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Sparse families and sparse bounds

e = (g f1#) "

Apsf(x) =D (fpoxe(®),

QeS
where S is a sparse family, is called the sparse operator.
@ By a sparse bound (or a sparse domination) for a given operator T'
one typically means an estimate of the form

T <CD (Hpelgrol@ (1< p,r< o),
QES

@ For p > 1 denote

@ The operator

where S is a sparse family (depending on f and g but with an
absolute sparseness constant).

@ It has been observed that such an estimate with the best possible
(that is, the smallest possible) p and r typically yields the sharp
quantitative weighted inequalities for T'.
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Some basic operators

@ We say that T is an w-Calderén-Zygmund operator if
® 7T is L? bounded;
@® T is represented as

Tf(x) = - K(x,y)f(y)dy for all x & supp f;

© K satisfies the size condition |K(z,y)| < ng’;‘n, x £ y;
@ K satisfies the regularity condition

/ ’ |x — I/| 1
K (o)~ K )]+ K )~ Ko <o (E=2) 2
for |z — y| > 2|z — 2’|, where w : [0,1] — [0, 00) is continuous,
increasing, subadditive and w(0) = 0.
@ The standard assumption on w is that w(t) = Ct°,0 < § < 1. In this
case we will skip w. More general assumptions are

1 1dt 1 dt
/ w(t)log T <> (log —Dini), / w(t)T < oo (Dini).
0 0
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The constant [w]a, is called the A}, constant of w.

e R. Hunt, B. Muckenhoupt, R. Wheeden, R. Coifman, C. Fefferman
(1972-1974): if w € A,, then the maximal operator M and
Calderén-Zygmund operators T are bounded on LP(w).

@ For M and for some Calder6n-Zygmund operators (for example, for
the Hilbert transform or for the Riesz transforms) the A, condition is
also necessary for the LP(w) boundedness.

@ Question (early 90's): what are the sharp bounds for || M || r (u)— 1 (w)
and HTHLp(w)_,Lp(w) in terms of [w]Ap?

e S. Buckley (1993): for the maximal operator,

1

M| oy — o) < Cln,p)[w]i T (p> 1),

and the exponent p%l is best possible for every p > 1.
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The A, conjecture

@ S. Petermichl and A. Volberg (2002) settled the Ay conjecture for B.

@ S. Petermichl (2004): the Ay conjecture is true for the Hilbert
transform
Hf(z)=p.v. ) dy.
RT—Y
@ After a number of intermediate results (due to M. Lacey,
S. Petermichl, M. Reguera, A. Beznosova, C. Pérez, D. Cruz-Uribe,
J. Martell, F. Nazarov, S. Treil, A. Volberg), the As conjecture in full
generality was proved by T. Hytdnen (2010).

@ The key idea of the proof: a representation of Calderén-Zygmund
operators in terms of the so-called Haar shift operators

_ (.0 o
S )= > L hd, (x)
Qe Q.Q"€2,Q',Q'"cQ |Q|
€QN=2"m0(Q),L(Q")=2"Fu(Q)

with their subsequent analysis.
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@ The oscillation of f on E:
w(f; E) =sup f —inf f.
E E
Given 0 < A < 1, define the A-oscillation of f over a cube @ by

wi(f; Q) = nf{w(f; E) : E C Q,[E] > (1 = M)[Q]}.

A.L. (2009), T.Hytonen (2012), A.L. and F. Nazarov (2014)

For every measurable function f with () < oo, there exists a %-sparse
family S C Z such that for a.e. x € R",

<Y w1 (£Q)xe(®).

QeS

@ Some history:
@ L. Carleson (1976): a different proof of the H! — BMO duality;
® J. Garnett and P. Jones (1982): a dyadic version;
© N. Fujii (1991): BMO can be replaced by L}

loc*
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@ D. Cruz-Uribe, J. Martell and C. Pérez (2010) used this result to get
the sharp weighted bounds for Haar shift operators and the dyadic
square function.

@ In particular, they showed that Haar shift operators are controlled by
the sparse operators As 5 defined by

Asaf(z) = foxo (SC2),
Qes

where fg = ﬁ fQ f- They also gave an elementary proof of
| As, 21l L2 (w)— 12 (w) < Clw]a,-
e A.L. (2012): for every Calderén-Zygmund operator 7T,
ITfll 2wy < C(n,T) Sup IAs. 21 £l 22 (w)

where the supremum is taken over all %—sparse families S C Z and all
dyadic lattices 2.



The proof of ||As 2| r2w)—r2w) < Clw)]a,.

Let Asf(z) = X ges foxq(z), where S C Z and S is %—sparse. Denote

w(@u Q)

AQ(w;Q) = ‘Q’Q

Assume that f,g > 0.



The proof of || As 2| r2(w)—r2(w) < Clw)a,

Let Asf(z) = X ges foxq(z), where S C Z and S is §—sparse. Denote

-1
Aol @) = 5D,
Assume that f,g > 0. Then

[ (Asngde = fosolQ)

QeS



The proof of || As 2| r2(w)—r2(w) < Clw)a,

Let Asf(z) = X ges foxq(z), where S C Z and S is §—sparse. Denote

-1
Aol @) = 5D,
Assume that f,g > 0. Then

[ (Asngde = fosolQ)

Qes
1

1 1
5-sparseness < 2 Z Az (w; Q) ( Q) /Qf) (w(Q)/Qg)‘EQ‘

Qes




The proof of || As 2| r2(w)—r2(w) < Clw)a,

Let Asf(z) = X ges foxq(z), where S C Z and S is Q—sparse. Denote

-1
Aol @) = 5D,
Assume that f,g > 0. Then

| Ashgde =3 fogolQ

Qes
1

5-Sparseness < 2 Z A2(w;Q)(_11(Q)/Qf) (w(lQ)/Qg)‘EQ‘

QeS
2[w M7 (fw)MZ (gw™")dx
o Z b

N




The proof of || As 2| r2(w)—r2(w) < Clw)a,

Let Asf(z) = X ges foxq(z), where S C Z and S is Q—sparse. Denote

w(@u (@)

AQ(w;Q) = ‘Q’Q

Assume that f,g > 0. Then
| Ashgde =3 fogolQ

QES
1 1 1
—- < 2 Ao (w; —_— — E
5 Sparseness Qze;s 2(w Q)( _1(Q)/Qf)(w(Q)/Qg)‘ ol
v o< 2w / M7 (fw) M (gw™)de
QES
EQNEy =0 < 2wla, [ MJ(fw)M] (gw™")da

Rn



The proof of || As 2| r2(w)—r2(w) < Clw)a,

Let Asf(z) = X ges foxq(z), where S C Z and S is Q—sparse. Denote

-1
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Let Asf(z) = X ges foxq(z), where S C Z and S is %—sparse. Denote
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Assume that f,g > 0. Then
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1 1 1
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p 1 '
M7 s [l < / M2, (fw) M (gw™")da
EQNEg =0 < 2[ula, [ Mia(fw)M(gu™")de
Holder < 2[w]a, || M)+ (fw)ll 21 | M) (9w )| 22wy
1M |20y <2 < 8[w]a |1l 22wy |91 L2 w1
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j=1

(for w-CZ operators T with fol w(t) log %% < 00).

e M. Lacey (2015): the same bound for w-CZ operators T" with
1 dt
lowi = [ w()% <.
0 t

e T. Hytonen, L. Roncal, O. Tapiola (2015): a quantitative version in

terms of [W]Dini-
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e A.L. and F. Nazarov, J. Conde-Alonso and G. Rey (2014):
Tf(x)] < C(n,T) ZAS 7,1 1(x)

(for w-CZ operators T' with fo w(t )log l@ < o0).
e M. Lacey (2015): the same bound for w- CZ operators T' with

(w]oini = /Olw(t)‘f < 0.

e T. Hytonen, L. Roncal, O. Tapiola (2015): a quantitative version in
terms of [W]Dini-

e A.L. (2015): a streamlined “maximal operator” proof.

e F. Bernicot, D. Frey and S. Petermichl (2015): estimates of the form

(TF,9) <C D {flpolorel@ (1<p,r <o)
QES

for non-integral operators.
@ (2016 - ): ~ 60 “sparse domination” papers.
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@ Assume now that T is an w-CZ operator, and define the maximal
truncated operator by

gl Ko
@ Then for all z € R",
Mrf(z) < Cn([wlpini + Cr)M f(z) + T f (). (*)
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Given a sublinear operator T', define the maximal operator My by

Mrf(x) = ng 17 (fxr\30) I (@)

@ Then for all z € R",
My f(x) < Cp([w]pini + Cr)M f(x) + T* f (). (%)
@ The idea of the proof: for all z,£ € Q,
IT(fxrm\30)()] < |T(fxem\B,)(E) — T(fxrm\B,)(T)]
+ |T(fxB\3) (O] + T (fxrm\B,) ()],

where B, is the smallest ball centered at x containing 3Q).
@ By (%), My is of weak type (1,1) and

Mz fllpiee < CuCO7| L1,
where Cp = HT||L2—>L2 + Cg + [w}Din;.



The maximal operator My

Given a sublinear operator T', define the maximal operator Mt by

Mrf(z) = %gp 1T (fxr\3Q) | L= (0)-

e By (x), My is of weak type (1,1) and
[Mr fllpree < CaCr[lfl 11,
where Cp = | T'||z2—12 + Ck + [w]Dini-

Theorem (A.L. (2015))

Assume that T' and My are of weak type (1,1). Then, for every compactly
supported f € L*(R™), there exists a sparse family S such that for a.e. ,

Tf(2)] < KAs|f|(x),

where K = Cn(||T||L1~>L17°° aF ||MT||L1~>L11°°)-
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The proof of |Tf(x)| < KAs|f|(z)

@ The key recursive claim: there exist pairwise disjoint cubes P; C Qo
such that 37, |P;| < 3|Qo| and for a.e. on Qo,

IT(Fx30) (@) X0 < K|fl3e + > IT(fx3P,)IXP;-
J
@ lterating this claim, we obtain that there exists a %—sparse family F of
cubes from Qg such that
IT(fx300) (@) X0 < K D flsoxe(@).
QEeF
o Take a partition of R™ by cubes R; such that supp (f) C 3R; for
each j, and apply the above estimate to each R; instead of Q. Let
F be the corresponding sparse family of the cubes from R;. Setting
F = U,;F;, we obtain that ]—' is %—sparse and for a.e. z € R",

Tf(x)| <KD |flsoxq().
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The proof of |Tf(x)| < KAs|f|(z)

@ The key recursive claim: there exist pairwise disjoint cubes P; C Qo
such that 37, |P;| < 3|Qo| and for a.e. on Qo,

IT(Fx30) (@) X0 < K|fl3e + > IT(fx3P,)IXP;-
J
@ lterating this claim, we obtain that there exists a %—sparse family F of
cubes from Qg such that
IT(fx300) (@) X0 < K D flsoxe(@).
QEeF
o Take a partition of R™ by cubes R; such that supp (f) C 3R; for

each j, and apply the above estimate to each R; instead of Q. Let
F be the corresponding sparse family of the cubes from R;. Setting
F = U,;F;, we obtain that ]—' is %—sparse and for a.e. z € R",
Tf(x)| <KD |flsoxq().
QeF
@ Hence, the statement holds with the ﬁ—sparse family

S=1{3Q:Q¢c F}.



The proof of |Tf(x)| < KAs|f|(z)

@ The key recursive claim: there exist pairwise disjoint cubes P; C Qo
such that 37, |P;| < 3|Qo| and for a.e. on Qo,

‘T(fx?)Qo)(x)’XQo < K’f‘3Q0 + Z ’T(fXSPj)’XPj'
J
@ For arbitrary pairwise disjoint cubes P; C @,
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J
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The proof of |Tf(x)| < KAs|f|(z)

@ The key recursive claim: there exist pairwise disjoint cubes P; C Qo
such that 37, |P;| < 3|Qo| and for a.e. on Qo,

‘T(fX?)Qo)(x)’XQo < K’f‘3Q0 + Z ’T(fXSPj)’XPj'
J

@ For arbitrary pairwise disjoint cubes P; C @,

IT(fx300)IX@0 < IT(fX300)1XQo\u, P, + O IT(fX300\3P,) IXP,
J

+ Z IT'(fx3p;)|XP;-

J

@ Hence, it suffices to find a set ¥ C g and a covering of E by
disjoint cubes P; C () such that

® >, |P| < 3]Qol;
® |T(fx3q,)(®)] < K|f[3q, fora.e. z € Qo \ E;
O | T(fx300\3p,) (P, < K[fl3qq-
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@ Hence, it suffices to find a set ¥ C (g and a covering of E by
disjoint cubes P; C () such that
® >, Pl < 51Qol;
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@ Recall that T" and

My f(x) = ng 1T (fxrm\30) |l (@)

are of weak type (1,1).
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@ Hence, it suffices to find a set ¥ C (g and a covering of E by
disjoint cubes P; C () such that
® >, Pl < 51Qol;
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@ Hence, it suffices to find a set ¥ C (g and a covering of E by
disjoint cubes P; C () such that
® >, Pl < 51Qol;
2] |T(fX3Q0)(‘T)| < K|f|3Q0 for a.e. € Qo \ E;
O [ T(fx3q0\3p,)lL=(p;) < K[fl3qq-
@ Recall that T and
My f(x) = ZUP 1T (fxrm\30) |l (@)
2T
are of weak type (1,1).

e Take C, such that |E = AU B| < 53|Qol, where

A={z € Qo:|T(fx3q,)(@)| > CnlT|lL1— 10| fl3Q0}
and
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The proof of |T'f(x)| < C(n,T)As|f|(z)

@ Hence, it suffices to find a set ¥ C (g and a covering of E by
disjoint cubes P; C () such that
® >, Pl < 51Qol;

® |T(fx3q,)(®)| < K|f[3q, fora.e. x € Qo \ E;

O [ T(fx3q0\3p,)lL=(p;) < K[fl3qq-
Recall that T" and

My f(x) = ng 1T (fxrm\30) |l (@)

are of weak type (1,1).
Take Cy, such that |E = AU B| < 5:4|Qo|, where

A= {z € Qo:[T(fx3Q0)(®)| > Cul[T||L1-r100[ flago }

and

B ={x € Qo: Mrqy(fx3q0)(®) > CullMr|L1— 1| fl3ge}
@ There exists a covering of I by pairwise disjoint cubes P; C ()¢ with

1 1
W|Pj| <[P NE[< §|Pj|-

From this, @, & and @ follow.
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e A.L. and F. Nazarov (2014): A dyadic lattice Z in R" is any
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e if Q € @, then each child of ) is in & as well;

o every 2 cubes @', Q" € 2 have a common ancestor, i.e., there exists
Q € 2 such that Q', Q" € D(Q);

o for every compact set K C R", there is a cube Q € Z containing K.
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e Given a cube Qo C R™, let D(Qp) denote the set of all dyadic cubes
with respect to (g.

e A.L. and F. Nazarov (2014): A dyadic lattice Z in R" is any
collection of cubes such that

e if Q € @, then each child of ) is in & as well;
o every 2 cubes @', Q" € 2 have a common ancestor, i.e., there exists

Q € 2 such that Q', Q" € D(Q);
o for every compact set K C R", there is a cube Q € Z containing K.

@ The “classical” dyadic lattice
{2750, )" +4), k€ Z,j € 2"}

is not a dyadic lattice in this sense.



Dyadic lattices

e A.L. and F. Nazarov (2014): A dyadic lattice Z in R" is any
collection of cubes such that

e if @ € 2, then each child of Q is in Z as well;
e every 2 cubes Q', Q" € & have a common ancestor, i.e., there exists
Q € 2 such that Q', Q" € D(Q);
o for every compact set K C R"™, there is a cube Q € Z containing K.
@ In order to construct a dyadic lattice 2, it suffices to fix any cube Qg
and then expand it dyadically, including all dyadic children into 2.
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Dyadic lattices

The three lattice theorem (A.L. and F. Nazarov (2014))

For every dyadic lattice 2, there exist 3" dyadic lattices 2(1), ..., 2(3")
such that

3Q:Q e 2} =U,90).

@ The one-third trick: there are 3" dyadic lattices 21) such that for
every cube Q C R, there is a cube P € 219 for some j, containing
@ and such that |P| < 3"|Q).

@ Proof: fix a dyadic lattice 2. Let Q C R™. Take a cube Q' €

containing the center of @ and such that {g/2 < £ < {g. Then
Q C3Q. But 3Q' € 21,
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The three lattice theorem (A.L. and F. Nazarov (2014))

For every dyadic lattice 2, there exist 3" dyadic lattices 21, ..., (")
such that

3Q: Qe 2} =09V

@ The one-third trick: there are 3" dyadic lattices 2) such that for
every cube Q C R”, there is a cube P € 21 for some j, containing
@ and such that |P| < 3"|Q).

@ Assume that & is an n-sparse family. For Q € S, let Pg be a cube
from the above statement. Then the family

Sj={Ppec2Y:Qes}
is z-sparse (the corresponding disjoint sets are just g C Q C Pg).



Dyadic lattices

The three lattice theorem (A.L. and F. Nazarov (2014))

For every dyadic lattice 2, there exist 3" dyadic lattices 21, ..., (")
such that

3Q: Qe 2} =09V

@ The one-third trick: there are 3" dyadic lattices 2) such that for
every cube Q C R”, there is a cube P € 21 for some j, containing
@ and such that |P| < 3"|Q)].

@ Assume that & is an n-sparse family. For Q € S, let Pg be a cube
from the above statement. Then the family

Si={Ppe2V:.QeS}

is z-sparse (the corresponding disjoint sets are just g C Q C Pg).
Therefore,

> 1floxg <3™ Y 1 flpgxre, < 3”2 > 1flpxp

Q€S QeS j=1 PES,
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are of weak type (1,1), then |T'f(z)| < KAs|f|(x).
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(Tf,9)| <C Y IflalglolQl-

QeS



A general sparse domination principle

@ We have seen that if T and
My f(x) = ng 1T (fxrm\30) lL= (@)

are of weak type (1,1), then |T'f(z)| < KAs|f|(x).
@ The main application is based on the estimate of

| (Asngde = 3 fogalQl

QeS

so instead of the pointwise domination of T" by Ag, it suffices to
establish a weaker estimate

(TF,9)l < C Y |flalglel@l.
QeS
@ This leads naturally to more general estimates of the form

(Tf, o) <KD (f) Ql (1<rs< o). (%)
QeS




A general sparse domination principle

@ The main application is based on the estimate of
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so instead of the pointwise domination of T" by Ag, it suffices to
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operator
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A general sparse domination principle

@ This leads naturaIIy to more general estimates of the form

{Tf,q) KZ Ql (1<rs<o0). (%)
QeS
@ In order to obtain a sufficient condition for (x), we define the maximal

operator

Ma(f,9)(e) = sup o [T (Fxamaglgldy

Theorem (A.L. (2017))

Let r,s > 1. Assume that T is a sublinear operator of weak type (q,q) for
some 1l < q<r, and My maps L" x L® into L""*°, Where % + %

Then, for every compactly supported f € L"(R™) and every geLj,
there exists a 2_3n -sparse family S such that (x) holds, where

K = Cr(ITllza—rac + Ml Lrxps—pvee).




A general sparse domination principle

@ In order to obtain a sufficient condition for (x), we define the maximal
operator

1
Mr(f,6)() = s /Q IT(fxzm30)l9ldy.

Theorem (A.L. (2017))

Let r,s > 1. Assume that T is a sublinear operator of weak type (q, ) for
some 1 < g <r, and Mp maps L™ x L* into L**>, where * s = ; <~ g.
Then, for every compactly supported f € L"(R") and every g € Lj, .,
there exists a 5-sparse family S such that (x) holds, where

K = Cu(|IT||lpa—rac + [MrllLrxps—pvee).

@ Given 1 < p < o, define

1/p
My (@) = s (1o [ T (xenaa) Py



A general sparse domination principle

@ In order to obtain a sufficient condition for (x), we define the maximal
operator

1
Mr(f,6)() = s /Q IT(fxzm30)l9ldy.

Theorem (A.L. (2017))

Let r,s > 1. Assume that T is a sublinear operator of weak type (q, q) for
somel < qg<r, and My maps L" x L® into L*"*°, where % = % + %
Then, for every compactly supported f € L"(R") and every g € Lj, .,
there exists a 5-sparse family S such that (x) holds, where

K = Cu(|IT||lpa—rac + [MrllLrxps—pvee).

@ Given 1 < p < o, define

1 1/p
M,fazzsup</Tan pdy>
p,T ( ) 032 ’Q| Q| ( R \3Q)’
o By Holder's inequalities,

HMT||LTXL5_>LV,OO < OTL||MS/,THLT—>LT*°O (1/1/ = 1/7' + 1/8)



A general sparse domination principle

@ Given 1 < p < oo, define

1 1/p
M}f:vzsup(/fon pdy)
p,T ( ) 052 ’Q‘ Q| ( R \SQ)’
o By Holder's inequalities,

[IMrl|Lrxps—pree < CollMy pllpr—pree  (1/v =1/r+1/s).

Corollary

If T is of weak type (q,q) for some 1 < q < r and Mg 1 is of weak type
(r,7), then for every compactly supported f € L"(R™) and every g € L7,
there exists a ﬁ-sparse family S such that

(T 9 <KDY {fral9)seldl,
Qes

where K = Cn(HTHLq_,Lq,oo + ”M , _>Lr,oo).




A general sparse domination principle

@ Given 1 < p < oo, define

1 1/p
M}f:vzsup(/fon pdy)
p,T ( ) 052 ’Q‘ Q| ( R \SQ)’
o By Holder's inequalities,

[IMrl|Lrxps—pree < CollMy pllpr—pree  (1/v =1/r+1/s).

Corollary

If T is of weak type (q,q) for some 1 < q < r and Mg 1 is of weak type
(r,7), then for every compactly supported f € L"(R™) and every g € L7,
there exists a ﬁ-sparse family S such that

(T 9 <KDY {fral9)seldl,
Qes

where K = Cn(HTHLq_,Lq,oo + ”M , _>Lr,oo).

e If s =1, then a stronger, pointwise estimate holds:

|Tf Z r QXQ

QEeS



Rough singular integrals

@ Consider a class of rough homogeneous singular integrals defined by
Qy/ly

Tof() =pv. [ -0
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To is bounded on LP for all 1 < p < .
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Rough singular integrals

@ Consider a class of rough homogeneous singular integrals defined by
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e T. Hytonen, L. Roncal, O. Tapiola (2015):
170l 22 (w)— L2 () < Crll Q|20 [w]%,

Conjecture:
1Tl 2 (w)—L2(w) S CnllQLoe[w] 4,
e J. Conde-Alonso, A. Culiuc F. Di Plinio, Y. Ou (2016): for all p > 1,

(Taf,g9)| < (91.0lQl
S QeS
@ Recall that
Myrf(a) (1 [ irtrxansords)
) = Ssu — n
- 03 \[Q] Jo ™ ARSI
and
(Tf, )| < Co(ITN 1 —pree + 1My pllpaorree) D (H1.0(9)s,0lQ)
QeS

e A.L. (2017): For T with Q € L,
[ Mp, 10 f [ 100 < Col| Q| Loepll fllzr - (0> 1).
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Let
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Then
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Some words about the proof

Let
My1,f(z) = %‘;p<TQ(fXR"\3Q)XQ)*()“Q|)-

Then
| My

€
L1 pree < Cn ||| oo log N

o The first estimate implies || My 1, [|11—r1. < log g.
@ The key statement: if ||Tq||r2_r2 < 0, then
1 e
HM>\7T9HL1—>LL°° S (X + log 5)
This part is based heavily on the decomposition of A. Seeger (1996).
o Applying the key statement with Q = Q — Q. and § = £!/2 yields

1/2

€ e
HM)\:TQ”L1—>L1!°° S (T + log g)

It remains to optimize the argument with respect to e: take € = \2.
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e A.L. (2017):
1Mo Tall 12 (w)—12(w) < CrllQU Lo [w]3,, (1)

and this estimate is sharp, in general.
@ The proof is based on two pointwise estimates:

M(Tﬂf)(x) S MMf(l‘) + Ml,Tszf(x)
and
My, o) F(2) S M (@) + My f(@) (9> 2).
@ The second estimate along with || M, 7,|| 1 1.~ S p implies that

HMP»(]V[LTQ) ||L1~>L1,oo S p.

@ The sharpness of (1) follows from
c
(p—1)
as p — 1, and a general extrapolation argument found by
T. Luque, C. Pérez and E. Rela (2015).
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@ On the other hand, we have just seen that
1Tl 22 w)—12() < Crll Qoo [w],-
@ Therefore,
1Tl L2 (w)—12(w) < Cnlw]a, min ([wr, Ipini, Q| Lo [w] 4,)

but it does not seem that this estimate is optimal.

@ The example of interest here is the iterated Ahlfors-Beurling operator
B™ = Bo---0B (T. Hytonen, L. Roncal, O. Tapiola). In this case
B™ =1Tgq, with

[QmllLe <m  and  [wry, |pini < Cm(1 +logm).
@ We obtain that
I B™ | £2(w)—2(w) < Cm[w]a, min (1 +logm, [w]a4,).

o Conjecture:
HBm”L2(w)—>L2(w) < Cm[w]AQ'
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Commutators of Calderén-Zygmund operators

@ Let T be an w-Calderén-Zygmund operator with w satisfying the Dini
condition. The commutator of T with a locally integrable function b is
defined by

b, T () = (T f)(x) — T(bf)(2).

e R. Coifman, R. Rochberg, G. Weiss (1976): if b € BMO, then [b, T
is bounded on L? for all 1 < p < co.

o They also proved that if [b, R;] is bounded on L” for every Riesz
transform R;, then b € BMO. Later, S. Janson (1978) and
A. Uchiyama (1978) established the necessity of BMO for a wider
class of operators.

e It follows from the approach by S. Janson that [b, 7] is bounded on
LP(w) if w € A,.

o D. Chung, C. Pereyra, C. Pérez (2012): for all p > 1,

2 max (1,p—il)

H[ba T]H[J’(w)—»LP(w) < C(an)HbHBMo[w]AP )

and the exponent 2max (1, p%l) is best possible.
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Two-weighted theory

o We say that b€ BMO,, if
6l Brro, = SUP / b(x) — bgldz < .

o S. Bloom (1985): Let H be the Hilbert transform. Let p, A € A,
1
1 < p < oc. Further, let v = (§)?. Then

116, H1 fll e (n) < Cllf lor(u)

if and only if b € BMO,,.

@ |. Holmes, M. Lacey and B. Wick (2015) extended this result to
general Calderén-Zygmund operators.
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A sparse domination of commutators

e A.L., S. Ombrosi, I. Rivera-Rios (2016): for every compactly
supported f € L*°(R"), there are ﬁ-sparse families
Sj C 2, j=1,...,3" such that for a.e. z € R",
an
16, T1f(2)] < eaCr Y (Ts,al fI(2) + T3, o fI(2)).

J=1

@ In particular, this implies the following quantitative form of the
Bloom-Holmes-Lacey-Wick theorem:
1

max (1,
1. T1 1oy < enpCr (i, )™ C5 ) 1) s, 11 o -

o If A = p = w, this recovers the sharp bound by Chung-Pereyra-Pérez:

2 max (1,#)
H[b7 T}HLT’(w)—»LT’(w) < O(naT)”bHBMO[w]AP :
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Some words about the proof
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2 and a sparse family S C 2, there exists a sparse family S C 2
containing S and such that if Q € S, then for a.e. z € Q,
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Spf (@) < eallbllBaro, As(As(f)v)(2).
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o Consider ¢, f(z) = > ( / |b— bQ]f) xq(x). By duality, it
W= 2 g
suffices to prove that

172l o2y < enp(lia M) ™ 5 Bllsaro,. ()

@ The key technical ingredient is the following: given a dyadic lattice
2 and a sparse family S C &, there exists a sparse family S C 7
containing S and such that if Q € S, then for a.e. z € Q,

1
by —tol <242 (o [ = bel) el
PeS, PCQ P
@ From this we obtain that
S (@) < enllbllBrmo, Ag(Ag(fv) (@)

@ Applying
max (l,p—il)
||ASHLP(w)—>LP(w) < Cpplw Ap

twice yields ().
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e D. Chung, C. Pereyra, C. Pérez (2012): for all p > 1 and m € N,

m m (m~+1) max (1,%)
1Ty ||Lp(w)—>LP(w) < C(an)Hb”BMO[w]Ap P

e G. Ibafiez-Firnkorn, I. Rivera-Rios (2017):

3" m
m m m— 1
<03 () 5 el (g7 [ b= tal11) o
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e A.L., S. Ombrosi, I. Rivera-Rios (2017): If b € BMO,1/m (where

v = (u/\)'/P), then

mtl pax (1,1
T F vy < CIBlBrso 0, (Mot i) 5™ O .

o The previous results due to |. Holmes, B. Wick (2015) and T. Hyt6nen
(2016) established the LP(y) — LP(\) boundedness of T} under the
assumption b € BMO, N BMO.

e On the other hand, the assumption b € BMO,,1;m appeared much
earlier, in the work of J. Garcia-Cuerva, E. Harboure, C. Segovia,

J.L. Torrea (1991) about commutators of strongly singular integrals.



lterated commutators

e A.L., S. Ombrosi, I. Rivera-Rios (2017): If b € BMO,1/m (where
v = (u/\)'/P), then

m+l max (1,p%1)

175" ey < ClbIEMO ), ((Aaylila,) 2
e A.L., S. Ombrosi, |. Rivera-Rios (2017): assume that

£l e () -

_ r—y 1
Tof@)= [ Q(F=2) = Wy (¢ sup ),

where € is a measurable function on S”~! which does not change
sign and is not equivalent to zero on some open subset from S"~ 1. If
there is C' > 0 such that for every bounded measurable set £ C R",

I(To)5" (xe) oy < Cu(E)P,

then b € BMO,1/m.



Thank you for your attention!



