A_{p}}$ is called the A_{p} constant of w.

- R. Hunt, B. Muckenhoupt, R. Wheeden, R. Coifman, C. Fefferman (1972-1974): if $w \in A_{p}$, then the maximal operator M and Calderón-Zygmund operators T are bounded on $L^{p}(w)$.
- For M and for some Calderón-Zygmund operators (for example, for the Hilbert transform or for the Riesz transforms) the A_{p} condition is also necessary for the $L^{p}(w)$ boundedness.

Sharp quantitative weighted inequalities

- We say that a weight w satisfies the $A_{p}, 1<p<\infty$, condition if

$$
[w]_{A_{p}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w\right)\left(\frac{1}{|Q|} \int_{Q} w^{-\frac{1}{p-1}}\right)^{p-1}<\infty
$$

The constant $[w]_{A_{p}}$ is called the A_{p} constant of w.

- R. Hunt, B. Muckenhoupt, R. Wheeden, R. Coifman, C. Fefferman (1972-1974): if $w \in A_{p}$, then the maximal operator M and Calderón-Zygmund operators T are bounded on $L^{p}(w)$.
- For M and for some Calderón-Zygmund operators (for example, for the Hilbert transform or for the Riesz transforms) the A_{p} condition is also necessary for the $L^{p}(w)$ boundedness.
- Question (early 90's): what are the sharp bounds for $\|M\|_{L^{p}(w) \rightarrow L^{p}(w)}$ and $\|T\|_{L^{p}(w) \rightarrow L^{p}(w)}$ in terms of $[w]_{A_{p}}$?

Sharp quantitative weighted inequalities

- We say that a weight w satisfies the $A_{p}, 1<p<\infty$, condition if

$$
[w]_{A_{p}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w\right)\left(\frac{1}{|Q|} \int_{Q} w^{-\frac{1}{p-1}}\right)^{p-1}<\infty
$$

The constant $[w]_{A_{p}}$ is called the A_{p} constant of w.

- R. Hunt, B. Muckenhoupt, R. Wheeden, R. Coifman, C. Fefferman (1972-1974): if $w \in A_{p}$, then the maximal operator M and Calderón-Zygmund operators T are bounded on $L^{p}(w)$.
- For M and for some Calderón-Zygmund operators (for example, for the Hilbert transform or for the Riesz transforms) the A_{p} condition is also necessary for the $L^{p}(w)$ boundedness.
- Question (early 90's): what are the sharp bounds for $\|M\|_{L^{p}(w) \rightarrow L^{p}(w)}$ and $\|T\|_{L^{p}(w) \rightarrow L^{p}(w)}$ in terms of $[w]_{A_{p}}$?
- S. Buckley (1993): for the maximal operator,

$$
\|M\|_{L^{p}(w) \rightarrow L^{p}(w)} \leqslant C(n, p)[w]_{A_{p}}^{\frac{1}{p-1}} \quad(p>1)
$$

and the exponent $\frac{1}{p-1}$ is best possible for every $p>1$.

The A_{2} conjecture

- For Calderón-Zygmund operators T, if α is the best possible exponent in

$$
\|T f\|_{L^{p}(w)} \leqslant C(T, n, p)[w]_{A_{p}}^{\alpha}\|f\|_{L^{p}(w)}
$$

then it satisfies $\alpha \geqslant \max \left(1, \frac{1}{p-1}\right)$.

The A_{2} conjecture

- For Calderón-Zygmund operators T, if α is the best possible exponent in

$$
\|T f\|_{L^{p}(w)} \leqslant C(T, n, p)[w]_{A_{p}}^{\alpha}\|f\|_{L^{p}(w)}
$$

then it satisfies $\alpha \geqslant \max \left(1, \frac{1}{p-1}\right)$. Therefore, it was conjectured that $\alpha=\max \left(1, \frac{1}{p-1}\right)$.

The A_{2} conjecture

- For Calderón-Zygmund operators T, if α is the best possible exponent in

$$
\|T f\|_{L^{p}(w)} \leqslant C(T, n, p)[w]_{A_{p}}^{\alpha}\|f\|_{L^{p}(w)}
$$

then it satisfies $\alpha \geqslant \max \left(1, \frac{1}{p-1}\right)$. Therefore, it was conjectured that $\alpha=\max \left(1, \frac{1}{p-1}\right)$.

- By a general extrapolation argument, it is enough to verify this only in the case $p=2$, and by this reason the conjecture was called the A_{2} conjecture.

The A_{2} conjecture

- For Calderón-Zygmund operators T, if α is the best possible exponent in

$$
\|T f\|_{L^{p}(w)} \leqslant C(T, n, p)[w]_{A_{p}}^{\alpha}\|f\|_{L^{p}(w)}
$$

then it satisfies $\alpha \geqslant \max \left(1, \frac{1}{p-1}\right)$. Therefore, it was conjectured that $\alpha=\max \left(1, \frac{1}{p-1}\right)$.

- By a general extrapolation argument, it is enough to verify this only in the case $p=2$, and by this reason the conjecture was called the A_{2} conjecture.
- The standard Calderón-Zygmund theory shows only that

$$
\|T f\|_{L^{2}(w)} \leqslant C(T, n)[w]_{A_{2}}\|M f\|_{L^{2}(w)}
$$

The A_{2} conjecture

- For Calderón-Zygmund operators T, if α is the best possible exponent in

$$
\|T f\|_{L^{p}(w)} \leqslant C(T, n, p)[w]_{A_{p}}^{\alpha}\|f\|_{L^{p}(w)}
$$

then it satisfies $\alpha \geqslant \max \left(1, \frac{1}{p-1}\right)$. Therefore, it was conjectured that $\alpha=\max \left(1, \frac{1}{p-1}\right)$.

- By a general extrapolation argument, it is enough to verify this only in the case $p=2$, and by this reason the conjecture was called the A_{2} conjecture.
- The standard Calderón-Zygmund theory shows only that

$$
\|T f\|_{L^{2}(w)} \leqslant C(T, n)[w]_{A_{2}}\|M f\|_{L^{2}(w)} \leqslant C(T, n)[w]_{A_{2}}^{2}\|f\|_{L^{2}(w)}
$$

The A_{2} conjecture

- For Calderón-Zygmund operators T, if α is the best possible exponent in

$$
\|T f\|_{L^{p}(w)} \leqslant C(T, n, p)[w]_{A_{p}}^{\alpha}\|f\|_{L^{p}(w)}
$$

then it satisfies $\alpha \geqslant \max \left(1, \frac{1}{p-1}\right)$. Therefore, it was conjectured that $\alpha=\max \left(1, \frac{1}{p-1}\right)$.

- By a general extrapolation argument, it is enough to verify this only in the case $p=2$, and by this reason the conjecture was called the A_{2} conjecture.
- The standard Calderón-Zygmund theory shows only that

$$
\|T f\|_{L^{2}(w)} \leqslant C(T, n)[w]_{A_{2}}\|M f\|_{L^{2}(w)} \leqslant C(T, n)[w]_{A_{2}}^{2}\|f\|_{L^{2}(w)}
$$

- K. Astala, T. Iwaniec and E. Saksman (2001) established a relation between some borderline properties of quasiregular mappings on \mathbb{C} and the A_{2} conjecture for the Ahlfors-Beurling operator B defined by

$$
B f(z)=\text { p.v. } \int_{\mathbb{C}} \frac{f(\zeta)}{(z-\zeta)^{2}} d A(\zeta)
$$

The A_{2} conjecture

- By a general extrapolation argument, it is enough to verify this only in the case $p=2$, and by this reason the conjecture was called the A_{2} conjecture.
- The standard Calderón-Zygmund theory shows only that

$$
\|T f\|_{L^{2}(w)} \leqslant C(T, n)[w]_{A_{2}}\|M f\|_{L^{2}(w)} \leqslant C(T, n)[w]_{A_{2}}^{2}\|f\|_{L^{2}(w)}
$$

- K. Astala, T. Iwaniec and E. Saksman (2001) established a relation between some borderline properties of quasiregular mappings on \mathbb{C} and the A_{2} conjecture for the Ahlfors-Beurling operator B defined by

$$
B f(z)=\text { p.v. } \int_{\mathbb{C}} \frac{f(\zeta)}{(z-\zeta)^{2}} d A(\zeta)
$$

- S. Petermichl and A. Volberg (2002) settled the A_{2} conjecture for B.

The A_{2} conjecture

- By a general extrapolation argument, it is enough to verify this only in the case $p=2$, and by this reason the conjecture was called the A_{2} conjecture.
- The standard Calderón-Zygmund theory shows only that

$$
\|T f\|_{L^{2}(w)} \leqslant C(T, n)[w]_{A_{2}}\|M f\|_{L^{2}(w)} \leqslant C(T, n)[w]_{A_{2}}^{2}\|f\|_{L^{2}(w)}
$$

- K. Astala, T. Iwaniec and E. Saksman (2001) established a relation between some borderline properties of quasiregular mappings on \mathbb{C} and the A_{2} conjecture for the Ahlfors-Beurling operator B defined by

$$
B f(z)=\text { p.v. } \int_{\mathbb{C}} \frac{f(\zeta)}{(z-\zeta)^{2}} d A(\zeta)
$$

- S. Petermichl and A. Volberg (2002) settled the A_{2} conjecture for B.
- S. Petermichl (2004): the A_{2} conjecture is true for the Hilbert transform

$$
H f(x)=\text { p.v. } \int_{\mathbb{R}} \frac{f(y)}{x-y} d y
$$

The A_{2} conjecture

- The standard Calderón-Zygmund theory shows only that

$$
\|T f\|_{L^{2}(w)} \leqslant C(T, n)[w]_{A_{2}}\|M f\|_{L^{2}(w)} \leqslant C(T, n)[w]_{A_{2}}^{2}\|f\|_{L^{2}(w)}
$$

- K. Astala, T. Iwaniec and E. Saksman (2001) established a relation between some borderline properties of quasiregular mappings on \mathbb{C} and the A_{2} conjecture for the Ahlfors-Beurling operator B defined by

$$
B f(z)=\text { p.v. } \int_{\mathbb{C}} \frac{f(\zeta)}{(z-\zeta)^{2}} d A(\zeta)
$$

- S. Petermichl and A. Volberg (2002) settled the A_{2} conjecture for B.
- S. Petermichl (2004): the A_{2} conjecture is true for the Hilbert transform

$$
H f(x)=\text { p.v. } \int_{\mathbb{R}} \frac{f(y)}{x-y} d y
$$

- After a number of intermediate results (due to M. Lacey, S. Petermichl, M. Reguera, A. Beznosova, C. Pérez, D. Cruz-Uribe, J. Martell, F. Nazarov, S. Treil, A. Volberg), the A_{2} conjecture in full generality was proved by T. Hytönen (2010).

The A_{2} conjecture

- S. Petermichl and A. Volberg (2002) settled the A_{2} conjecture for B.
- S. Petermichl (2004): the A_{2} conjecture is true for the Hilbert transform

$$
H f(x)=\text { p.v. } \int_{\mathbb{R}} \frac{f(y)}{x-y} d y
$$

- After a number of intermediate results (due to M. Lacey, S. Petermichl, M. Reguera, A. Beznosova, C. Pérez, D. Cruz-Uribe, J. Martell, F. Nazarov, S. Treil, A. Volberg), the A_{2} conjecture in full generality was proved by T. Hytönen (2010).
- The key idea of the proof: a representation of Calderón-Zygmund operators in terms of the so-called Haar shift operators

$$
\mathbb{S}_{\mathscr{D}}^{m, k} f(x)=\sum_{Q \in \mathscr{D}} \sum_{\substack{Q^{\prime}, Q^{\prime \prime} \in \mathscr{\mathscr { O } , Q ^ { \prime } , Q ^ { \prime \prime } \subset Q} \\ \ell\left(Q^{\prime}\right)=2^{-m} \ell(Q), \ell\left(Q^{\prime \prime}\right)=2^{-k} \ell(Q)}} \frac{\left\langle f, h_{Q^{\prime}}^{Q^{\prime \prime}}\right\rangle}{|Q|} h_{Q^{\prime \prime}}^{Q^{\prime}}(x)
$$

with their subsequent analysis.

A sparse domination approach to the A_{2} conjecture

- The oscillation of f on E :

$$
\omega(f ; E)=\sup _{E} f-\inf _{E} f
$$

A sparse domination approach to the A_{2} conjecture

- The oscillation of f on E :

$$
\omega(f ; E)=\sup _{E} f-\inf _{E} f
$$

Given $0<\lambda<1$, define the λ-oscillation of f over a cube Q by

$$
\omega_{\lambda}(f ; Q)=\inf \{\omega(f ; E): E \subset Q,|E| \geqslant(1-\lambda)|Q|\}
$$

A sparse domination approach to the A_{2} conjecture

- The oscillation of f on E :

$$
\omega(f ; E)=\sup _{E} f-\inf _{E} f
$$

Given $0<\lambda<1$, define the λ-oscillation of f over a cube Q by

$$
\omega_{\lambda}(f ; Q)=\inf \{\omega(f ; E): E \subset Q,|E| \geqslant(1-\lambda)|Q|\}
$$

A.L. (2009), T.Hytönen (2012), A.L. and F. Nazarov (2014)

For every measurable function f with $\mu_{f}(\alpha)<\infty$, there exists a $\frac{1}{6}$-sparse family $\mathcal{S} \subset \mathscr{D}$ such that for a.e. $x \in \mathbb{R}^{n}$,

$$
|f(x)| \leqslant \sum_{Q \in \mathcal{S}} \omega_{\frac{1}{2^{n+2}}}(f ; Q) \chi_{Q}(x)
$$

A sparse domination approach to the A_{2} conjecture

- The oscillation of f on E :

$$
\omega(f ; E)=\sup _{E} f-\inf _{E} f
$$

Given $0<\lambda<1$, define the λ-oscillation of f over a cube Q by

$$
\omega_{\lambda}(f ; Q)=\inf \{\omega(f ; E): E \subset Q,|E| \geqslant(1-\lambda)|Q|\}
$$

A.L. (2009), T.Hytönen (2012), A.L. and F. Nazarov (2014)

For every measurable function f with $\mu_{f}(\alpha)<\infty$, there exists a $\frac{1}{6}$-sparse family $\mathcal{S} \subset \mathscr{D}$ such that for a.e. $x \in \mathbb{R}^{n}$,

$$
|f(x)| \leqslant \sum_{Q \in \mathcal{S}} \omega_{\frac{1}{2^{n+2}}}(f ; Q) \chi_{Q}(x)
$$

- Some history:
(1) L. Carleson (1976): a different proof of the $H^{1}-B M O$ duality;
(2) J. Garnett and P. Jones (1982): a dyadic version;
(3) N. Fujii (1991): BMO can be replaced by $L_{l o c}^{1}$.

A sparse domination approach to the A_{2} conjecture

A.L. (2009), T.Hytönen (2012), A.L. and F. Nazarov (2014)

For every measurable function f with $\mu_{f}(\alpha)<\infty$, there exists a $\frac{1}{6}$-sparse family $\mathcal{S} \subset \mathscr{D}$ such that for a.e. $x \in \mathbb{R}^{n}$,

$$
|f(x)| \leqslant \sum_{Q \in \mathcal{S}} \omega_{\frac{1}{2 n+2}}(f ; Q) \chi_{Q}(x) .
$$

- D. Cruz-Uribe, J. Martell and C. Pérez (2010) used this result to get the sharp weighted bounds for Haar shift operators and the dyadic square function.

A sparse domination approach to the A_{2} conjecture

A.L. (2009), T.Hytönen (2012), A.L. and F. Nazarov (2014)

For every measurable function f with $\mu_{f}(\alpha)<\infty$, there exists a $\frac{1}{6}$-sparse family $\mathcal{S} \subset \mathscr{D}$ such that for a.e. $x \in \mathbb{R}^{n}$,

$$
|f(x)| \leqslant \sum_{Q \in \mathcal{S}} \omega_{\frac{1}{2^{n+2}}}(f ; Q) \chi_{Q}(x) .
$$

- D. Cruz-Uribe, J. Martell and C. Pérez (2010) used this result to get the sharp weighted bounds for Haar shift operators and the dyadic square function.
- In particular, they showed that Haar shift operators are controlled by the sparse operators $A_{\mathcal{S}, \mathscr{D}}$ defined by

$$
A_{\mathcal{S}, \mathscr{D}} f(x)=\sum_{Q \in \mathcal{S}} f_{Q} \chi_{Q} \quad(\mathcal{S} \subset \mathscr{D}),
$$

where $f_{Q}=\frac{1}{|Q|} \int_{Q} f$. They also gave an elementary proof of

$$
\left\|A_{\mathcal{S}, \mathscr{D}}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C[w]_{A_{2}} .
$$

A sparse domination approach to the A_{2} conjecture

- D. Cruz-Uribe, J. Martell and C. Pérez (2010) used this result to get the sharp weighted bounds for Haar shift operators and the dyadic square function.
- In particular, they showed that Haar shift operators are controlled by the sparse operators $A_{\mathcal{S}, \mathscr{D}}$ defined by

$$
A_{\mathcal{S}, \mathscr{D}} f(x)=\sum_{Q \in \mathcal{S}} f_{Q} \chi_{Q} \quad(\mathcal{S} \subset \mathscr{D})
$$

where $f_{Q}=\frac{1}{|Q|} \int_{Q} f$. They also gave an elementary proof of

$$
\left\|A_{\mathcal{S}, \mathscr{D}}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C[w]_{A_{2}}
$$

- A.L. (2012): for every Calderón-Zygmund operator T,

$$
\|T f\|_{L^{2}(w)} \leqslant C(n, T) \sup _{\mathcal{S}, \mathscr{D}}\left\|A_{\mathcal{S}, \mathscr{D}}|f|\right\|_{L^{2}(w)},
$$

where the supremum is taken over all $\frac{1}{2}$-sparse families $\mathcal{S} \subset \mathscr{D}$ and all dyadic lattices \mathscr{D}.

The proof of $\left\|A_{\mathcal{S}, \mathscr{D}}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C[w]_{A_{2}}$.

Let $A_{\mathcal{S}} f(x)=\sum_{Q \in \mathcal{S}} f_{Q} \chi_{Q}(x)$, where $\mathcal{S} \subset \mathscr{D}$ and \mathcal{S} is $\frac{1}{2}$-sparse. Denote

$$
A_{2}(w ; Q)=\frac{w(Q) w^{-1}(Q)}{|Q|^{2}}
$$

Assume that $f, g \geqslant 0$.

The proof of $\left\|A_{\mathcal{S}, \mathscr{D}}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C[w]_{A_{2}}$.

Let $A_{\mathcal{S}} f(x)=\sum_{Q \in \mathcal{S}} f_{Q} \chi_{Q}(x)$, where $\mathcal{S} \subset \mathscr{D}$ and \mathcal{S} is $\frac{1}{2}$-sparse. Denote

$$
A_{2}(w ; Q)=\frac{w(Q) w^{-1}(Q)}{|Q|^{2}}
$$

Assume that $f, g \geqslant 0$. Then

$$
\int_{\mathbb{R}^{n}}\left(A_{\mathcal{S}} f\right) g d x=\sum_{Q \in \mathcal{S}} f_{Q} g_{Q}|Q|
$$

The proof of $\left\|A_{\mathcal{S}, \mathscr{D}}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C[w]_{A_{2}}$.

Let $A_{\mathcal{S}} f(x)=\sum_{Q \in \mathcal{S}} f_{Q} \chi_{Q}(x)$, where $\mathcal{S} \subset \mathscr{D}$ and \mathcal{S} is $\frac{1}{2}$-sparse. Denote

$$
A_{2}(w ; Q)=\frac{w(Q) w^{-1}(Q)}{|Q|^{2}}
$$

Assume that $f, g \geqslant 0$. Then

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(A_{\mathcal{S}} f\right) g d x & =\sum_{Q \in \mathcal{S}} f_{Q} g_{Q}|Q| \\
\frac{1}{2} \text {-sparseness } & \leqslant 2 \sum_{Q \in \mathcal{S}} A_{2}(w ; Q)\left(\frac{1}{w^{-1}(Q)} \int_{Q} f\right)\left(\frac{1}{w(Q)} \int_{Q} g\right)\left|E_{Q}\right|
\end{aligned}
$$

The proof of $\left\|A_{\mathcal{S}, \mathscr{D}}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C[w]_{A_{2}}$.

Let $A_{\mathcal{S}} f(x)=\sum_{Q \in \mathcal{S}} f_{Q} \chi_{Q}(x)$, where $\mathcal{S} \subset \mathscr{D}$ and \mathcal{S} is $\frac{1}{2}$-sparse. Denote

$$
A_{2}(w ; Q)=\frac{w(Q) w^{-1}(Q)}{|Q|^{2}}
$$

Assume that $f, g \geqslant 0$. Then

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(A_{\mathcal{S}} f\right) g d x & =\sum_{Q \in \mathcal{S}} f_{Q} g_{Q}|Q| \\
\frac{1}{2} \text {-sparseness } & \leqslant 2 \sum_{Q \in \mathcal{S}} A_{2}(w ; Q)\left(\frac{1}{w^{-1}(Q)} \int_{Q} f\right)\left(\frac{1}{w(Q)} \int_{Q} g\right)\left|E_{Q}\right| \\
M_{\nu}^{\mathscr{D}}: \frac{1}{\nu(Q)} \int_{Q}|f| \nu & \leqslant 2[w]_{A_{2}} \sum_{Q \in \mathcal{S}} \int_{E_{Q}} M_{w^{-1}}^{\mathscr{D}}(f w) M_{w}^{\mathscr{D}}\left(g w^{-1}\right) d x
\end{aligned}
$$

The proof of $\left\|A_{\mathcal{S}, \mathscr{D}}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C[w]_{A_{2}}$.

Let $A_{\mathcal{S}} f(x)=\sum_{Q \in \mathcal{S}} f_{Q} \chi_{Q}(x)$, where $\mathcal{S} \subset \mathscr{D}$ and \mathcal{S} is $\frac{1}{2}$-sparse. Denote

$$
A_{2}(w ; Q)=\frac{w(Q) w^{-1}(Q)}{|Q|^{2}}
$$

Assume that $f, g \geqslant 0$. Then

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(A_{\mathcal{S}} f\right) g d x & =\sum_{Q \in \mathcal{S}} f_{Q} g_{Q}|Q| \\
\frac{1}{2} \text {-sparseness } & \leqslant 2 \sum_{Q \in \mathcal{S}} A_{2}(w ; Q)\left(\frac{1}{w^{-1}(Q)} \int_{Q} f\right)\left(\frac{1}{w(Q)} \int_{Q} g\right)\left|E_{Q}\right| \\
M_{\nu}^{\mathscr{D}}: \frac{1}{\nu(Q)} \int_{Q}|f| \nu & \leqslant 2[w]_{A_{2}} \sum_{Q \in \mathcal{S}} \int_{E_{Q}} M_{w^{-1}}^{\mathscr{D}}(f w) M_{w}^{\mathscr{D}}\left(g w^{-1}\right) d x \\
E_{Q} \cap E_{Q^{\prime}}=\emptyset & \leqslant 2[w]_{A_{2}} \int_{\mathbb{R}^{n}} M_{w^{-1}}^{\mathscr{O}}(f w) M_{w}^{\mathscr{D}}\left(g w^{-1}\right) d x
\end{aligned}
$$

The proof of $\left\|A_{\mathcal{S}, \mathscr{D}}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C[w]_{A_{2}}$.

Let $A_{\mathcal{S}} f(x)=\sum_{Q \in \mathcal{S}} f_{Q} \chi_{Q}(x)$, where $\mathcal{S} \subset \mathscr{D}$ and \mathcal{S} is $\frac{1}{2}$-sparse. Denote

$$
A_{2}(w ; Q)=\frac{w(Q) w^{-1}(Q)}{|Q|^{2}}
$$

Assume that $f, g \geqslant 0$. Then

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(A_{\mathcal{S}} f\right) g d x & =\sum_{Q \in \mathcal{S}} f_{Q} g_{Q}|Q| \\
\frac{1}{2} \text {-sparseness } & \leqslant 2 \sum_{Q \in \mathcal{S}} A_{2}(w ; Q)\left(\frac{1}{w^{-1}(Q)} \int_{Q} f\right)\left(\frac{1}{w(Q)} \int_{Q} g\right)\left|E_{Q}\right| \\
M_{\nu}^{\mathscr{D}}: \frac{1}{\nu(Q)} \int_{Q}|f| \nu & \leqslant 2[w]_{A_{2}} \sum_{Q \in \mathcal{S}} \int_{E_{Q}} M_{w^{-1}}^{\mathscr{D}}(f w) M_{w}^{\mathscr{D}}\left(g w^{-1}\right) d x \\
E_{Q} \cap E_{Q^{\prime}}=\emptyset & \leqslant 2[w]_{A_{2}} \int_{\mathbb{R}^{n}} M_{w^{-1}}^{\mathscr{D}}(f w) M_{w}^{\mathscr{D}}\left(g w^{-1}\right) d x \\
\text { Hölder } & \leqslant 2[w]_{A_{2}}\left\|M_{w^{-1}}^{\mathscr{D}}(f w)\right\|_{L^{2}\left(w^{-1}\right)}\left\|M_{w}^{\mathscr{D}}\left(g w^{-1}\right)\right\|_{L^{2}(w)}
\end{aligned}
$$

The proof of $\left\|A_{\mathcal{S}, \mathscr{D}}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C[w]_{A_{2}}$.

Let $A_{\mathcal{S}} f(x)=\sum_{Q \in \mathcal{S}} f_{Q} \chi_{Q}(x)$, where $\mathcal{S} \subset \mathscr{D}$ and \mathcal{S} is $\frac{1}{2}$-sparse. Denote

$$
A_{2}(w ; Q)=\frac{w(Q) w^{-1}(Q)}{|Q|^{2}}
$$

Assume that $f, g \geqslant 0$. Then

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(A_{\mathcal{S}} f\right) g d x & =\sum_{Q \in \mathcal{S}} f_{Q} g_{Q}|Q| \\
\frac{1}{2} \text {-sparseness } & \leqslant 2 \sum_{Q \in \mathcal{S}} A_{2}(w ; Q)\left(\frac{1}{w^{-1}(Q)} \int_{Q} f\right)\left(\frac{1}{w(Q)} \int_{Q} g\right)\left|E_{Q}\right| \\
M_{\nu}^{\mathscr{D}}: \frac{1}{\nu(Q)} \int_{Q}|f| \nu & \leqslant 2[w]_{A_{2}} \sum_{Q \in \mathcal{S}} \int_{E_{Q}} M_{w^{-1}}^{\mathscr{D}}(f w) M_{w}^{\mathscr{D}}\left(g w^{-1}\right) d x \\
E_{Q} \cap E_{Q^{\prime}}=\emptyset & \leqslant 2[w]_{A_{2}} \int_{\mathbb{R}^{n}} M_{w^{-1}}^{\mathscr{D}}(f w) M_{w}^{\mathscr{D}}\left(g w^{-1}\right) d x \\
\text { Hölder } & \leqslant 2[w]_{A_{2}}\left\|M_{w^{-1}}^{\mathscr{D}}(f w)\right\|_{L^{2}\left(w^{-1}\right)}\left\|M_{w}^{\mathscr{D}}\left(g w^{-1}\right)\right\|_{L^{2}(w)} \\
\left\|M_{\nu}^{\mathscr{D}}\right\|_{L^{2}(\nu)} \leqslant 2 & \leqslant 8[w]_{A_{2}}\|f\|_{L^{2}(w)}\|g\|_{L^{2}\left(w^{-1}\right)} .
\end{aligned}
$$

More recent history

- A.L. and F. Nazarov, J. Conde-Alonso and G. Rey (2014):

$$
|T f(x)| \leqslant C(n, T) \sum_{j=1}^{3^{n}} A_{\mathcal{S}_{j}, \mathscr{O}_{j}}|f|(x)
$$

(for $\omega-\mathrm{CZ}$ operators T with $\int_{0}^{1} \omega(t) \log \frac{1}{t} \frac{d t}{t}<\infty$).

More recent history

- A.L. and F. Nazarov, J. Conde-Alonso and G. Rey (2014):

$$
|T f(x)| \leqslant C(n, T) \sum_{j=1}^{3^{n}} A_{\mathcal{S}_{j}, \mathscr{O}_{j}}|f|(x)
$$

(for ω-CZ operators T with $\int_{0}^{1} \omega(t) \log \frac{1}{t} \frac{d t}{t}<\infty$).

- M. Lacey (2015): the same bound for ω-CZ operators T with

$$
[\omega]_{\text {Dini }}=\int_{0}^{1} \omega(t) \frac{d t}{t}<\infty
$$

More recent history

- A.L. and F. Nazarov, J. Conde-Alonso and G. Rey (2014):

$$
|T f(x)| \leqslant C(n, T) \sum_{j=1}^{3^{n}} A_{\mathcal{S}_{j}, \mathscr{O}_{j}}|f|(x)
$$

(for ω-CZ operators T with $\int_{0}^{1} \omega(t) \log \frac{1}{t} \frac{d t}{t}<\infty$).

- M. Lacey (2015): the same bound for ω-CZ operators T with

$$
[\omega]_{\text {Dini }}=\int_{0}^{1} \omega(t) \frac{d t}{t}<\infty .
$$

- T. Hytönen, L. Roncal, O. Tapiola (2015): a quantitative version in terms of $[\omega]_{\text {Dini }}$.

More recent history

- A.L. and F. Nazarov, J. Conde-Alonso and G. Rey (2014):

$$
|T f(x)| \leqslant C(n, T) \sum_{j=1}^{3^{n}} A_{\mathcal{S}_{j}, \mathscr{O}_{j}}|f|(x)
$$

(for ω-CZ operators T with $\int_{0}^{1} \omega(t) \log \frac{1}{t} \frac{d t}{t}<\infty$).

- M. Lacey (2015): the same bound for ω-CZ operators T with

$$
[\omega]_{\text {Dini }}=\int_{0}^{1} \omega(t) \frac{d t}{t}<\infty .
$$

- T. Hytönen, L. Roncal, O. Tapiola (2015): a quantitative version in terms of $[\omega]_{\text {Dini }}$.
- A.L. (2015): a streamlined "maximal operator" proof.

More recent history

- A.L. and F. Nazarov, J. Conde-Alonso and G. Rey (2014):

$$
|T f(x)| \leqslant C(n, T) \sum_{j=1}^{3^{n}} A_{\mathcal{S}_{j}, \mathscr{O}_{j}}|f|(x)
$$

(for ω-CZ operators T with $\int_{0}^{1} \omega(t) \log \frac{1}{t} \frac{d t}{t}<\infty$).

- M. Lacey (2015): the same bound for ω-CZ operators T with

$$
[\omega]_{\text {Dini }}=\int_{0}^{1} \omega(t) \frac{d t}{t}<\infty
$$

- T. Hytönen, L. Roncal, O. Tapiola (2015): a quantitative version in terms of $[\omega]_{\text {Dini }}$.
- A.L. (2015): a streamlined "maximal operator" proof.
- F. Bernicot, D. Frey and S. Petermichl (2015): estimates of the form

$$
|\langle T f, g\rangle| \leqslant C \sum_{Q \in \mathcal{S}}\langle f\rangle_{p, Q}\langle g\rangle_{r, Q}|Q| \quad(1 \leqslant p, r<\infty)
$$

for non-integral operators.

More recent history

- A.L. and F. Nazarov, J. Conde-Alonso and G. Rey (2014):

$$
|T f(x)| \leqslant C(n, T) \sum_{j=1}^{3^{n}} A_{\mathcal{S}_{j}, \mathscr{O}_{j}}|f|(x)
$$

(for ω-CZ operators T with $\int_{0}^{1} \omega(t) \log \frac{1}{t} \frac{d t}{t}<\infty$).

- M. Lacey (2015): the same bound for ω-CZ operators T with

$$
[\omega]_{\text {Dini }}=\int_{0}^{1} \omega(t) \frac{d t}{t}<\infty
$$

- T. Hytönen, L. Roncal, O. Tapiola (2015): a quantitative version in terms of $[\omega]_{\text {Dini }}$.
- A.L. (2015): a streamlined "maximal operator" proof.
- F. Bernicot, D. Frey and S. Petermichl (2015): estimates of the form

$$
|\langle T f, g\rangle| \leqslant C \sum_{Q \in \mathcal{S}}\langle f\rangle_{p, Q}\langle g\rangle_{r, Q}|Q| \quad(1 \leqslant p, r<\infty)
$$

for non-integral operators.

- (2016 -): ≈ 60 "sparse domination" papers.

The maximal operator M_{T}

Given a sublinear operator T, define the maximal operator M_{T} by

$$
M_{T} f(x)=\sup _{Q \ni x}\left\|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right\|_{L^{\infty}(Q)}
$$

The maximal operator M_{T}

Given a sublinear operator T, define the maximal operator M_{T} by

$$
M_{T} f(x)=\sup _{Q \ni x}\left\|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right\|_{L^{\infty}(Q)}
$$

- Assume now that T is an ω-CZ operator, and define the maximal truncated operator by

$$
T^{\star} f(x)=\sup _{\varepsilon>0}\left|\int_{|y-x|>\varepsilon} K(x, y) f(y) d y\right| .
$$

The maximal operator M_{T}

Given a sublinear operator T, define the maximal operator M_{T} by

$$
M_{T} f(x)=\sup _{Q \ni x}\left\|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right\|_{L^{\infty}(Q)}
$$

- Assume now that T is an ω-CZ operator, and define the maximal truncated operator by

$$
T^{\star} f(x)=\sup _{\varepsilon>0}\left|\int_{|y-x|>\varepsilon} K(x, y) f(y) d y\right|
$$

- Then for all $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
M_{T} f(x) \leqslant C_{n}\left([\omega]_{\text {Dini }}+C_{K}\right) M f(x)+T^{\star} f(x) \tag{*}
\end{equation*}
$$

The maximal operator M_{T}

Given a sublinear operator T, define the maximal operator M_{T} by

$$
M_{T} f(x)=\sup _{Q \ni x}\left\|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right\|_{L^{\infty}(Q)}
$$

- Assume now that T is an ω-CZ operator, and define the maximal truncated operator by

$$
T^{\star} f(x)=\sup _{\varepsilon>0}\left|\int_{|y-x|>\varepsilon} K(x, y) f(y) d y\right|
$$

- Then for all $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
M_{T} f(x) \leqslant C_{n}\left([\omega]_{\text {Dini }}+C_{K}\right) M f(x)+T^{\star} f(x) \tag{*}
\end{equation*}
$$

- The idea of the proof: for all $x, \xi \in Q$,

$$
\begin{aligned}
\left|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)(\xi)\right| & \leqslant\left|T\left(f \chi_{\mathbb{R}^{n} \backslash B_{x}}\right)(\xi)-T\left(f \chi_{\mathbb{R}^{n} \backslash B_{x}}\right)(x)\right| \\
& +\left|T\left(f \chi_{B_{x} \backslash 3 Q}\right)(\xi)\right|+\left|T\left(f \chi_{\mathbb{R}^{n} \backslash B_{x}}\right)(x)\right|,
\end{aligned}
$$

where B_{x} is the smallest ball centered at x containing $3 Q$.

The maximal operator M_{T}

Given a sublinear operator T, define the maximal operator M_{T} by

$$
M_{T} f(x)=\sup _{Q \ni x}\left\|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right\|_{L^{\infty}(Q)}
$$

- Then for all $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
M_{T} f(x) \leqslant C_{n}\left([\omega]_{\text {Dini }}+C_{K}\right) M f(x)+T^{\star} f(x) \tag{*}
\end{equation*}
$$

- The idea of the proof: for all $x, \xi \in Q$,

$$
\begin{aligned}
\left|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)(\xi)\right| & \leqslant\left|T\left(f \chi_{\mathbb{R}^{n} \backslash B_{x}}\right)(\xi)-T\left(f \chi_{\mathbb{R}^{n} \backslash B_{x}}\right)(x)\right| \\
& +\left|T\left(f \chi_{B_{x} \backslash 3 Q}\right)(\xi)\right|+\left|T\left(f \chi_{\mathbb{R}^{n} \backslash B_{x}}\right)(x)\right|,
\end{aligned}
$$

where B_{x} is the smallest ball centered at x containing $3 Q$.

- By $(*), M_{T}$ is of weak type $(1,1)$ and

$$
\left\|M_{T} f\right\|_{L^{1, \infty}} \leqslant C_{n} C_{T}\|f\|_{L^{1}}
$$

where $C_{T}=\|T\|_{L^{2} \rightarrow L^{2}}+C_{K}+[\omega]_{\text {Dini }}$.

The maximal operator M_{T}

Given a sublinear operator T, define the maximal operator M_{T} by

$$
M_{T} f(x)=\sup _{Q \ni x}\left\|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right\|_{L^{\infty}(Q)}
$$

- By $(*), M_{T}$ is of weak type $(1,1)$ and

$$
\left\|M_{T} f\right\|_{L^{1, \infty}} \leqslant C_{n} C_{T}\|f\|_{L^{1}}
$$

where $C_{T}=\|T\|_{L^{2} \rightarrow L^{2}}+C_{K}+[\omega]_{\text {Dini }}$.

Theorem (A.L. (2015))

Assume that T and M_{T} are of weak type $(1,1)$. Then, for every compactly supported $f \in L^{1}\left(\mathbb{R}^{n}\right)$, there exists a sparse family \mathcal{S} such that for a.e. x,

$$
|T f(x)| \leqslant K A_{\mathcal{S}}|f|(x)
$$

where $K=C_{n}\left(\|T\|_{L^{1} \rightarrow L^{1, \infty}}+\left\|M_{T}\right\|_{L^{1} \rightarrow L^{1, \infty}}\right)$.

The proof of $|T f(x)| \leqslant K A_{\mathcal{S}}|f|(x)$

- The key recursive claim: there exist pairwise disjoint cubes $P_{j} \subset Q_{0}$ such that $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$ and for a.e. on Q_{0},

$$
\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \chi_{Q_{0}} \leqslant K|f|_{3 Q_{0}}+\sum_{j}\left|T\left(f \chi_{3 P_{j}}\right)\right| \chi_{P_{j}}
$$

The proof of $|T f(x)| \leqslant K A_{\mathcal{S}}|f|(x)$

- The key recursive claim: there exist pairwise disjoint cubes $P_{j} \subset Q_{0}$ such that $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$ and for a.e. on Q_{0},

$$
\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \chi_{Q_{0}} \leqslant K|f|_{3 Q_{0}}+\sum_{j}\left|T\left(f \chi_{3 P_{j}}\right)\right| \chi_{P_{j}}
$$

- Iterating this claim, we obtain that there exists a $\frac{1}{2}$-sparse family \mathcal{F} of cubes from Q_{0} such that

$$
\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \chi_{Q_{0}} \leqslant K \sum_{Q \in \mathcal{F}}|f|_{3 Q} \chi_{Q}(x)
$$

The proof of $|T f(x)| \leqslant K A_{\mathcal{S}}|f|(x)$

- The key recursive claim: there exist pairwise disjoint cubes $P_{j} \subset Q_{0}$ such that $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$ and for a.e. on Q_{0},

$$
\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \chi_{Q_{0}} \leqslant K|f|_{3 Q_{0}}+\sum_{j}\left|T\left(f \chi_{3 P_{j}}\right)\right| \chi_{P_{j}}
$$

- Iterating this claim, we obtain that there exists a $\frac{1}{2}$-sparse family \mathcal{F} of cubes from Q_{0} such that

$$
\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \chi_{Q_{0}} \leqslant K \sum_{Q \in \mathcal{F}}|f|_{3 Q} \chi_{Q}(x)
$$

- Take a partition of \mathbb{R}^{n} by cubes R_{j} such that $\operatorname{supp}(f) \subset 3 R_{j}$ for each j, and apply the above estimate to each R_{j} instead of Q_{0}.

The proof of $|T f(x)| \leqslant K A_{\mathcal{S}}|f|(x)$

- The key recursive claim: there exist pairwise disjoint cubes $P_{j} \subset Q_{0}$ such that $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$ and for a.e. on Q_{0},

$$
\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \chi_{Q_{0}} \leqslant K|f|_{3 Q_{0}}+\sum_{j}\left|T\left(f \chi_{3 P_{j}}\right)\right| \chi_{P_{j}}
$$

- Iterating this claim, we obtain that there exists a $\frac{1}{2}$-sparse family \mathcal{F} of cubes from Q_{0} such that

$$
\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \chi_{Q_{0}} \leqslant K \sum_{Q \in \mathcal{F}}|f|_{3 Q} \chi_{Q}(x) .
$$

- Take a partition of \mathbb{R}^{n} by cubes R_{j} such that supp $(f) \subset 3 R_{j}$ for each j, and apply the above estimate to each R_{j} instead of Q_{0}. Let \mathcal{F}_{j} be the corresponding sparse family of the cubes from R_{j}.

The proof of $|T f(x)| \leqslant K A_{\mathcal{S}}|f|(x)$

- The key recursive claim: there exist pairwise disjoint cubes $P_{j} \subset Q_{0}$ such that $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$ and for a.e. on Q_{0},

$$
\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \chi_{Q_{0}} \leqslant K|f|_{3 Q_{0}}+\sum_{j}\left|T\left(f \chi_{3 P_{j}}\right)\right| \chi_{P_{j}}
$$

- Iterating this claim, we obtain that there exists a $\frac{1}{2}$-sparse family \mathcal{F} of cubes from Q_{0} such that

$$
\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \chi_{Q_{0}} \leqslant K \sum_{Q \in \mathcal{F}}|f|_{3 Q} \chi_{Q}(x)
$$

- Take a partition of \mathbb{R}^{n} by cubes R_{j} such that supp $(f) \subset 3 R_{j}$ for each j, and apply the above estimate to each R_{j} instead of Q_{0}. Let \mathcal{F}_{j} be the corresponding sparse family of the cubes from R_{j}. Setting $\mathcal{F}=\cup_{j} \mathcal{F}_{j}$, we obtain that \mathcal{F} is $\frac{1}{2}$-sparse and for a.e. $x \in \mathbb{R}^{n}$,

$$
|T f(x)| \leqslant K \sum_{Q \in \mathcal{F}}|f|_{3 Q} \chi_{Q}(x)
$$

The proof of $|T f(x)| \leqslant K A_{\mathcal{S}}|f|(x)$

- The key recursive claim: there exist pairwise disjoint cubes $P_{j} \subset Q_{0}$ such that $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$ and for a.e. on Q_{0},

$$
\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \chi_{Q_{0}} \leqslant K|f|_{3 Q_{0}}+\sum_{j}\left|T\left(f \chi_{3 P_{j}}\right)\right| \chi_{P_{j}}
$$

- Iterating this claim, we obtain that there exists a $\frac{1}{2}$-sparse family \mathcal{F} of cubes from Q_{0} such that

$$
\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \chi_{Q_{0}} \leqslant K \sum_{Q \in \mathcal{F}}|f|_{3 Q} \chi_{Q}(x)
$$

- Take a partition of \mathbb{R}^{n} by cubes R_{j} such that supp $(f) \subset 3 R_{j}$ for each j, and apply the above estimate to each R_{j} instead of Q_{0}. Let \mathcal{F}_{j} be the corresponding sparse family of the cubes from R_{j}. Setting $\mathcal{F}=\cup_{j} \mathcal{F}_{j}$, we obtain that \mathcal{F} is $\frac{1}{2}$-sparse and for a.e. $x \in \mathbb{R}^{n}$,

$$
|T f(x)| \leqslant K \sum_{Q \in \mathcal{F}}|f|_{3 Q} \chi_{Q}(x)
$$

- Hence, the statement holds with the $\frac{1}{2 \cdot 3^{n}}$-sparse family

$$
\mathcal{S}=\{3 Q: Q \in \mathcal{F}\}
$$

The proof of $|T f(x)| \leqslant K A_{\mathcal{S}}|f|(x)$

- The key recursive claim: there exist pairwise disjoint cubes $P_{j} \subset Q_{0}$ such that $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$ and for a.e. on Q_{0},

$$
\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \chi_{Q_{0}} \leqslant K|f|_{3 Q_{0}}+\sum_{j}\left|T\left(f \chi_{3 P_{j}}\right)\right| \chi_{P_{j}}
$$

- For arbitrary pairwise disjoint cubes $P_{j} \subset Q_{0}$,

$$
\begin{aligned}
\left|T\left(f \chi_{3 Q_{0}}\right)\right| \chi_{Q_{0}} & \leqslant\left|T\left(f \chi_{3 Q_{0}}\right)\right| \chi_{Q_{0} \backslash \cup_{j} P_{j}}+\sum_{j}\left|T\left(f \chi_{3 Q_{0} \backslash 3 P_{j}}\right)\right| \chi_{P_{j}} \\
& +\sum_{j}\left|T\left(f \chi_{3 P_{j}}\right)\right| \chi_{P_{j}} .
\end{aligned}
$$

The proof of $|T f(x)| \leqslant K A_{\mathcal{S}}|f|(x)$

- The key recursive claim: there exist pairwise disjoint cubes $P_{j} \subset Q_{0}$ such that $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$ and for a.e. on Q_{0},

$$
\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \chi_{Q_{0}} \leqslant K|f|_{3 Q_{0}}+\sum_{j}\left|T\left(f \chi_{3 P_{j}}\right)\right| \chi_{P_{j}}
$$

- For arbitrary pairwise disjoint cubes $P_{j} \subset Q_{0}$,

$$
\begin{aligned}
\left|T\left(f \chi_{3 Q_{0}}\right)\right| \chi_{Q_{0}} & \leqslant\left|T\left(f \chi_{3 Q_{0}}\right)\right| \chi_{Q_{0} \backslash \cup_{j} P_{j}}+\sum_{j}\left|T\left(f \chi_{3 Q_{0} \backslash 3 P_{j}}\right)\right| \chi_{P_{j}} \\
& +\sum_{j}\left|T\left(f \chi_{3 P_{j}}\right)\right| \chi_{P_{j}}
\end{aligned}
$$

- Hence, it suffices to find a set $E \subset Q_{0}$ and a covering of E by disjoint cubes $P_{j} \subset Q_{0}$ such that
(1) $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$;
(2) $\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \leqslant K|f|_{3 Q_{0}}$ for a.e. $x \in Q_{0} \backslash E$;
(3) $\left\|T\left(f \chi_{3 Q_{0} \backslash 3 P_{j}}\right)\right\|_{L^{\infty}\left(P_{j}\right)} \leqslant K|f|_{3 Q_{0}}$.

The proof of $|T f(x)| \leqslant C(n, T) A_{\mathcal{S}}|f|(x)$

- Hence, it suffices to find a set $E \subset Q_{0}$ and a covering of E by disjoint cubes $P_{j} \subset Q_{0}$ such that
(1) $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$;
(2) $\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \leqslant K|f|_{3 Q_{0}}$ for a.e. $x \in Q_{0} \backslash E$;
(3) $\left\|T\left(f \chi_{3 Q_{0} \backslash 3 P_{j}}\right)\right\|_{L^{\infty}\left(P_{j}\right)} \leqslant K|f|_{3 Q_{0}}$.
- Recall that T and

$$
M_{T} f(x)=\sup _{Q \ni x}\left\|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right\|_{L^{\infty}(Q)}
$$

are of weak type $(1,1)$.

The proof of $|T f(x)| \leqslant C(n, T) A_{\mathcal{S}}|f|(x)$

- Hence, it suffices to find a set $E \subset Q_{0}$ and a covering of E by disjoint cubes $P_{j} \subset Q_{0}$ such that
(1) $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$;
(2) $\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \leqslant K|f|_{3 Q_{0}}$ for a.e. $x \in Q_{0} \backslash E$;
(3) $\left\|T\left(f \chi_{3 Q_{0} \backslash 3 P_{j}}\right)\right\|_{L^{\infty}\left(P_{j}\right)} \leqslant K|f|_{3 Q_{0}}$.
- Recall that T and

$$
M_{T} f(x)=\sup _{Q \ni x}\left\|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right\|_{L^{\infty}(Q)}
$$

are of weak type $(1,1)$.

- Take C_{n} such that $|E=A \cup B| \leqslant \frac{1}{2^{n+2}}\left|Q_{0}\right|$, where

$$
A=\left\{x \in Q_{0}:\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right|>C_{n}\|T\|_{L^{1} \rightarrow L^{1, \infty}}|f|_{3 Q_{0}}\right\}
$$

and

$$
B=\left\{x \in Q_{0}: M_{T, Q_{0}}\left(f \chi_{3 Q_{0}}\right)(x)>C_{n}\left\|M_{T}\right\|_{L^{1} \rightarrow L^{1, \infty}}|f|_{3 Q_{0}}\right\}
$$

The proof of $|T f(x)| \leqslant C(n, T) A_{\mathcal{S}}|f|(x)$

- Hence, it suffices to find a set $E \subset Q_{0}$ and a covering of E by disjoint cubes $P_{j} \subset Q_{0}$ such that
(1) $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$;
(2) $\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \leqslant K|f|_{3 Q_{0}}$ for a.e. $x \in Q_{0} \backslash E$;
(3) $\left\|T\left(f \chi_{3 Q_{0} \backslash 3 P_{j}}\right)\right\|_{L^{\infty}\left(P_{j}\right)} \leqslant K|f|_{3 Q_{0}}$.
- Recall that T and

$$
M_{T} f(x)=\sup _{Q \ni x}\left\|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right\|_{L^{\infty}(Q)}
$$

are of weak type $(1,1)$.

- Take C_{n} such that $|E=A \cup B| \leqslant \frac{1}{2^{n+2}}\left|Q_{0}\right|$, where

$$
A=\left\{x \in Q_{0}:\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right|>C_{n}\|T\|_{L^{1} \rightarrow L^{1, \infty}}|f|_{3 Q_{0}}\right\}
$$

and

$$
B=\left\{x \in Q_{0}: M_{T, Q_{0}}\left(f \chi_{3 Q_{0}}\right)(x)>C_{n}\left\|M_{T}\right\|_{L^{1} \rightarrow L^{1, \infty}}|f|_{3 Q_{0}}\right\}
$$

- There exists a covering of E by pairwise disjoint cubes $P_{j} \subset Q_{0}$ with

$$
\frac{1}{2^{n+1}}\left|P_{j}\right| \leqslant\left|P_{j} \cap E\right| \leqslant \frac{1}{2}\left|P_{j}\right|
$$

The proof of $|T f(x)| \leqslant C(n, T) A_{\mathcal{S}}|f|(x)$

- Hence, it suffices to find a set $E \subset Q_{0}$ and a covering of E by disjoint cubes $P_{j} \subset Q_{0}$ such that
(1) $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$;
(2) $\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right| \leqslant K|f|_{3 Q_{0}}$ for a.e. $x \in Q_{0} \backslash E$;
(3) $\left\|T\left(f \chi_{3 Q_{0} \backslash 3 P_{j}}\right)\right\|_{L^{\infty}\left(P_{j}\right)} \leqslant K|f|_{3 Q_{0}}$.
- Recall that T and

$$
M_{T} f(x)=\sup _{Q \ni x}\left\|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right\|_{L^{\infty}(Q)}
$$

are of weak type $(1,1)$.

- Take C_{n} such that $|E=A \cup B| \leqslant \frac{1}{2^{n+2}}\left|Q_{0}\right|$, where

$$
A=\left\{x \in Q_{0}:\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right|>C_{n}\|T\|_{L^{1} \rightarrow L^{1, \infty}}|f|_{3 Q_{0}}\right\}
$$

and

$$
B=\left\{x \in Q_{0}: M_{T, Q_{0}}\left(f \chi_{3 Q_{0}}\right)(x)>C_{n}\left\|M_{T}\right\|_{L^{1} \rightarrow L^{1, \infty}}|f|_{3 Q_{0}}\right\}
$$

- There exists a covering of E by pairwise disjoint cubes $P_{j} \subset Q_{0}$ with

$$
\frac{1}{2^{n+1}}\left|P_{j}\right| \leqslant\left|P_{j} \cap E\right| \leqslant \frac{1}{2}\left|P_{j}\right|
$$

- From this, (1), (2) and (3) follow.

Dyadic lattices

- Given a cube $Q_{0} \subset \mathbb{R}^{n}$, let $\mathcal{D}\left(Q_{0}\right)$ denote the set of all dyadic cubes with respect to Q_{0}.

Dyadic lattices

- Given a cube $Q_{0} \subset \mathbb{R}^{n}$, let $\mathcal{D}\left(Q_{0}\right)$ denote the set of all dyadic cubes with respect to Q_{0}.
- A.L. and F. Nazarov (2014): A dyadic lattice \mathscr{D} in \mathbb{R}^{n} is any collection of cubes such that
- if $Q \in \mathscr{D}$, then each child of Q is in \mathscr{D} as well;
- every 2 cubes $Q^{\prime}, Q^{\prime \prime} \in \mathscr{D}$ have a common ancestor, i.e., there exists $Q \in \mathscr{D}$ such that $Q^{\prime}, Q^{\prime \prime} \in \mathcal{D}(Q)$;
- for every compact set $K \subset \mathbb{R}^{n}$, there is a cube $Q \in \mathscr{D}$ containing K.

Dyadic lattices

- Given a cube $Q_{0} \subset \mathbb{R}^{n}$, let $\mathcal{D}\left(Q_{0}\right)$ denote the set of all dyadic cubes with respect to Q_{0}.
- A.L. and F. Nazarov (2014): A dyadic lattice \mathscr{D} in \mathbb{R}^{n} is any collection of cubes such that
- if $Q \in \mathscr{D}$, then each child of Q is in \mathscr{D} as well;
- every 2 cubes $Q^{\prime}, Q^{\prime \prime} \in \mathscr{D}$ have a common ancestor, i.e., there exists $Q \in \mathscr{D}$ such that $Q^{\prime}, Q^{\prime \prime} \in \mathcal{D}(Q)$;
- for every compact set $K \subset \mathbb{R}^{n}$, there is a cube $Q \in \mathscr{D}$ containing K.
- The "classical" dyadic lattice

$$
\left\{2^{-k}\left([0,1)^{n}+j\right), k \in \mathbb{Z}, j \in \mathbb{Z}^{n}\right\}
$$

is not a dyadic lattice in this sense.

Dyadic lattices

- A.L. and F. Nazarov (2014): A dyadic lattice \mathscr{D} in \mathbb{R}^{n} is any collection of cubes such that
- if $Q \in \mathscr{D}$, then each child of Q is in \mathscr{D} as well;
- every 2 cubes $Q^{\prime}, Q^{\prime \prime} \in \mathscr{D}$ have a common ancestor, i.e., there exists $Q \in \mathscr{D}$ such that $Q^{\prime}, Q^{\prime \prime} \in \mathcal{D}(Q)$;
- for every compact set $K \subset \mathbb{R}^{n}$, there is a cube $Q \in \mathscr{D}$ containing K.
- In order to construct a dyadic lattice \mathscr{D}, it suffices to fix any cube Q_{0} and then expand it dyadically, including all dyadic children into \mathscr{D}.

Dyadic lattices

The three lattice theorem (A.L. and F. Nazarov (2014))
For every dyadic lattice \mathscr{D}, there exist 3^{n} dyadic lattices $\mathscr{D}^{(1)}, \ldots, \mathscr{D}^{\left(3^{n}\right)}$ such that

$$
\{3 Q: Q \in \mathscr{D}\}=\cup_{j=1}^{3^{n}} \mathscr{D}^{(j)}
$$

Dyadic lattices

The three lattice theorem (A.L. and F. Nazarov (2014))

For every dyadic lattice \mathscr{D}, there exist 3^{n} dyadic lattices $\mathscr{D}^{(1)}, \ldots, \mathscr{D}^{\left(3^{n}\right)}$ such that

$$
\{3 Q: Q \in \mathscr{D}\}=\cup_{j=1}^{3^{n}} \mathscr{D}^{(j)}
$$

\qquad

Dyadic lattices

The three lattice theorem (A.L. and F. Nazarov (2014))

For every dyadic lattice \mathscr{D}, there exist 3^{n} dyadic lattices $\mathscr{D}^{(1)}, \ldots, \mathscr{D}^{\left(3^{n}\right)}$ such that

$$
\{3 Q: Q \in \mathscr{D}\}=\cup_{j=1}^{3^{n}} \mathscr{D}^{(j)} .
$$

Dyadic lattices

The three lattice theorem (A.L. and F. Nazarov (2014))

For every dyadic lattice \mathscr{D}, there exist 3^{n} dyadic lattices $\mathscr{D}^{(1)}, \ldots, \mathscr{D}^{\left(3^{n}\right)}$ such that

$$
\{3 Q: Q \in \mathscr{D}\}=\cup_{j=1}^{3^{n}} \mathscr{D}^{(j)}
$$

Dyadic lattices

The three lattice theorem (A.L. and F. Nazarov (2014))

For every dyadic lattice \mathscr{D}, there exist 3^{n} dyadic lattices $\mathscr{D}^{(1)}, \ldots, \mathscr{D}^{\left(3^{n}\right)}$ such that

$$
\{3 Q: Q \in \mathscr{D}\}=\cup_{j=1}^{3^{n}} \mathscr{D}^{(j)}
$$

Dyadic lattices

The three lattice theorem (A.L. and F. Nazarov (2014))

For every dyadic lattice \mathscr{D}, there exist 3^{n} dyadic lattices $\mathscr{D}^{(1)}, \ldots, \mathscr{D}^{\left(3^{n}\right)}$ such that

$$
\{3 Q: Q \in \mathscr{D}\}=\cup_{j=1}^{3^{n}} \mathscr{D}^{(j)}
$$

Dyadic lattices

The three lattice theorem (A.L. and F. Nazarov (2014))

For every dyadic lattice \mathscr{D}, there exist 3^{n} dyadic lattices $\mathscr{D}^{(1)}, \ldots, \mathscr{D}^{\left(3^{n}\right)}$ such that

$$
\{3 Q: Q \in \mathscr{D}\}=\cup_{j=1}^{3^{n}} \mathscr{D}^{(j)}
$$

- The one-third trick: there are 3^{n} dyadic lattices $\mathscr{D}^{(j)}$ such that for every cube $Q \subset \mathbb{R}^{n}$, there is a cube $P \in \mathscr{D}^{(j)}$ for some j, containing Q and such that $|P| \leqslant 3^{n}|Q|$.

Dyadic lattices

The three lattice theorem (A.L. and F. Nazarov (2014))

For every dyadic lattice \mathscr{D}, there exist 3^{n} dyadic lattices $\mathscr{D}^{(1)}, \ldots, \mathscr{D}^{\left(3^{n}\right)}$ such that

$$
\{3 Q: Q \in \mathscr{D}\}=\cup_{j=1}^{3^{n}} \mathscr{D}^{(j)} .
$$

- The one-third trick: there are 3^{n} dyadic lattices $\mathscr{D}^{(j)}$ such that for every cube $Q \subset \mathbb{R}^{n}$, there is a cube $P \in \mathscr{D}^{(j)}$ for some j, containing Q and such that $|P| \leqslant 3^{n}|Q|$.
- Proof: fix a dyadic lattice \mathscr{D}. Let $Q \subset \mathbb{R}^{n}$. Take a cube $Q^{\prime} \in \mathscr{D}$ containing the center of Q and such that $\ell_{Q} / 2<\ell_{Q^{\prime}} \leqslant \ell_{Q}$. Then $Q \subset 3 Q^{\prime}$. But $3 Q^{\prime} \in \mathscr{D}^{(j)}$.

Dyadic lattices

The three lattice theorem (A.L. and F. Nazarov (2014))

For every dyadic lattice \mathscr{D}, there exist 3^{n} dyadic lattices $\mathscr{D}^{(1)}, \ldots, \mathscr{D}^{\left(3^{n}\right)}$ such that

$$
\{3 Q: Q \in \mathscr{D}\}=\cup_{j=1}^{3^{n}} \mathscr{D}^{(j)} .
$$

- The one-third trick: there are 3^{n} dyadic lattices $\mathscr{D}^{(j)}$ such that for every cube $Q \subset \mathbb{R}^{n}$, there is a cube $P \in \mathscr{D}^{(j)}$ for some j, containing Q and such that $|P| \leqslant 3^{n}|Q|$.
- Assume that \mathcal{S} is an η-sparse family. For $Q \in \mathcal{S}$, let P_{Q} be a cube from the above statement. Then the family

$$
\mathcal{S}_{j}=\left\{P_{Q} \in \mathscr{D}^{(j)}: Q \in \mathcal{S}\right\}
$$

is $\frac{\eta}{3^{n}}$-sparse (the corresponding disjoint sets are just $E_{Q} \subset Q \subset P_{Q}$).

Dyadic lattices

The three lattice theorem (A.L. and F. Nazarov (2014))

For every dyadic lattice \mathscr{D}, there exist 3^{n} dyadic lattices $\mathscr{D}^{(1)}, \ldots, \mathscr{D}^{\left(3^{n}\right)}$ such that

$$
\{3 Q: Q \in \mathscr{D}\}=\cup_{j=1}^{3^{n}} \mathscr{D}^{(j)} .
$$

- The one-third trick: there are 3^{n} dyadic lattices $\mathscr{D}^{(j)}$ such that for every cube $Q \subset \mathbb{R}^{n}$, there is a cube $P \in \mathscr{D}^{(j)}$ for some j, containing Q and such that $|P| \leqslant 3^{n}|Q|$.
- Assume that \mathcal{S} is an η-sparse family. For $Q \in \mathcal{S}$, let P_{Q} be a cube from the above statement. Then the family

$$
\mathcal{S}_{j}=\left\{P_{Q} \in \mathscr{D}^{(j)}: Q \in \mathcal{S}\right\}
$$

is $\frac{\eta}{3^{n}}$-sparse (the corresponding disjoint sets are just $E_{Q} \subset Q \subset P_{Q}$). Therefore,

$$
\sum_{Q \in \mathcal{S}}|f|_{Q} \chi_{Q} \leqslant 3^{n} \sum_{Q \in \mathcal{S}}|f|_{P_{Q}} \chi_{P_{Q}} \leqslant 3^{n} \sum_{j=1}^{3^{n}} \sum_{P \in \mathcal{S}_{j}}|f|_{P} \chi_{P}
$$

A general sparse domination principle

- We have seen that if T and

$$
M_{T} f(x)=\sup _{Q \ni x}\left\|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right\|_{L^{\infty}(Q)}
$$

are of weak type $(1,1)$, then $|T f(x)| \leqslant K A_{\mathcal{S}}|f|(x)$.

A general sparse domination principle

- We have seen that if T and

$$
M_{T} f(x)=\sup _{Q \ni x}\left\|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right\|_{L^{\infty}(Q)}
$$

are of weak type $(1,1)$, then $|T f(x)| \leqslant K A_{\mathcal{S}}|f|(x)$.

- The main application is based on the estimate of

$$
\int_{\mathbb{R}^{n}}\left(A_{\mathcal{S}} f\right) g d x=\sum_{Q \in \mathcal{S}} f_{Q} g_{Q}|Q|
$$

so instead of the pointwise domination of T by $A_{\mathcal{S}}$, it suffices to establish a weaker estimate

$$
|\langle T f, g\rangle| \leqslant C \sum_{Q \in \mathcal{S}}|f|_{Q}|g|_{Q}|Q| .
$$

A general sparse domination principle

- We have seen that if T and

$$
M_{T} f(x)=\sup _{Q \ni x}\left\|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right\|_{L^{\infty}(Q)}
$$

are of weak type $(1,1)$, then $|T f(x)| \leqslant K A_{\mathcal{S}}|f|(x)$.

- The main application is based on the estimate of

$$
\int_{\mathbb{R}^{n}}\left(A_{\mathcal{S}} f\right) g d x=\sum_{Q \in \mathcal{S}} f_{Q} g_{Q}|Q|
$$

so instead of the pointwise domination of T by $A_{\mathcal{S}}$, it suffices to establish a weaker estimate

$$
|\langle T f, g\rangle| \leqslant C \sum_{Q \in \mathcal{S}}|f|_{Q}|g|_{Q}|Q| .
$$

- This leads naturally to more general estimates of the form

$$
\begin{equation*}
|\langle T f, g\rangle| \leqslant K \sum_{Q \in \mathcal{S}}\langle f\rangle_{r, Q}\langle g\rangle_{s, Q}|Q| \quad(1 \leqslant r, s<\infty) \tag{*}
\end{equation*}
$$

A general sparse domination principle

- The main application is based on the estimate of

$$
\int_{\mathbb{R}^{n}}\left(A_{\mathcal{S}} f\right) g d x=\sum_{Q \in \mathcal{S}} f_{Q} g_{Q}|Q|
$$

so instead of the pointwise domination of T by $A_{\mathcal{S}}$, it suffices to establish a weaker estimate

$$
|\langle T f, g\rangle| \leqslant C \sum_{Q \in \mathcal{S}}|f|_{Q}|g|_{Q}|Q| .
$$

- This leads naturally to more general estimates of the form

$$
\begin{equation*}
|\langle T f, g\rangle| \leqslant K \sum_{Q \in \mathcal{S}}\langle f\rangle_{r, Q}\langle g\rangle_{s, Q}|Q| \quad(1 \leqslant r, s<\infty) \tag{*}
\end{equation*}
$$

- In order to obtain a sufficient condition for $(*)$, we define the maximal operator

$$
\mathcal{M}_{T}(f, g)(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}\left|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right||g| d y
$$

A general sparse domination principle

- This leads naturally to more general estimates of the form

$$
\begin{equation*}
|\langle T f, g\rangle| \leqslant K \sum_{Q \in \mathcal{S}}\langle f\rangle_{r, Q}\langle g\rangle_{s, Q}|Q| \quad(1 \leqslant r, s<\infty) \tag{*}
\end{equation*}
$$

- In order to obtain a sufficient condition for $(*)$, we define the maximal operator

$$
\mathcal{M}_{T}(f, g)(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}\left|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right||g| d y
$$

Theorem (A.L. (2017))

Let $r, s \geqslant 1$. Assume that T is a sublinear operator of weak type (q, q) for some $1 \leqslant q \leqslant r$, and \mathcal{M}_{T} maps $L^{r} \times L^{s}$ into $L^{\nu, \infty}$, where $\frac{1}{\nu}=\frac{1}{r}+\frac{1}{s}$.
Then, for every compactly supported $f \in L^{r}\left(\mathbb{R}^{n}\right)$ and every $g \in L_{\text {lac }}^{s}$, there exists a $\frac{1}{2 \cdot 3^{n}}$-sparse family \mathcal{S} such that ($*$) holds, where

$$
K=C_{n}\left(\|T\|_{L^{q} \rightarrow L^{q, \infty}}+\left\|\mathcal{M}_{T}\right\|_{L^{r} \times L^{s} \rightarrow L^{\nu, \infty}}\right)
$$

A general sparse domination principle

- In order to obtain a sufficient condition for $(*)$, we define the maximal operator

$$
\mathcal{M}_{T}(f, g)(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}\left|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right||g| d y
$$

Theorem (A.L. (2017))

Let $r, s \geqslant 1$. Assume that T is a sublinear operator of weak type (q, q) for some $1 \leqslant q \leqslant r$, and \mathcal{M}_{T} maps $L^{r} \times L^{s}$ into $L^{\nu, \infty}$, where $\frac{1}{\nu}=\frac{1}{r}+\frac{1}{s}$.
Then, for every compactly supported $f \in L^{r}\left(\mathbb{R}^{n}\right)$ and every $g \in L_{\text {loc }}^{s}$, there exists a $\frac{1}{2 \cdot 3^{n}}$-sparse family \mathcal{S} such that ($*$) holds, where

$$
K=C_{n}\left(\|T\|_{L^{q} \rightarrow L^{q, \infty}}+\left\|\mathcal{M}_{T}\right\|_{L^{r} \times L^{s} \rightarrow L^{\nu, \infty}}\right)
$$

- Given $1 \leqslant p \leqslant \infty$, define

$$
M_{p, T} f(x)=\sup _{Q \ni x}\left(\frac{1}{|Q|} \int_{Q}\left|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right|^{p} d y\right)^{1 / p}
$$

A general sparse domination principle

- In order to obtain a sufficient condition for $(*)$, we define the maximal operator

$$
\mathcal{M}_{T}(f, g)(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}\left|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right||g| d y
$$

Theorem (A.L. (2017))

Let $r, s \geqslant 1$. Assume that T is a sublinear operator of weak type (q, q) for some $1 \leqslant q \leqslant r$, and \mathcal{M}_{T} maps $L^{r} \times L^{s}$ into $L^{\nu, \infty}$, where $\frac{1}{\nu}=\frac{1}{r}+\frac{1}{s}$.
Then, for every compactly supported $f \in L^{r}\left(\mathbb{R}^{n}\right)$ and every $g \in L_{\text {loc }}^{s}$, there exists a $\frac{1}{2 \cdot 3^{n}}$-sparse family \mathcal{S} such that ($*$) holds, where

$$
K=C_{n}\left(\|T\|_{L^{q} \rightarrow L^{q, \infty}}+\left\|\mathcal{M}_{T}\right\|_{L^{r} \times L^{s} \rightarrow L^{\nu, \infty}}\right)
$$

- Given $1 \leqslant p \leqslant \infty$, define

$$
M_{p, T} f(x)=\sup _{Q \ni x}\left(\frac{1}{|Q|} \int_{Q}\left|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right|^{p} d y\right)^{1 / p}
$$

- By Hölder's inequalities,

$$
\left\|\mathcal{M}_{T}\right\|_{L^{r} \times L^{s} \rightarrow L^{\nu, \infty}} \leqslant C_{n}\left\|M_{s^{\prime}, T}\right\|_{L^{r} \rightarrow L^{r, \infty}} \quad(1 / \nu=1 / r+1 / s)
$$

A general sparse domination principle

- Given $1 \leqslant p \leqslant \infty$, define

$$
M_{p, T} f(x)=\sup _{Q \ni x}\left(\frac{1}{|Q|} \int_{Q}\left|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right|^{p} d y\right)^{1 / p}
$$

- By Hölder's inequalities,

$$
\left\|\mathcal{M}_{T}\right\|_{L^{r} \times L^{s} \rightarrow L^{\nu, \infty}} \leqslant C_{n}\left\|M_{s^{\prime}, T}\right\|_{L^{r} \rightarrow L^{r, \infty}} \quad(1 / \nu=1 / r+1 / s) .
$$

Corollary

If T is of weak type (q, q) for some $1 \leqslant q \leqslant r$ and $M_{s^{\prime}, T}$ is of weak type (r, r), then for every compactly supported $f \in L^{r}\left(\mathbb{R}^{n}\right)$ and every $g \in L_{\text {loc }}^{S}$, there exists a $\frac{1}{2 \cdot 3^{n}}$-sparse family \mathcal{S} such that

$$
|\langle T f, g\rangle| \leqslant K \sum_{Q \in \mathcal{S}}\langle f\rangle_{r, Q}\langle g\rangle_{s, Q}|Q|
$$

where $K=C_{n}\left(\|T\|_{L^{q} \rightarrow L^{q, \infty}}+\left\|M_{s^{\prime}, T}\right\|_{L^{r} \rightarrow L^{r, \infty}}\right)$.

A general sparse domination principle

- Given $1 \leqslant p \leqslant \infty$, define

$$
M_{p, T} f(x)=\sup _{Q \ni x}\left(\frac{1}{|Q|} \int_{Q}\left|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right|^{p} d y\right)^{1 / p}
$$

- By Hölder's inequalities,

$$
\left\|\mathcal{M}_{T}\right\|_{L^{r} \times L^{s} \rightarrow L^{\nu, \infty}} \leqslant C_{n}\left\|M_{s^{\prime}, T}\right\|_{L^{r} \rightarrow L^{r, \infty}} \quad(1 / \nu=1 / r+1 / s) .
$$

Corollary

If T is of weak type (q, q) for some $1 \leqslant q \leqslant r$ and $M_{s^{\prime}, T}$ is of weak type (r, r), then for every compactly supported $f \in L^{r}\left(\mathbb{R}^{n}\right)$ and every $g \in L_{\text {loc }}^{S}$, there exists a $\frac{1}{2 \cdot 3^{n}}$-sparse family \mathcal{S} such that

$$
|\langle T f, g\rangle| \leqslant K \sum_{Q \in \mathcal{S}}\langle f\rangle_{r, Q}\langle g\rangle_{s, Q}|Q|
$$

where $K=C_{n}\left(\|T\|_{L^{q} \rightarrow L^{q, \infty}}+\left\|M_{s^{\prime}, T}\right\|_{L^{r} \rightarrow L^{r, \infty}}\right)$.

- If $s=1$, then a stronger, pointwise estimate holds:

$$
|T f(x)| \leqslant K \sum_{Q \in \mathcal{S}}\langle f\rangle_{r, Q} \chi_{Q}(x)
$$

Rough singular integrals

- Consider a class of rough homogeneous singular integrals defined by

$$
\begin{aligned}
& \qquad T_{\Omega} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f(x-y) \frac{\Omega(y /|y|)}{|y|^{n}} d y, \\
& \text { where } \Omega \in L^{\infty}\left(S^{n-1}\right) \text {, and } \int_{S^{n-1}} \Omega d \sigma=0 .
\end{aligned}
$$

Rough singular integrals

- Consider a class of rough homogeneous singular integrals defined by

$$
T_{\Omega} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f(x-y) \frac{\Omega(y /|y|)}{|y|^{n}} d y
$$

where $\Omega \in L^{\infty}\left(S^{n-1}\right)$, and $\int_{S^{n-1}} \Omega d \sigma=0$.

- A.P. Calderón and A. Zygmund (1956): if $\Omega \in L \log L\left(S^{n-1}\right)$, then T_{Ω} is bounded on L^{p} for all $1<p<\infty$.

Rough singular integrals

- Consider a class of rough homogeneous singular integrals defined by

$$
T_{\Omega} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f(x-y) \frac{\Omega(y /|y|)}{|y|^{n}} d y
$$

where $\Omega \in L^{\infty}\left(S^{n-1}\right)$, and $\int_{S^{n-1}} \Omega d \sigma=0$.

- A.P. Calderón and A. Zygmund (1956): if $\Omega \in L \log L\left(S^{n-1}\right)$, then T_{Ω} is bounded on L^{p} for all $1<p<\infty$.
- M. Christ (1988), S. Hofmann (1988): if $n=2$ and $\Omega \in L^{q}\left(S^{1}\right), q>1$, then T_{Ω} is of weak type $(1,1)$.

Rough singular integrals

- Consider a class of rough homogeneous singular integrals defined by

$$
T_{\Omega} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f(x-y) \frac{\Omega(y /|y|)}{|y|^{n}} d y
$$

where $\Omega \in L^{\infty}\left(S^{n-1}\right)$, and $\int_{S^{n-1}} \Omega d \sigma=0$.

- A.P. Calderón and A. Zygmund (1956): if $\Omega \in L \log L\left(S^{n-1}\right)$, then T_{Ω} is bounded on L^{p} for all $1<p<\infty$.
- M. Christ (1988), S. Hofmann (1988): if $n=2$ and $\Omega \in L^{q}\left(S^{1}\right), q>1$, then T_{Ω} is of weak type $(1,1)$.
- M. Christ and J. Rubio de Francia (1988): the same for $\Omega \in L \log L$.

Rough singular integrals

- Consider a class of rough homogeneous singular integrals defined by

$$
T_{\Omega} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f(x-y) \frac{\Omega(y /|y|)}{|y|^{n}} d y
$$

where $\Omega \in L^{\infty}\left(S^{n-1}\right)$, and $\int_{S^{n-1}} \Omega d \sigma=0$.

- A.P. Calderón and A. Zygmund (1956): if $\Omega \in L \log L\left(S^{n-1}\right)$, then T_{Ω} is bounded on L^{p} for all $1<p<\infty$.
- M. Christ (1988), S. Hofmann (1988): if $n=2$ and $\Omega \in L^{q}\left(S^{1}\right), q>1$, then T_{Ω} is of weak type $(1,1)$.
- M. Christ and J. Rubio de Francia (1988): the same for $\Omega \in L \log L$. They also extended this result to dimensions $n \leqslant 5$.

Rough singular integrals

- Consider a class of rough homogeneous singular integrals defined by

$$
T_{\Omega} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f(x-y) \frac{\Omega(y /|y|)}{|y|^{n}} d y
$$

where $\Omega \in L^{\infty}\left(S^{n-1}\right)$, and $\int_{S^{n-1}} \Omega d \sigma=0$.

- A.P. Calderón and A. Zygmund (1956): if $\Omega \in L \log L\left(S^{n-1}\right)$, then T_{Ω} is bounded on L^{p} for all $1<p<\infty$.
- M. Christ (1988), S. Hofmann (1988): if $n=2$ and $\Omega \in L^{q}\left(S^{1}\right), q>1$, then T_{Ω} is of weak type $(1,1)$.
- M. Christ and J. Rubio de Francia (1988): the same for $\Omega \in L \log L$. They also extended this result to dimensions $n \leqslant 5$.
- A. Seeger (1996): another proof which works in all dimensions.

Rough singular integrals

- Consider a class of rough homogeneous singular integrals defined by

$$
T_{\Omega} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f(x-y) \frac{\Omega(y /|y|)}{|y|^{n}} d y
$$

where $\Omega \in L^{\infty}\left(S^{n-1}\right)$, and $\int_{S^{n-1}} \Omega d \sigma=0$.

- A.P. Calderón and A. Zygmund (1956): if $\Omega \in L \log L\left(S^{n-1}\right)$, then T_{Ω} is bounded on L^{p} for all $1<p<\infty$.
- M. Christ (1988), S. Hofmann (1988): if $n=2$ and $\Omega \in L^{q}\left(S^{1}\right), q>1$, then T_{Ω} is of weak type $(1,1)$.
- M. Christ and J. Rubio de Francia (1988): the same for $\Omega \in L \log L$. They also extended this result to dimensions $n \leqslant 5$.
- A. Seeger (1996): another proof which works in all dimensions.
- It is still an open question whether the maximal singular integral

$$
T_{\Omega}^{\star} f(x)=\sup _{\varepsilon>0}\left|\int_{|y|>\varepsilon} f(x-y) \frac{\Omega(y /|y|)}{|y|^{n}} d y\right|
$$

is of weak type $(1,1)$ even for $\Omega \in L^{\infty}$.

Rough singular integrals

- A.P. Calderón and A. Zygmund (1956): if $\Omega \in L \log L\left(S^{n-1}\right)$, then T_{Ω} is bounded on L^{p} for all $1<p<\infty$.
- M. Christ (1988), S. Hofmann (1988): if $n=2$ and $\Omega \in L^{q}\left(S^{1}\right), q>1$, then T_{Ω} is of weak type $(1,1)$.
- M. Christ and J. Rubio de Francia (1988): the same for $\Omega \in L \log L$. They also extended this result to dimensions $n \leqslant 5$.
- A. Seeger (1996): another proof which works in all dimensions.
- It is still an open question whether the maximal singular integral

$$
T_{\Omega}^{\star} f(x)=\sup _{\varepsilon>0}\left|\int_{|y|>\varepsilon} f(x-y) \frac{\Omega(y /|y|)}{|y|^{n}} d y\right|
$$

is of weak type $(1,1)$ even for $\Omega \in L^{\infty}$.

- J. Duoandikoetxea and J. Rubio de Francia (1986): if $\Omega \in L^{\infty}$, then T_{Ω} is bounded on $L^{p}(w), p>1$, for $w \in A_{p}$.

Rough singular integrals

- M. Christ (1988), S. Hofmann (1988): if $n=2$ and $\Omega \in L^{q}\left(S^{1}\right), q>1$, then T_{Ω} is of weak type $(1,1)$.
- M. Christ and J. Rubio de Francia (1988): the same for $\Omega \in L \log L$. They also extended this result to dimensions $n \leqslant 5$.
- A. Seeger (1996): another proof which works in all dimensions.
- It is still an open question whether the maximal singular integral

$$
T_{\Omega}^{\star} f(x)=\sup _{\varepsilon>0}\left|\int_{|y|>\varepsilon} f(x-y) \frac{\Omega(y /|y|)}{|y|^{n}} d y\right|
$$

is of weak type $(1,1)$ even for $\Omega \in L^{\infty}$.

- J. Duoandikoetxea and J. Rubio de Francia (1986): if $\Omega \in L^{\infty}$, then T_{Ω} is bounded on $L^{p}(w), p>1$, for $w \in A_{p}$.
- T. Hytönen, L. Roncal, O. Tapiola (2015):

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}
$$

Rough singular integrals

- M. Christ (1988), S. Hofmann (1988): if $n=2$ and $\Omega \in L^{q}\left(S^{1}\right), q>1$, then T_{Ω} is of weak type $(1,1)$.
- M. Christ and J. Rubio de Francia (1988): the same for $\Omega \in L \log L$. They also extended this result to dimensions $n \leqslant 5$.
- A. Seeger (1996): another proof which works in all dimensions.
- It is still an open question whether the maximal singular integral

$$
T_{\Omega}^{\star} f(x)=\sup _{\varepsilon>0}\left|\int_{|y|>\varepsilon} f(x-y) \frac{\Omega(y /|y|)}{|y|^{n}} d y\right|
$$

is of weak type $(1,1)$ even for $\Omega \in L^{\infty}$.

- J. Duoandikoetxea and J. Rubio de Francia (1986): if $\Omega \in L^{\infty}$, then T_{Ω} is bounded on $L^{p}(w), p>1$, for $w \in A_{p}$.
- T. Hytönen, L. Roncal, O. Tapiola (2015):

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2} .
$$

- Conjecture:

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}
$$

Rough singular integrals

- It is still an open question whether the maximal singular integral

$$
T_{\Omega}^{\star} f(x)=\sup _{\varepsilon>0}\left|\int_{|y|>\varepsilon} f(x-y) \frac{\Omega(y /|y|)}{|y|^{n}} d y\right|
$$

is of weak type $(1,1)$ even for $\Omega \in L^{\infty}$.

- J. Duoandikoetxea and J. Rubio de Francia (1986): if $\Omega \in L^{\infty}$, then T_{Ω} is bounded on $L^{p}(w), p>1$, for $w \in A_{p}$.
- T. Hytönen, L. Roncal, O. Tapiola (2015):

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}
$$

- Conjecture:

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}
$$

- J. Conde-Alonso, A. Culiuc, F. Di Plinio, Y. Ou (2016): for all $p>1$,

$$
\left|\left\langle T_{\Omega} f, g\right\rangle\right| \leqslant \frac{C_{n} p}{p-1}\|\Omega\|_{L^{\infty}} \sup _{\mathcal{S}} \sum_{Q \in \mathcal{S}}\langle f\rangle_{p, Q}\langle g\rangle_{1, Q}|Q|
$$

Rough singular integrals

- T. Hytönen, L. Roncal, O. Tapiola (2015):

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}
$$

- Conjecture:

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}
$$

- J. Conde-Alonso, A. Culiuc, F. Di Plinio, Y. Ou (2016): for all $p>1$,

$$
\left|\left\langle T_{\Omega} f, g\right\rangle\right| \leqslant \frac{C_{n} p}{p-1}\|\Omega\|_{L^{\infty}} \sup _{\mathcal{S}} \sum_{Q \in \mathcal{S}}\langle f\rangle_{p, Q}\langle g\rangle_{1, Q}|Q|
$$

- Recall that

$$
M_{p, T} f(x)=\sup _{Q \ni x}\left(\frac{1}{|Q|} \int_{Q}\left|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right|^{p} d y\right)^{1 / p}
$$

and

$$
|\langle T f, g\rangle| \leqslant C_{n}\left(\|T\|_{L^{1} \rightarrow L^{1, \infty}}+\left\|M_{s^{\prime}, T}\right\|_{L^{1} \rightarrow L^{1, \infty}}\right) \sum_{Q \in \mathcal{S}}\langle f\rangle_{1, Q}\langle g\rangle_{s, Q}|Q|
$$

Rough singular integrals

- T. Hytönen, L. Roncal, O. Tapiola (2015):

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}
$$

- Conjecture:

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}
$$

- J. Conde-Alonso, A. Culiuc, F. Di Plinio, Y. Ou (2016): for all $p>1$,

$$
\left|\left\langle T_{\Omega} f, g\right\rangle\right| \leqslant \frac{C_{n} p}{p-1}\|\Omega\|_{L^{\infty}} \sup _{\mathcal{S}} \sum_{Q \in \mathcal{S}}\langle f\rangle_{p, Q}\langle g\rangle_{1, Q}|Q|
$$

- Recall that

$$
M_{p, T} f(x)=\sup _{Q \ni x}\left(\frac{1}{|Q|} \int_{Q}\left|T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)\right|^{p} d y\right)^{1 / p}
$$

and

$$
|\langle T f, g\rangle| \leqslant C_{n}\left(\|T\|_{L^{1} \rightarrow L^{1, \infty}}+\left\|M_{s^{\prime}, T}\right\|_{L^{1} \rightarrow L^{1, \infty}}\right) \sum_{Q \in \mathcal{S}}\langle f\rangle_{1, Q}\langle g\rangle_{s, Q}|Q|
$$

- A.L. (2017): For T_{Ω} with $\Omega \in L^{\infty}$,

$$
\left\|M_{p, T_{\Omega}} f\right\|_{L^{1, \infty}} \leqslant C_{n}\|\Omega\|_{L^{\infty}} p\|f\|_{L^{1}} \quad(p>1)
$$

A reformulation in terms of $M_{\lambda, T}$

$$
\left\|M_{p, T_{\Omega}} f\right\|_{L^{1, \infty}} \leqslant C_{n}\|\Omega\|_{L^{\infty}} p\|f\|_{L^{1}} \quad(*)
$$

- Consider

$$
M_{\lambda, T} f(x)=\sup _{Q \ni x}\left(T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right) \chi_{Q}\right)^{*}(\lambda|Q|) \quad(0<\lambda<1) .
$$

A reformulation in terms of $M_{\lambda, T}$

$$
\left\|M_{p, T_{\Omega}} f\right\|_{L^{1, \infty}} \leqslant C_{n}\|\Omega\|_{L^{\infty}} p\|f\|_{L^{1}} \quad(*)
$$

- Consider

$$
M_{\lambda, T} f(x)=\sup _{Q \ni x}\left(T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right) \chi_{Q}\right)^{*}(\lambda|Q|) \quad(0<\lambda<1) .
$$

- If T is of weak type $(1,1)$, then $M_{\lambda, T}$ is of weak type $(1,1)$ too, and

$$
\left\|M_{\lambda, T}\right\|_{L^{1} \rightarrow L^{1, \infty}} \leqslant \frac{C_{n}}{\lambda}\|T\|_{L^{1} \rightarrow L^{1, \infty}} \quad(0<\lambda<1) .
$$

A reformulation in terms of $M_{\lambda, T}$

$$
\left\|M_{p, T_{\Omega}} f\right\|_{L^{1, \infty}} \leqslant C_{n}\|\Omega\|_{L^{\infty}} p\|f\|_{L^{1}} \quad(*)
$$

- Consider

$$
M_{\lambda, T} f(x)=\sup _{Q \ni x}\left(T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right) \chi_{Q}\right)^{*}(\lambda|Q|) \quad(0<\lambda<1) .
$$

- If T is of weak type $(1,1)$, then $M_{\lambda, T}$ is of weak type $(1,1)$ too, and

$$
\left\|M_{\lambda, T}\right\|_{L^{1} \rightarrow L^{1, \infty}} \leqslant \frac{C_{n}}{\lambda}\|T\|_{L^{1} \rightarrow L^{1, \infty}} \quad(0<\lambda<1)
$$

- This leads to a question about the sharp dependence of

$$
\Phi_{T}(\lambda)=\left\|M_{\lambda, T}\right\|_{L^{1} \rightarrow L^{1, \infty}}
$$

on λ for a given operator T of weak type $(1,1)$.

A reformulation in terms of $M_{\lambda, T}$

$$
\left\|M_{p, T_{\Omega}} f\right\|_{L^{1}, \infty} \leqslant C_{n}\|\Omega\|_{L^{\infty}} p\|f\|_{L^{1}} \quad(*)
$$

- Consider

$$
M_{\lambda, T} f(x)=\sup _{Q \ni x}\left(T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right) \chi_{Q}\right)^{*}(\lambda|Q|) \quad(0<\lambda<1) .
$$

- If T is of weak type $(1,1)$, then $M_{\lambda, T}$ is of weak type $(1,1)$ too, and

$$
\left\|M_{\lambda, T}\right\|_{L^{1} \rightarrow L^{1, \infty}} \leqslant \frac{C_{n}}{\lambda}\|T\|_{L^{1} \rightarrow L^{1, \infty}} \quad(0<\lambda<1)
$$

- This leads to a question about the sharp dependence of

$$
\Phi_{T}(\lambda)=\left\|M_{\lambda, T}\right\|_{L^{1} \rightarrow L^{1, \infty}}
$$

on λ for a given operator T of weak type $(1,1)$.

- (*) is equivalent to

$$
\Phi_{T_{\Omega}}(\lambda) \leqslant C_{n}\|\Omega\|_{L^{\infty}} \log \frac{\mathrm{e}}{\lambda}
$$

Some words about the proof

Let

$$
M_{\lambda, T_{\Omega}} f(x)=\sup _{Q \ni x}\left(T_{\Omega}\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right) \chi_{Q}\right)^{*}(\lambda|Q|)
$$

Then

$$
\left\|M_{\lambda, T}\right\|_{L^{1} \rightarrow L^{1, \infty}} \leqslant C_{n}\|\Omega\|_{L^{\infty}} \log \frac{\mathrm{e}}{\lambda}
$$

Some words about the proof

Let

$$
M_{\lambda, T_{\Omega}} f(x)=\sup _{Q \ni x}\left(T_{\Omega}\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right) \chi_{Q}\right)^{*}(\lambda|Q|)
$$

Then

$$
\left\|M_{\lambda, T}\right\|_{L^{1} \rightarrow L^{1, \infty}} \leqslant C_{n}\|\Omega\|_{L^{\infty}} \log \frac{\mathrm{e}}{\lambda}
$$

- Given $0<\varepsilon<1$, one can split $T_{\Omega}=T_{\Omega_{\varepsilon}}+T_{\Omega-\Omega_{\varepsilon}}$ such that $T_{\Omega_{\varepsilon}}$ is a CZ-operator with

$$
\left[\omega_{T_{\Omega}}\right]_{\text {Dini }} \lesssim \log \frac{\mathrm{e}}{\varepsilon} \quad \text { and } \quad\left\|T_{\Omega-\Omega_{\varepsilon}}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \varepsilon^{1 / 2}
$$

Some words about the proof

Let

$$
M_{\lambda, T_{\Omega}} f(x)=\sup _{Q \ni x}\left(T_{\Omega}\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right) \chi_{Q}\right)^{*}(\lambda|Q|)
$$

Then

$$
\left\|M_{\lambda, T}\right\|_{L^{1} \rightarrow L^{1, \infty}} \leqslant C_{n}\|\Omega\|_{L^{\infty}} \log \frac{\mathrm{e}}{\lambda}
$$

- Given $0<\varepsilon<1$, one can split $T_{\Omega}=T_{\Omega_{\varepsilon}}+T_{\Omega-\Omega_{\varepsilon}}$ such that $T_{\Omega_{\varepsilon}}$ is a CZ-operator with

$$
\left[\omega_{T_{\Omega}}\right]_{\text {Dini }} \lesssim \log \frac{\mathrm{e}}{\varepsilon} \quad \text { and } \quad\left\|T_{\Omega-\Omega_{\varepsilon}}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \varepsilon^{1 / 2}
$$

- The first estimate implies $\left\|M_{\lambda, T_{\Omega_{\varepsilon}}}\right\|_{L^{1} \rightarrow L^{1, \infty}} \lesssim \log \frac{\mathrm{e}}{\varepsilon}$.

Some words about the proof

Let

$$
M_{\lambda, T_{\Omega}} f(x)=\sup _{Q \ni x}\left(T_{\Omega}\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right) \chi_{Q}\right)^{*}(\lambda|Q|)
$$

Then

$$
\left\|M_{\lambda, T}\right\|_{L^{1} \rightarrow L^{1, \infty}} \leqslant C_{n}\|\Omega\|_{L^{\infty}} \log \frac{\mathrm{e}}{\lambda}
$$

- Given $0<\varepsilon<1$, one can split $T_{\Omega}=T_{\Omega_{\varepsilon}}+T_{\Omega-\Omega_{\varepsilon}}$ such that $T_{\Omega_{\varepsilon}}$ is a CZ-operator with

$$
\left[\omega_{T_{\Omega_{\varepsilon}}}\right]_{\text {Dini }} \lesssim \log \frac{\mathrm{e}}{\varepsilon} \quad \text { and } \quad\left\|T_{\Omega-\Omega_{\varepsilon}}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \varepsilon^{1 / 2}
$$

- The first estimate implies $\left\|M_{\lambda, T_{\Omega_{\varepsilon}}}\right\|_{L^{1} \rightarrow L^{1, \infty}} \lesssim \log \frac{\mathrm{e}}{\varepsilon}$.
- The key statement: if $\left\|T_{\Omega}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \delta$, then

$$
\left\|M_{\lambda, T_{\Omega}}\right\|_{L^{1} \rightarrow L^{1, \infty}} \lesssim\left(\frac{\delta}{\lambda}+\log \frac{\mathrm{e}}{\delta}\right)
$$

This part is based heavily on the decomposition of A. Seeger (1996).

Some words about the proof

Let

$$
M_{\lambda, T_{\Omega}} f(x)=\sup _{Q \ni x}\left(T_{\Omega}\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right) \chi_{Q}\right)^{*}(\lambda|Q|)
$$

Then

$$
\left\|M_{\lambda, T}\right\|_{L^{1} \rightarrow L^{1, \infty}} \leqslant C_{n}\|\Omega\|_{L^{\infty}} \log \frac{\mathrm{e}}{\lambda}
$$

- The first estimate implies $\left\|M_{\lambda, T_{\Omega_{\varepsilon}}}\right\|_{L^{1} \rightarrow L^{1, \infty}} \lesssim \log \frac{\mathrm{e}}{\varepsilon}$.
- The key statement: if $\left\|T_{\Omega}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \delta$, then

$$
\left\|M_{\lambda, T_{\Omega}}\right\|_{L^{1} \rightarrow L^{1, \infty}} \lesssim\left(\frac{\delta}{\lambda}+\log \frac{\mathrm{e}}{\delta}\right)
$$

This part is based heavily on the decomposition of A. Seeger (1996).

- Applying the key statement with $\Omega=\Omega-\Omega_{\varepsilon}$ and $\delta=\varepsilon^{1 / 2}$ yields

$$
\left\|M_{\lambda, T_{\Omega}}\right\|_{L^{1} \rightarrow L^{1, \infty}} \lesssim\left(\frac{\varepsilon^{1 / 2}}{\lambda}+\log \frac{\mathrm{e}}{\varepsilon}\right)
$$

It remains to optimize the argument with respect to ε : take $\varepsilon=\lambda^{2}$.

A sharp quadratic bound

- T. Hytönen, L. Roncal, O. Tapiola (2015):

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}
$$

A sharp quadratic bound

- T. Hytönen, L. Roncal, O. Tapiola (2015):

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}
$$

- A.L. (2017):

$$
\begin{equation*}
\left\|M \circ T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}, \tag{1}
\end{equation*}
$$

and this estimate is sharp, in general.

A sharp quadratic bound

- A.L. (2017):

$$
\begin{equation*}
\left\|M \circ T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}, \tag{1}
\end{equation*}
$$

and this estimate is sharp, in general.

- The proof is based on two pointwise estimates:

$$
M\left(T_{\Omega} f\right)(x) \lesssim M M f(x)+M_{1, T_{\Omega}} f(x)
$$

and

$$
M_{p,\left(M_{1, T_{\Omega}}\right)} f(x) \lesssim M f(x)+M_{p, T_{\Omega}} f(x) \quad(p \geqslant 2) .
$$

A sharp quadratic bound

- A.L. (2017):

$$
\begin{equation*}
\left\|M \circ T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}, \tag{1}
\end{equation*}
$$

and this estimate is sharp, in general.

- The proof is based on two pointwise estimates:

$$
M\left(T_{\Omega} f\right)(x) \lesssim M M f(x)+M_{1, T_{\Omega}} f(x)
$$

and

$$
M_{p,\left(M_{\left.1, T_{\Omega}\right)}\right)} f(x) \lesssim M f(x)+M_{p, T_{\Omega}} f(x) \quad(p \geqslant 2)
$$

- The second estimate along with $\left\|M_{p, T_{\Omega}}\right\|_{L^{1} \rightarrow L^{1, \infty}} \lesssim p$ implies that

$$
\left\|M_{p,\left(M_{1, T_{\Omega}}\right)}\right\|_{L^{1} \rightarrow L^{1, \infty}} \lesssim p
$$

A sharp quadratic bound

- A.L. (2017):

$$
\begin{equation*}
\left\|M \circ T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}, \tag{1}
\end{equation*}
$$

and this estimate is sharp, in general.

- The proof is based on two pointwise estimates:

$$
M\left(T_{\Omega} f\right)(x) \lesssim M M f(x)+M_{1, T_{\Omega}} f(x)
$$

and

$$
M_{p,\left(M_{1, T_{\Omega}}\right)} f(x) \lesssim M f(x)+M_{p, T_{\Omega}} f(x) \quad(p \geqslant 2) .
$$

- The second estimate along with $\left\|M_{p, T_{\Omega}}\right\|_{L^{1} \rightarrow L^{1, \infty}} \lesssim p$ implies that

$$
\left\|M_{p,\left(M_{1, T_{\Omega}}\right)}\right\|_{L^{1} \rightarrow L^{1, \infty}} \lesssim p
$$

- Hence, $\left\|M_{1, T_{\Omega}}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \lesssim[w]_{A_{2}}^{2}$, and (1) follows from the first estimate along with Buckley's linear $[w]_{A_{2}}$ bound for M.

A sharp quadratic bound

- A.L. (2017):

$$
\begin{equation*}
\left\|M \circ T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}, \tag{1}
\end{equation*}
$$

and this estimate is sharp, in general.

- The proof is based on two pointwise estimates:

$$
M\left(T_{\Omega} f\right)(x) \lesssim M M f(x)+M_{1, T_{\Omega}} f(x)
$$

and

$$
M_{p,\left(M_{\left.1, T_{\Omega}\right)}\right)} f(x) \lesssim M f(x)+M_{p, T_{\Omega}} f(x) \quad(p \geqslant 2) .
$$

- The second estimate along with $\left\|M_{p, T_{\Omega}}\right\|_{L^{1} \rightarrow L^{1, \infty}} \lesssim p$ implies that

$$
\left\|M_{p,\left(M_{1, T_{\Omega}}\right)}\right\|_{L^{1} \rightarrow L^{1, \infty}} \lesssim p
$$

- The sharpness of (1) follows from

$$
\left\|M \circ T_{\Omega}\right\|_{L^{p} \rightarrow L^{p}} \geqslant \frac{c}{(p-1)^{2}}
$$

as $p \rightarrow 1$, and a general extrapolation argument found by T. Luque, C. Pérez and E. Rela (2015).

An open question

- Assume that T_{Ω} is an ω-Calderón-Zygmund operator with ω satisfying the Dini condition, and let $\Omega \in L^{\infty}$.

An open question

- Assume that T_{Ω} is an ω-Calderón-Zygmund operator with ω satisfying the Dini condition, and let $\Omega \in L^{\infty}$.
- Then the A_{2} theorem says that

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\left(\|\Omega\|_{L^{\infty}}+\left[\omega_{T_{\Omega}}\right]_{\mathrm{Dini}}\right)[w]_{A_{2}}
$$

An open question

- Assume that T_{Ω} is an ω-Calderón-Zygmund operator with ω satisfying the Dini condition, and let $\Omega \in L^{\infty}$.
- Then the A_{2} theorem says that

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\left(\|\Omega\|_{L^{\infty}}+\left[\omega_{T_{\Omega}}\right]_{\mathrm{Dini}}\right)[w]_{A_{2}}
$$

- On the other hand, we have just seen that

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}
$$

An open question

- Assume that T_{Ω} is an ω-Calderón-Zygmund operator with ω satisfying the Dini condition, and let $\Omega \in L^{\infty}$.
- Then the A_{2} theorem says that

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\left(\|\Omega\|_{L^{\infty}}+\left[\omega_{T_{\Omega}}\right]_{\mathrm{Dini}}\right)[w]_{A_{2}}
$$

- On the other hand, we have just seen that

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}
$$

- Therefore,

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}[w]_{A_{2}} \min \left(\left[\omega_{T_{\Omega}}\right]_{\operatorname{Dini}},\|\Omega\|_{L^{\infty}}[w]_{A_{2}}\right)
$$

but it does not seem that this estimate is optimal.

An open question

- Assume that T_{Ω} is an ω-Calderón-Zygmund operator with ω satisfying the Dini condition, and let $\Omega \in L^{\infty}$.
- Then the A_{2} theorem says that

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\left(\|\Omega\|_{L^{\infty}}+\left[\omega_{T_{\Omega}}\right]_{\mathrm{Dini}}\right)[w]_{A_{2}}
$$

- On the other hand, we have just seen that

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}
$$

- Therefore,

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}[w]_{A_{2}} \min \left(\left[\omega_{T_{\Omega}}\right]_{\operatorname{Dini}},\|\Omega\|_{L^{\infty}}[w]_{A_{2}}\right)
$$

but it does not seem that this estimate is optimal.

- The example of interest here is the iterated Ahlfors-Beurling operator $B^{m}=B \circ \cdots \circ B$ (T. Hytönen, L. Roncal, O. Tapiola). In this case $B^{m}=T_{\Omega_{m}}$ with

$$
\left\|\Omega_{m}\right\|_{L^{\infty}} \leqslant m \quad \text { and } \quad\left[\omega_{T_{\Omega_{m}}}\right]_{\mathrm{Dini}} \leqslant C m(1+\log m)
$$

An open question

- Then the A_{2} theorem says that

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\left(\|\Omega\|_{L^{\infty}}+\left[\omega_{T_{\Omega}}\right]_{\text {Dini }}\right)[w]_{A_{2}} .
$$

- On the other hand, we have just seen that

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}
$$

- Therefore,

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}[w]_{A_{2}} \min \left(\left[\omega_{T_{\Omega}}\right]_{\operatorname{Dini}},\|\Omega\|_{L^{\infty}}[w]_{A_{2}}\right)
$$

but it does not seem that this estimate is optimal.

- The example of interest here is the iterated Ahlfors-Beurling operator $B^{m}=B \circ \cdots \circ B$ (T. Hytönen, L. Roncal, O. Tapiola). In this case $B^{m}=T_{\Omega_{m}}$ with

$$
\left\|\Omega_{m}\right\|_{L^{\infty}} \leqslant m \quad \text { and } \quad\left[\omega_{T_{\Omega_{m}}}\right]_{\text {Dini }} \leqslant C m(1+\log m)
$$

- We obtain that

$$
\left\|B^{m}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C m[w]_{A_{2}} \min \left(1+\log m,[w]_{A_{2}}\right)
$$

An open question

- On the other hand, we have just seen that

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}\|\Omega\|_{L^{\infty}}[w]_{A_{2}}^{2}
$$

- Therefore,

$$
\left\|T_{\Omega}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C_{n}[w]_{A_{2}} \min \left(\left[\omega_{T_{\Omega}}\right]_{\operatorname{Dini}},\|\Omega\|_{L^{\infty}}[w]_{A_{2}}\right)
$$

but it does not seem that this estimate is optimal.

- The example of interest here is the iterated Ahlfors-Beurling operator $B^{m}=B \circ \cdots \circ B$ (T. Hytönen, L. Roncal, O. Tapiola). In this case $B^{m}=T_{\Omega_{m}}$ with

$$
\left\|\Omega_{m}\right\|_{L^{\infty}} \leqslant m \quad \text { and } \quad\left[\omega_{T_{\Omega_{m}}}\right]_{\text {Dini }} \leqslant C m(1+\log m)
$$

- We obtain that

$$
\left\|B^{m}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C m[w]_{A_{2}} \min \left(1+\log m,[w]_{A_{2}}\right)
$$

- Conjecture:

$$
\left\|B^{m}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leqslant C m[w]_{A_{2}}
$$

Commutators of Calderón-Zygmund operators

- Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini condition. The commutator of T with a locally integrable function b is defined by

$$
[b, T] f(x)=b(T f)(x)-T(b f)(x)
$$

Commutators of Calderón-Zygmund operators

- Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini condition. The commutator of T with a locally integrable function b is defined by

$$
[b, T] f(x)=b(T f)(x)-T(b f)(x)
$$

- R. Coifman, R. Rochberg, G. Weiss (1976): if $b \in B M O$, then $[b, T]$ is bounded on L^{p} for all $1<p<\infty$.

Commutators of Calderón-Zygmund operators

- Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini condition. The commutator of T with a locally integrable function b is defined by

$$
[b, T] f(x)=b(T f)(x)-T(b f)(x)
$$

- R. Coifman, R. Rochberg, G. Weiss (1976): if $b \in B M O$, then $[b, T]$ is bounded on L^{p} for all $1<p<\infty$.
- They also proved that if $\left[b, R_{j}\right]$ is bounded on L^{p} for every Riesz transform R_{j}, then $b \in B M O$. Later, S. Janson (1978) and A. Uchiyama (1978) established the necessity of $B M O$ for a wider class of operators.

Commutators of Calderón-Zygmund operators

- Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini condition. The commutator of T with a locally integrable function b is defined by

$$
[b, T] f(x)=b(T f)(x)-T(b f)(x)
$$

- R. Coifman, R. Rochberg, G. Weiss (1976): if $b \in B M O$, then $[b, T]$ is bounded on L^{p} for all $1<p<\infty$.
- They also proved that if $\left[b, R_{j}\right]$ is bounded on L^{p} for every Riesz transform R_{j}, then $b \in B M O$. Later, S. Janson (1978) and A. Uchiyama (1978) established the necessity of $B M O$ for a wider class of operators.
- It follows from the approach by S . Janson that $[b, T]$ is bounded on $L^{p}(w)$ if $w \in A_{p}$.

Commutators of Calderón-Zygmund operators

- Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini condition. The commutator of T with a locally integrable function b is defined by

$$
[b, T] f(x)=b(T f)(x)-T(b f)(x)
$$

- R. Coifman, R. Rochberg, G. Weiss (1976): if $b \in B M O$, then $[b, T]$ is bounded on L^{p} for all $1<p<\infty$.
- They also proved that if $\left[b, R_{j}\right]$ is bounded on L^{p} for every Riesz transform R_{j}, then $b \in B M O$. Later, S. Janson (1978) and A. Uchiyama (1978) established the necessity of $B M O$ for a wider class of operators.
- It follows from the approach by S . Janson that $[b, T]$ is bounded on $L^{p}(w)$ if $w \in A_{p}$.
- D. Chung, C. Pereyra, C. Pérez (2012): for all $p>1$,

$$
\|[b, T]\|_{L^{p}(w) \rightarrow L^{p}(w)} \leqslant C(n, T)\|b\|_{B M O}[w]_{A_{p}}^{2 \max \left(1, \frac{1}{p-1}\right)},
$$

and the exponent $2 \max \left(1, \frac{1}{p-1}\right)$ is best possible.

Two-weighted theory

- We say that $b \in B M O_{\nu}$ if

$$
\|b\|_{B M O_{\nu}}=\sup _{Q} \frac{1}{\nu(Q)} \int_{Q}\left|b(x)-b_{Q}\right| d x<\infty .
$$

Two-weighted theory

- We say that $b \in B M O_{\nu}$ if

$$
\|b\|_{B M O_{\nu}}=\sup _{Q} \frac{1}{\nu(Q)} \int_{Q}\left|b(x)-b_{Q}\right| d x<\infty .
$$

- S. Bloom (1985): Let H be the Hilbert transform. Let $\mu, \lambda \in A_{p}$, $1<p<\infty$. Further, let $\nu=\left(\frac{\mu}{\lambda}\right)^{\frac{1}{p}}$. Then

$$
\|[b, H] f\|_{L^{p}(\lambda)} \leqslant C\|f\|_{L^{p}(\mu)}
$$

if and only if $b \in B M O_{\nu}$.

Two-weighted theory

- We say that $b \in B M O_{\nu}$ if

$$
\|b\|_{B M O_{\nu}}=\sup _{Q} \frac{1}{\nu(Q)} \int_{Q}\left|b(x)-b_{Q}\right| d x<\infty
$$

- S. Bloom (1985): Let H be the Hilbert transform. Let $\mu, \lambda \in A_{p}$, $1<p<\infty$. Further, let $\nu=\left(\frac{\mu}{\lambda}\right)^{\frac{1}{p}}$. Then

$$
\|[b, H] f\|_{L^{p}(\lambda)} \leqslant C\|f\|_{L^{p}(\mu)}
$$

if and only if $b \in B M O_{\nu}$.

- I. Holmes, M. Lacey and B. Wick (2015) extended this result to general Calderón-Zygmund operators.

A sparse domination of commutators

- Introduce the sparse operator $\mathcal{T}_{\mathcal{S}, b}$ defined by

$$
\mathcal{T}_{\mathcal{S}, b} f(x)=\sum_{Q \in \mathcal{S}}\left|b(x)-b_{Q}\right| f_{Q} \chi_{Q}(x)
$$

Let $\mathcal{T}_{\mathcal{S}, b}^{\star}$ be the adjoint operator to $\mathcal{T}_{\mathcal{S}, b}$:

$$
\mathcal{T}_{\mathcal{S}, b}^{\star} f(x)=\sum_{Q \in \mathcal{S}}\left(\frac{1}{|Q|} \int_{Q}\left|b-b_{Q}\right| f\right) \chi_{Q}(x) .
$$

A sparse domination of commutators

- Introduce the sparse operator $\mathcal{T}_{\mathcal{S}, b}$ defined by

$$
\mathcal{T}_{\mathcal{S}, b} f(x)=\sum_{Q \in \mathcal{S}}\left|b(x)-b_{Q}\right| f_{Q} \chi_{Q}(x)
$$

Let $\mathcal{T}_{\mathcal{S}, b}^{\star}$ be the adjoint operator to $\mathcal{T}_{\mathcal{S}, b}$:

$$
\mathcal{T}_{\mathcal{S}, b}^{\star} f(x)=\sum_{Q \in \mathcal{S}}\left(\frac{1}{|Q|} \int_{Q}\left|b-b_{Q}\right| f\right) \chi_{Q}(x)
$$

- A.L., S. Ombrosi, I. Rivera-Ríos (2016): for every compactly supported $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$, there are $\frac{1}{2 \cdot 9^{n}}$-sparse families $\mathcal{S}_{j} \subset \mathscr{D}^{(j)}, j=1, \ldots, 3^{n}$, such that for a.e. $x \in \mathbb{R}^{n}$,

$$
|[b, T] f(x)| \leqslant c_{n} C_{T} \sum_{j=1}^{3^{n}}\left(\mathcal{T}_{\mathcal{S}_{j}, b}|f|(x)+\mathcal{T}_{\mathcal{S}_{j}, b}^{\star}|f|(x)\right)
$$

A sparse domination of commutators

- Introduce the sparse operator $\mathcal{T}_{\mathcal{S}, b}$ defined by

$$
\mathcal{T}_{\mathcal{S}, b} f(x)=\sum_{Q \in \mathcal{S}}\left|b(x)-b_{Q}\right| f_{Q} \chi_{Q}(x)
$$

Let $\mathcal{T}_{\mathcal{S}, b}^{\star}$ be the adjoint operator to $\mathcal{T}_{\mathcal{S}, b}$:

$$
\mathcal{T}_{\mathcal{S}, b}^{\star} f(x)=\sum_{Q \in \mathcal{S}}\left(\frac{1}{|Q|} \int_{Q}\left|b-b_{Q}\right| f\right) \chi_{Q}(x)
$$

- A.L., S. Ombrosi, I. Rivera-Ríos (2016): for every compactly supported $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$, there are $\frac{1}{2 \cdot 9^{n}}$-sparse families $\mathcal{S}_{j} \subset \mathscr{D}^{(j)}, j=1, \ldots, 3^{n}$, such that for a.e. $x \in \mathbb{R}^{n}$,

$$
|[b, T] f(x)| \leqslant c_{n} C_{T} \sum_{j=1}^{3^{n}}\left(\mathcal{T}_{\mathcal{S}_{j}, b}|f|(x)+\mathcal{T}_{\mathcal{S}_{j}, b}^{\star}|f|(x)\right)
$$

- In particular, this implies the following quantitative form of the Bloom-Holmes-Lacey-Wick theorem:

$$
\|[b, T] f\|_{L^{p}(\lambda)} \leqslant c_{n, p} C_{T}\left([\mu]_{A_{p}}[\lambda]_{A_{p}}\right)^{\max \left(1, \frac{1}{p-1}\right)}\|b\|_{B M O_{\nu}}\|f\|_{L^{p}(\mu)}
$$

A sparse domination of commutators

- A.L., S. Ombrosi, I. Rivera-Ríos (2016): for every compactly supported $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$, there are $\frac{1}{2 \cdot 9^{n}}$-sparse families $\mathcal{S}_{j} \subset \mathscr{D}^{(j)}, j=1, \ldots, 3^{n}$, such that for a.e. $x \in \mathbb{R}^{n}$,

$$
|[b, T] f(x)| \leqslant c_{n} C_{T} \sum_{j=1}^{3^{n}}\left(\mathcal{T}_{\mathcal{S}_{j}, b}|f|(x)+\mathcal{T}_{\mathcal{S}_{j}, b}^{\star}|f|(x)\right)
$$

- In particular, this implies the following quantitative form of the Bloom-Holmes-Lacey-Wick theorem:

$$
\|[b, T] f\|_{L^{p}(\lambda)} \leqslant c_{n, p} C_{T}\left([\mu]_{A_{p}}[\lambda]_{A_{p}}\right)^{\max \left(1, \frac{1}{p-1}\right)}\|b\|_{B M O_{\nu}}\|f\|_{L^{p}(\mu)}
$$

- If $\lambda=\mu=w$, this recovers the sharp bound by Chung-Pereyra-Pérez:

$$
\|[b, T]\|_{L^{p}(w) \rightarrow L^{p}(w)} \leqslant C(n, T)\|b\|_{B M O}[w]_{A_{p}}^{2 \max \left(1, \frac{1}{p-1}\right)}
$$

Some words about the proof

- Consider $\mathcal{T}_{\mathcal{S}, b}^{\star} f(x)=\sum_{Q \in \mathcal{S}}\left(\frac{1}{|Q|} \int_{Q}\left|b-b_{Q}\right| f\right) \chi_{Q}(x)$.

Some words about the proof

- Consider $\mathcal{T}_{\mathcal{S}, b}^{\star} f(x)=\sum_{Q \in \mathcal{S}}\left(\frac{1}{|Q|} \int_{Q}\left|b-b_{Q}\right| f\right) \chi_{Q}(x)$. By duality, it suffices to prove that

$$
\begin{equation*}
\left\|\mathcal{T}_{\mathcal{S}, b}^{\star}\right\|_{L^{p}(\mu) \rightarrow L^{p}(\lambda)} \leqslant c_{n, p}\left([\mu]_{A_{p}}[\lambda]_{A_{p}}\right)^{\max \left(1, \frac{1}{p-1}\right)}\|b\|_{B M O_{\nu}} \tag{*}
\end{equation*}
$$

Some words about the proof

- Consider $\mathcal{T}_{\mathcal{S}, b}^{\star} f(x)=\sum_{Q \in \mathcal{S}}\left(\frac{1}{|Q|} \int_{Q}\left|b-b_{Q}\right| f\right) \chi_{Q}(x)$. By duality, it suffices to prove that

$$
\begin{equation*}
\left\|\mathcal{T}_{\mathcal{S}, b}^{\star}\right\|_{L^{p}(\mu) \rightarrow L^{p}(\lambda)} \leqslant c_{n, p}\left([\mu]_{A_{p}}[\lambda]_{A_{p}}\right)^{\max \left(1, \frac{1}{p-1}\right)}\|b\|_{B M O_{\nu}} \tag{*}
\end{equation*}
$$

- The key technical ingredient is the following: given a dyadic lattice \mathscr{D} and a sparse family $\mathcal{S} \subset \mathscr{D}$, there exists a sparse family $\tilde{\mathcal{S}} \subset \mathscr{D}$ containing \mathcal{S} and such that if $Q \in \tilde{\mathcal{S}}$, then for a.e. $x \in Q$,

$$
\left|b(x)-b_{Q}\right| \leqslant 2^{n+2} \sum_{P \in \tilde{\mathcal{S}}, P \subseteq Q}\left(\frac{1}{|P|} \int_{P}\left|b-b_{P}\right|\right) \chi_{P}(x) .
$$

Some words about the proof

- Consider $\mathcal{T}_{\mathcal{S}, b}^{\star} f(x)=\sum_{Q \in \mathcal{S}}\left(\frac{1}{|Q|} \int_{Q}\left|b-b_{Q}\right| f\right) \chi_{Q}(x)$. By duality, it suffices to prove that

$$
\begin{equation*}
\left\|\mathcal{T}_{\mathcal{S}, b}^{\star}\right\|_{L^{p}(\mu) \rightarrow L^{p}(\lambda)} \leqslant c_{n, p}\left([\mu]_{A_{p}}[\lambda]_{A_{p}}\right)^{\max \left(1, \frac{1}{p-1}\right)}\|b\|_{B M O_{\nu}} \tag{*}
\end{equation*}
$$

- The key technical ingredient is the following: given a dyadic lattice \mathscr{D} and a sparse family $\mathcal{S} \subset \mathscr{D}$, there exists a sparse family $\tilde{\mathcal{S}} \subset \mathscr{D}$ containing \mathcal{S} and such that if $Q \in \tilde{\mathcal{S}}$, then for a.e. $x \in Q$,

$$
\left|b(x)-b_{Q}\right| \leqslant 2^{n+2} \sum_{P \in \tilde{\mathcal{S}}, P \subseteq Q}\left(\frac{1}{|P|} \int_{P}\left|b-b_{P}\right|\right) \chi_{P}(x)
$$

- From this we obtain that

$$
\mathcal{T}_{\mathcal{S}, b}^{\star} f(x) \leqslant c_{n}\|b\|_{B M O_{\nu}} A_{\tilde{\mathcal{S}}}\left(A_{\tilde{\mathcal{S}}}(f) \nu\right)(x)
$$

Some words about the proof

- Consider $\mathcal{T}_{\mathcal{S}, b}^{\star} f(x)=\sum_{Q \in \mathcal{S}}\left(\frac{1}{|Q|} \int_{Q}\left|b-b_{Q}\right| f\right) \chi_{Q}(x)$. By duality, it suffices to prove that

$$
\begin{equation*}
\left\|\mathcal{T}_{\mathcal{S}, b}^{\star}\right\|_{L^{p}(\mu) \rightarrow L^{p}(\lambda)} \leqslant c_{n, p}\left([\mu]_{A_{p}}[\lambda]_{A_{p}}\right)^{\max \left(1, \frac{1}{p-1}\right)}\|b\|_{B M O_{\nu}} \tag{*}
\end{equation*}
$$

- The key technical ingredient is the following: given a dyadic lattice \mathscr{D} and a sparse family $\mathcal{S} \subset \mathscr{D}$, there exists a sparse family $\tilde{\mathcal{S}} \subset \mathscr{D}$ containing \mathcal{S} and such that if $Q \in \tilde{\mathcal{S}}$, then for a.e. $x \in Q$,

$$
\left|b(x)-b_{Q}\right| \leqslant 2^{n+2} \sum_{P \in \tilde{\mathcal{S}}, P \subseteq Q}\left(\frac{1}{|P|} \int_{P}\left|b-b_{P}\right|\right) \chi_{P}(x) .
$$

- From this we obtain that

$$
\mathcal{T}_{\mathcal{S}, b}^{\star} f(x) \leqslant c_{n}\|b\|_{B M O_{\nu}} A_{\tilde{\mathcal{S}}}\left(A_{\tilde{\mathcal{S}}}(f) \nu\right)(x)
$$

- Applying

$$
\left\|A_{\mathcal{S}}\right\|_{L^{p}(w) \rightarrow L^{p}(w)} \leqslant c_{n, p}[w]_{A_{p}}^{\max \left(1, \frac{1}{p-1}\right)}
$$

twice yields $(*)$.

Iterated commutators

- Define the iterated commutators inductively by

$$
T_{b}^{m} f=\left[b, T_{b}^{m-1}\right] f, \quad T_{b}^{1} f=[b, T] f
$$

Iterated commutators

- Define the iterated commutators inductively by

$$
T_{b}^{m} f=\left[b, T_{b}^{m-1}\right] f, \quad T_{b}^{1} f=[b, T] f
$$

- D. Chung, C. Pereyra, C. Pérez (2012): for all $p>1$ and $m \in \mathbb{N}$,

$$
\left\|T_{b}^{m}\right\|_{L^{p}(w) \rightarrow L^{p}(w)} \leqslant C(n, T)\|b\|_{B M O}^{m}[w]_{A_{p}}^{(m+1) \max \left(1, \frac{1}{p-1}\right)}
$$

Iterated commutators

- Define the iterated commutators inductively by

$$
T_{b}^{m} f=\left[b, T_{b}^{m-1}\right] f, \quad T_{b}^{1} f=[b, T] f
$$

- D. Chung, C. Pereyra, C. Pérez (2012): for all $p>1$ and $m \in \mathbb{N}$,

$$
\left\|T_{b}^{m}\right\|_{L^{p}(w) \rightarrow L^{p}(w)} \leqslant C(n, T)\|b\|_{B M O}^{m}[w]_{A_{p}}^{(m+1) \max \left(1, \frac{1}{p-1}\right)}
$$

- G. Ibañez-Firnkorn, I. Rivera-Ríos (2017):

$$
\left|T_{b}^{m} f\right| \leqslant C \sum_{j=1}^{3^{n}} \sum_{k=0}^{m}\binom{m}{k} \sum_{Q \in \mathcal{S}_{j}}\left|b(x)-b_{Q}\right|^{m-k}\left(\frac{1}{|Q|} \int_{Q}\left|b-b_{Q}\right|^{k}|f|\right) \chi_{Q}
$$

Iterated commutators

- Define the iterated commutators inductively by

$$
T_{b}^{m} f=\left[b, T_{b}^{m-1}\right] f, \quad T_{b}^{1} f=[b, T] f
$$

- D. Chung, C. Pereyra, C. Pérez (2012): for all $p>1$ and $m \in \mathbb{N}$,

$$
\left\|T_{b}^{m}\right\|_{L^{p}(w) \rightarrow L^{p}(w)} \leqslant C(n, T)\|b\|_{B M O}^{m}[w]_{A_{p}}^{(m+1) \max \left(1, \frac{1}{p-1}\right)}
$$

- G. Ibañez-Firnkorn, I. Rivera-Ríos (2017):

$$
\left|T_{b}^{m} f\right| \leqslant C \sum_{j=1}^{3^{n}} \sum_{k=0}^{m}\binom{m}{k} \sum_{Q \in \mathcal{S}_{j}}\left|b(x)-b_{Q}\right|^{m-k}\left(\frac{1}{|Q|} \int_{Q}\left|b-b_{Q}\right|^{k}|f|\right) \chi_{Q}
$$

- A.L., S. Ombrosi, I. Rivera-Ríos (2017): If $b \in B M O_{\nu^{1 / m}}$ (where $\left.\nu=(\mu / \lambda)^{1 / p}\right)$, then

$$
\left\|T_{b}^{m} f\right\|_{L^{p}(\lambda)} \leqslant C\|b\|_{B M O_{\nu^{1 / m}}^{m}}\left([\lambda]_{A_{p}}[\mu]_{A_{p}}\right)^{\frac{m+1}{2} \max \left(1, \frac{1}{p-1}\right)}\|f\|_{L^{p}(\mu)}
$$

Iterated commutators

- Define the iterated commutators inductively by

$$
T_{b}^{m} f=\left[b, T_{b}^{m-1}\right] f, \quad T_{b}^{1} f=[b, T] f
$$

- D. Chung, C. Pereyra, C. Pérez (2012): for all $p>1$ and $m \in \mathbb{N}$,

$$
\left\|T_{b}^{m}\right\|_{L^{p}(w) \rightarrow L^{p}(w)} \leqslant C(n, T)\|b\|_{B M O}^{m}[w]_{A_{p}}^{(m+1) \max \left(1, \frac{1}{p-1}\right)}
$$

- G. Ibañez-Firnkorn, I. Rivera-Ríos (2017):

$$
\left|T_{b}^{m} f\right| \leqslant C \sum_{j=1}^{3^{n}} \sum_{k=0}^{m}\binom{m}{k} \sum_{Q \in \mathcal{S}_{j}}\left|b(x)-b_{Q}\right|^{m-k}\left(\frac{1}{|Q|} \int_{Q}\left|b-b_{Q}\right|^{k}|f|\right) \chi_{Q}
$$

- A.L., S. Ombrosi, I. Rivera-Ríos (2017): If $b \in B M O_{\nu^{1 / m}}$ (where $\left.\nu=(\mu / \lambda)^{1 / p}\right)$, then

$$
\left\|T_{b}^{m} f\right\|_{L^{p}(\lambda)} \leqslant C\|b\|_{B M O_{\nu^{1 / m}}}^{m}\left([\lambda]_{A_{p}}[\mu]_{A_{p}}\right)^{\frac{m+1}{2} \max \left(1, \frac{1}{p-1}\right)}\|f\|_{L^{p}(\mu)}
$$

- The previous results due to I. Holmes, B. Wick (2015) and T. Hytönen (2016) established the $L^{p}(\mu) \rightarrow L^{p}(\lambda)$ boundedness of T_{b}^{m} under the assumption $b \in B M O_{\nu} \cap B M O$.

Iterated commutators

- D. Chung, C. Pereyra, C. Pérez (2012): for all $p>1$ and $m \in \mathbb{N}$,

$$
\left\|T_{b}^{m}\right\|_{L^{p}(w) \rightarrow L^{p}(w)} \leqslant C(n, T)\|b\|_{B M O}^{m}[w]_{A_{p}}^{(m+1) \max \left(1, \frac{1}{p-1}\right)}
$$

- G. Ibañez-Firnkorn, I. Rivera-Ríos (2017):

$$
\left|T_{b}^{m} f\right| \leqslant C \sum_{j=1}^{3^{n}} \sum_{k=0}^{m}\binom{m}{k} \sum_{Q \in \mathcal{S}_{j}}\left|b(x)-b_{Q}\right|^{m-k}\left(\frac{1}{|Q|} \int_{Q}\left|b-b_{Q}\right|^{k}|f|\right) \chi_{Q}
$$

- A.L., S. Ombrosi, I. Rivera-Ríos (2017): If $b \in B M O_{\nu^{1 / m}}$ (where $\left.\nu=(\mu / \lambda)^{1 / p}\right)$, then

$$
\left\|T_{b}^{m} f\right\|_{L^{p}(\lambda)} \leqslant C\|b\|_{B M O_{\nu^{1 / m}}^{m}}\left([\lambda]_{A_{p}}[\mu]_{A_{p}}\right)^{\frac{m+1}{2} \max \left(1, \frac{1}{p-1}\right)}\|f\|_{L^{p}(\mu)}
$$

- The previous results due to I. Holmes, B. Wick (2015) and T. Hytönen (2016) established the $L^{p}(\mu) \rightarrow L^{p}(\lambda)$ boundedness of T_{b}^{m} under the assumption $b \in B M O_{\nu} \cap B M O$.
- On the other hand, the assumption $b \in B M O_{\nu^{1 / m}}$ appeared much earlier, in the work of J. García-Cuerva, E. Harboure, C. Segovia, J.L. Torrea (1991) about commutators of strongly singular integrals.

Iterated commutators

- A.L., S. Ombrosi, I. Rivera-Ríos (2017): If $b \in B M O_{\nu^{1 / m}}$ (where $\left.\nu=(\mu / \lambda)^{1 / p}\right)$, then

$$
\left\|T_{b}^{m} f\right\|_{L^{p}(\lambda)} \leqslant C\|b\|_{B M O_{\nu^{1 / m}}^{m}}\left([\lambda]_{A_{p}}[\mu]_{A_{p}}\right)^{\frac{m+1}{2} \max \left(1, \frac{1}{p-1}\right)}\|f\|_{L^{p}(\mu)} .
$$

- A.L., S. Ombrosi, I. Rivera-Ríos (2017): assume that

$$
T_{\Omega} f(x)=\int_{\mathbb{R}^{n}} \Omega\left(\frac{x-y}{|x-y|}\right) \frac{1}{|x-y|^{n}} f(y) d y \quad(x \notin \operatorname{supp} f)
$$

where Ω is a measurable function on S^{n-1}, which does not change sign and is not equivalent to zero on some open subset from S^{n-1}. If there is $C>0$ such that for every bounded measurable set $E \subset \mathbb{R}^{n}$,

$$
\left\|\left(T_{\Omega}\right)_{b}^{m}\left(\chi_{E}\right)\right\|_{L^{p}(\lambda)} \leqslant C \mu(E)^{1 / p}
$$

then $b \in B M O_{\nu^{1 / m}}$.

Thank you for your attention!

