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Sparse families and sparse bounds

Given 0 < η ¬ 1, we say that a family S of cubes from Rn is η-sparse
if for any Q ∈ S there exists a subset EQ ⊂ Q such that

|EQ|  η|Q|;
the sets {EQ}Q∈S are pairwise disjoint.

Examples:

1 Any family of pairwise disjoint cubes is trivially 1-sparse.

2 A family of the intervals {[0, 2k), k ∈ Z} is 12 -sparse
(the corresponding pairwise disjoint sets are {[2k−1, 2k), k ∈ Z}).

3 Fix a cube Q0 ⊂ Rn. Take an arbitrary collection of pairwise disjoint
cubes Qj1 ⊂ Q0 such that

∑
j |Q

j
1| ¬ (1− η)|Q0|. In a similar way take

collections of cubes in every Qj1, and so on. Then the resulting family
of all the cubes appearing in the process will be η-sparse.

4 Define the dyadic maximal operator

MDf(x) = sup
Q3x,Q∈D

1
|Q|

∫
Q

|f |,

and consider the sets Ωk = {x : MDf(x) > 2(n+1)k}, k ∈ Z.

Then Ωk
can be written as Ωk = ∪jQkj , and the family {Qkj , k ∈ Z} is 12 -sparse.
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Given 0 < η ¬ 1, we say that a family S of cubes from Rn is η-sparse
if for any Q ∈ S there exists a subset EQ ⊂ Q such that

|EQ|  η|Q|;
the sets {EQ}Q∈S are pairwise disjoint.

The name “sparse” for such families was given first in the work by
M. Lacey and T. Hytönen (2011).

For p  1 denote

〈f〉p,Q =
(

1
|Q|

∫
Q
|f |p

)1/p
.

The operator
Ap,Sf(x) =

∑
Q∈S
〈f〉p,QχQ(x),

where S is a sparse family, is called the sparse operator.
By a sparse bound (or a sparse domination) for a given operator T
one typically means an estimate of the form

|〈Tf, g〉| ¬ C
∑
Q∈S
〈f〉p,Q〈g〉r,Q|Q| (1 ¬ p, r <∞),

where S is a sparse family (depending on f and g but with an
absolute sparseness constant).
It has been observed that such an estimate with the best possible
(that is, the smallest possible) p and r typically yields the sharp
quantitative weighted inequalities for T .
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Some basic operators

Define the Hardy-Littlewood maximal operator by

Mf(x) = sup
Q3x

1
|Q|

∫
Q
|f |.

We say that T is an ω-Calderón-Zygmund operator if

1 T is L2 bounded;
2 T is represented as

Tf(x) =
∫
Rn
K(x, y)f(y)dy for all x 6∈ supp f ;

3 K satisfies the size condition |K(x, y)| ¬ CK
|x−y|n , x 6= y;

4 K satisfies the regularity condition

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ¬ ω
(
|x− x′|
|x− y|

)
1

|x− y|n

for |x− y| > 2|x− x′|, where ω : [0, 1]→ [0,∞) is continuous,
increasing, subadditive and ω(0) = 0.

The standard assumption on ω is that ω(t) = Ctδ, 0 < δ ¬ 1. In this
case we will skip ω.

More general assumptions are∫ 1

0
ω(t) log

1
t

dt

t
<∞ (log−Dini),

∫ 1

0
ω(t)

dt

t
<∞ (Dini).
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Sharp quantitative weighted inequalities

By a weight we mean a non-negative, locally integrable function.
Given a weight w, set

‖f‖Lp(w) =
(∫

Rn
|f(x)|pw(x)dx

)1/p
(1 ¬ p <∞).

R. Hunt, B. Muckenhoupt, R. Wheeden, R. Coifman, C. Fefferman
(1972-1974): if w ∈ Ap, then the maximal operator M and
Calderón-Zygmund operators T are bounded on Lp(w).
For M and for some Calderón-Zygmund operators (for example, for
the Hilbert transform or for the Riesz transforms) the Ap condition is
also necessary for the Lp(w) boundedness.
Question (early 90’s): what are the sharp bounds for ‖M‖Lp(w)→Lp(w)
and ‖T‖Lp(w)→Lp(w) in terms of [w]Ap?
S. Buckley (1993): for the maximal operator,

‖M‖Lp(w)→Lp(w) ¬ C(n, p)[w]
1
p−1
Ap

(p > 1),

and the exponent 1
p−1 is best possible for every p > 1.
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The A2 conjecture

For Calderón-Zygmund operators T , if α is the best possible exponent
in

‖Tf‖Lp(w) ¬ C(T, n, p)[w]αAp‖f‖Lp(w),

then it satisfies α  max
(
1, 1

p−1

)
.

Therefore, it was conjectured that

α = max
(
1, 1

p−1

)
.

S. Petermichl and A. Volberg (2002) settled the A2 conjecture for B.
S. Petermichl (2004): the A2 conjecture is true for the Hilbert
transform

Hf(x) = p.v.
∫
R

f(y)
x− y

dy.

After a number of intermediate results (due to M. Lacey,
S. Petermichl, M. Reguera, A. Beznosova, C. Pérez, D. Cruz-Uribe,
J. Martell, F. Nazarov, S. Treil, A. Volberg), the A2 conjecture in full
generality was proved by T. Hytönen (2010).
The key idea of the proof: a representation of Calderón-Zygmund
operators in terms of the so-called Haar shift operators

Sm,kD f(x) =
∑
Q∈D

∑
Q′,Q′′∈D,Q′,Q′′⊂Q

`(Q′)=2−m`(Q),`(Q′′)=2−k`(Q)

〈f, hQ
′′

Q′ 〉
|Q|

hQ
′

Q′′(x)

with their subsequent analysis.



The A2 conjecture

For Calderón-Zygmund operators T , if α is the best possible exponent
in

‖Tf‖Lp(w) ¬ C(T, n, p)[w]αAp‖f‖Lp(w),

then it satisfies α  max
(
1, 1

p−1

)
. Therefore, it was conjectured that

α = max
(
1, 1

p−1

)
.

S. Petermichl and A. Volberg (2002) settled the A2 conjecture for B.
S. Petermichl (2004): the A2 conjecture is true for the Hilbert
transform

Hf(x) = p.v.
∫
R

f(y)
x− y

dy.

After a number of intermediate results (due to M. Lacey,
S. Petermichl, M. Reguera, A. Beznosova, C. Pérez, D. Cruz-Uribe,
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A sparse domination approach to the A2 conjecture

The oscillation of f on E:

ω(f ;E) = sup
E
f − inf

E
f.

Given 0 < λ < 1, define the λ-oscillation of f over a cube Q by

ωλ(f ;Q) = inf{ω(f ;E) : E ⊂ Q, |E|  (1− λ)|Q|}.
D. Cruz-Uribe, J. Martell and C. Pérez (2010) used this result to get
the sharp weighted bounds for Haar shift operators and the dyadic
square function.
In particular, they showed that Haar shift operators are controlled by
the sparse operators AS,D defined by

AS,Df(x) =
∑
Q∈S

fQχQ (S ⊂ D),

where fQ = 1
|Q|
∫
Q f . They also gave an elementary proof of

‖AS,D‖L2(w)→L2(w) ¬ C[w]A2 .

A.L. (2012): for every Calderón-Zygmund operator T ,

‖Tf‖L2(w) ¬ C(n, T ) sup
S,D
‖AS,D |f |‖L2(w),

where the supremum is taken over all 1
2 -sparse families S ⊂ D and all

dyadic lattices D .
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Some history:
1 L. Carleson (1976): a different proof of the H1 −BMO duality;
2 J. Garnett and P. Jones (1982): a dyadic version;
3 N. Fujii (1991): BMO can be replaced by L1loc.
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The proof of ‖AS,D‖L2(w)→L2(w) ¬ C[w]A2.
Let ASf(x) =

∑
Q∈S fQχQ(x), where S ⊂ D and S is 1

2 -sparse. Denote

A2(w;Q) =
w(Q)w−1(Q)
|Q|2

.

Assume that f, g  0.

Then∫
Rn

(ASf)gdx =
∑
Q∈S

fQgQ|Q|

1
2

-sparseness ¬ 2
∑
Q∈S

A2(w;Q)
( 1
w−1(Q)

∫
Q
f
)( 1
w(Q)

∫
Q
g
)
|EQ|

MD
ν :

1
ν(Q)

∫
Q
|f |ν ¬ 2[w]A2

∑
Q∈S

∫
EQ

MD
w−1(fw)MD

w (gw−1)dx

EQ ∩ EQ′ = ∅ ¬ 2[w]A2

∫
Rn
MD
w−1(fw)MD

w (gw−1)dx

Hölder ¬ 2[w]A2‖MD
w−1(fw)‖L2(w−1)‖MD

w (gw−1)‖L2(w)

‖MD
ν ‖L2(ν) ¬ 2 ¬ 8[w]A2‖f‖L2(w)‖g‖L2(w−1).
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More recent history

A.L. and F. Nazarov, J. Conde-Alonso and G. Rey (2014):

|Tf(x)| ¬ C(n, T )
3n∑
j=1

ASj ,Dj |f |(x)

(for ω-CZ operators T with
∫ 1

0 ω(t) log 1
t
dt
t <∞).

M. Lacey (2015): the same bound for ω-CZ operators T with

[ω]Dini =
∫ 1

0
ω(t)

dt

t
<∞.

T. Hytönen, L. Roncal, O. Tapiola (2015): a quantitative version in
terms of [ω]Dini.
A.L. (2015): a streamlined “maximal operator” proof.
F. Bernicot, D. Frey and S. Petermichl (2015): estimates of the form

|〈Tf, g〉| ¬ C
∑
Q∈S
〈f〉p,Q〈g〉r,Q|Q| (1 ¬ p, r <∞)

for non-integral operators.
(2016 – ): ≈ 60 “sparse domination” papers.
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The maximal operator MT

Given a sublinear operator T , define the maximal operator MT by

MT f(x) = sup
Q3x
‖T (fχRn\3Q)‖L∞(Q).

By (∗), MT is of weak type (1, 1) and

‖MT f‖L1,∞ ¬ CnCT ‖f‖L1 ,

where CT = ‖T‖L2→L2 + CK + [ω]Dini.

Theorem (A.L. (2015))

Assume that T and MT are of weak type (1, 1). Then, for every compactly
supported f ∈ L1(Rn), there exists a sparse family S such that for a.e. x,

|Tf(x)| ¬ KAS |f |(x),

where K = Cn(‖T‖L1→L1,∞ + ‖MT ‖L1→L1,∞).
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The proof of |Tf(x)| ¬ KAS |f |(x)
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such that
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The proof of |Tf(x)| ¬ C(n, T )AS |f |(x)
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Recall that T and

MT f(x) = sup
Q3x
‖T (fχRn\3Q)‖L∞(Q)

are of weak type (1, 1).

Take Cn such that |E = A ∪B| ¬ 1
2n+2 |Q0|, where

A = {x ∈ Q0 : |T (fχ3Q0)(x)| > Cn‖T‖L1→L1,∞ |f |3Q0}
and

B = {x ∈ Q0 : MT,Q0(fχ3Q0)(x) > Cn‖MT ‖L1→L1,∞ |f |3Q0}
There exists a covering of E by pairwise disjoint cubes Pj ⊂ Q0 with

1
2n+1 |Pj | ¬ |Pj ∩ E| ¬

1
2
|Pj |.

From this, 1 , 2 and 3 follow.
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Dyadic lattices

Given a cube Q0 ⊂ Rn, let D(Q0) denote the set of all dyadic cubes
with respect to Q0.

A.L. and F. Nazarov (2014): A dyadic lattice D in Rn is any
collection of cubes such that

if Q ∈ D , then each child of Q is in D as well;
every 2 cubes Q′, Q′′ ∈ D have a common ancestor, i.e., there exists
Q ∈ D such that Q′, Q′′ ∈ D(Q);
for every compact set K ⊂ Rn, there is a cube Q ∈ D containing K.

The “classical” dyadic lattice

{2−k([0, 1)n + j), k ∈ Z, j ∈ Zn}

is not a dyadic lattice in this sense.
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Dyadic lattices

A.L. and F. Nazarov (2014): A dyadic lattice D in Rn is any
collection of cubes such that

if Q ∈ D , then each child of Q is in D as well;
every 2 cubes Q′, Q′′ ∈ D have a common ancestor, i.e., there exists
Q ∈ D such that Q′, Q′′ ∈ D(Q);
for every compact set K ⊂ Rn, there is a cube Q ∈ D containing K.

In order to construct a dyadic lattice D , it suffices to fix any cube Q0

and then expand it dyadically, including all dyadic children into D .



Dyadic lattices

The three lattice theorem (A.L. and F. Nazarov (2014))

For every dyadic lattice D , there exist 3n dyadic lattices D (1), . . . ,D (3n)

such that
{3Q : Q ∈ D} = ∪3n

j=1D
(j).

The one-third trick: there are 3n dyadic lattices D (j) such that for
every cube Q ⊂ Rn, there is a cube P ∈ D (j) for some j, containing
Q and such that |P | ¬ 3n|Q|.
Assume that S is an η-sparse family. For Q ∈ S, let PQ be a cube
from the above statement. Then the family

Sj = {PQ ∈ D (j) : Q ∈ S}
is η

3n -sparse (the corresponding disjoint sets are just EQ ⊂ Q ⊂ PQ).

Therefore,∑
Q∈S
|f |QχQ ¬ 3n

∑
Q∈S
|f |PQχPQ ¬ 3n

3n∑
j=1

∑
P∈Sj

|f |PχP .
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A general sparse domination principle

We have seen that if T and
MT f(x) = sup

Q3x
‖T (fχRn\3Q)‖L∞(Q)

are of weak type (1, 1), then |Tf(x)| ¬ KAS |f |(x).

Given 1 ¬ p ¬ ∞, define

Mp,T f(x) = sup
Q3x

(
1
|Q|

∫
Q
|T (fχRn\3Q)|pdy

)1/p

By Hölder’s inequalities,
‖MT ‖Lr×Ls→Lν,∞ ¬ Cn‖Ms′,T ‖Lr→Lr,∞ (1/ν = 1/r + 1/s).

Corollary
If T is of weak type (q, q) for some 1 ¬ q ¬ r and Ms′,T is of weak type
(r, r), then for every compactly supported f ∈ Lr(Rn) and every g ∈ Lsloc,
there exists a 1

2·3n -sparse family S such that
|〈Tf, g〉| ¬ K

∑
Q∈S
〈f〉r,Q〈g〉s,Q|Q|,

where K = Cn
(
‖T‖Lq→Lq,∞ + ‖Ms′,T ‖Lr→Lr,∞

)
.

If s = 1, then a stronger, pointwise estimate holds:
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Rough singular integrals

Consider a class of rough homogeneous singular integrals defined by

TΩf(x) = p.v.
∫
Rn
f(x− y)

Ω(y/|y|)
|y|n

dy,

where Ω ∈ L∞(Sn−1), and
∫
Sn−1 Ω dσ = 0.

T. Hytönen, L. Roncal, O. Tapiola (2015):

‖TΩ‖L2(w)→L2(w) ¬ Cn‖Ω‖L∞ [w]2A2
.

Conjecture:
‖TΩ‖L2(w)→L2(w) ¬ Cn‖Ω‖L∞ [w]A2 .

J. Conde-Alonso, A. Culiuc, F. Di Plinio, Y. Ou (2016): for all p > 1,

|〈TΩf, g〉| ¬
Cnp

p− 1
‖Ω‖L∞ sup

S

∑
Q∈S
〈f〉p,Q〈g〉1,Q|Q|.

Recall that

Mp,T f(x) = sup
Q3x

(
1
|Q|

∫
Q
|T (fχRn\3Q)|pdy

)1/p

and
|〈Tf, g〉| ¬ Cn

(
‖T‖L1→L1,∞ + ‖Ms′,T ‖L1→L1,∞

) ∑
Q∈S
〈f〉1,Q〈g〉s,Q|Q|.

A.L. (2017): For TΩ with Ω ∈ L∞,

‖Mp,TΩf‖L1,∞ ¬ Cn‖Ω‖L∞p‖f‖L1 (p > 1).
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A reformulation in terms of Mλ,T�� ��‖Mp,TΩf‖L1,∞ ¬ Cn‖Ω‖L∞p‖f‖L1 (∗)

Consider

Mλ,T f(x) = sup
Q3x

(T (fχRn\3Q)χQ)∗(λ|Q|) (0 < λ < 1).

If T is of weak type (1, 1), then Mλ,T is of weak type (1, 1) too, and

‖Mλ,T ‖L1→L1,∞ ¬
Cn
λ
‖T‖L1→L1,∞ (0 < λ < 1).

This leads to a question about the sharp dependence of

ΦT (λ) = ‖Mλ,T ‖L1→L1,∞

on λ for a given operator T of weak type (1, 1).
(∗) is equivalent to

ΦTΩ(λ) ¬ Cn‖Ω‖L∞ log
e
λ
.
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Some words about the proof

Let
Mλ,TΩf(x) = sup

Q3x
(TΩ(fχRn\3Q)χQ)∗(λ|Q|).

Then
‖Mλ,T ‖L1→L1,∞ ¬ Cn‖Ω‖L∞ log

e
λ
.

The first estimate implies ‖Mλ,TΩε
‖L1→L1,∞ . log

e
ε
.

The key statement: if ‖TΩ‖L2→L2 . δ, then

‖Mλ,TΩ‖L1→L1,∞ .
( δ
λ

+ log
e
δ

)
.

This part is based heavily on the decomposition of A. Seeger (1996).
Applying the key statement with Ω = Ω− Ωε and δ = ε1/2 yields

‖Mλ,TΩ‖L1→L1,∞ .
(ε1/2

λ
+ log

e
ε

)
.

It remains to optimize the argument with respect to ε: take ε = λ2.
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A sharp quadratic bound

T. Hytönen, L. Roncal, O. Tapiola (2015):

‖TΩ‖L2(w)→L2(w) ¬ Cn‖Ω‖L∞ [w]2A2
.

A.L. (2017):

‖M ◦ TΩ‖L2(w)→L2(w) ¬ Cn‖Ω‖L∞ [w]2A2
, (1)

and this estimate is sharp, in general.
The proof is based on two pointwise estimates:

M(TΩf)(x) .MMf(x) +M1,TΩf(x)

and
Mp,(M1,TΩ )f(x) .Mf(x) +Mp,TΩf(x) (p  2).

The second estimate along with ‖Mp,TΩ‖L1→L1,∞ . p implies that

‖Mp,(M1,TΩ )‖L1→L1,∞ . p.

The sharpness of (1) follows from

‖M ◦ TΩ‖Lp→Lp 
c

(p− 1)2

as p→ 1, and a general extrapolation argument found by
T. Luque, C. Pérez and E. Rela (2015).
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An open question

Assume that TΩ is an ω-Calderón-Zygmund operator with ω
satisfying the Dini condition, and let Ω ∈ L∞.

On the other hand, we have just seen that

‖TΩ‖L2(w)→L2(w) ¬ Cn‖Ω‖L∞ [w]2A2
.

Therefore,

‖TΩ‖L2(w)→L2(w) ¬ Cn[w]A2 min
(
[ωTΩ ]Dini, ‖Ω‖L∞ [w]A2

)
but it does not seem that this estimate is optimal.
The example of interest here is the iterated Ahlfors-Beurling operator
Bm = B ◦ · · · ◦B (T. Hytönen, L. Roncal, O. Tapiola). In this case
Bm = TΩm with

‖Ωm‖L∞ ¬ m and [ωTΩm
]Dini ¬ Cm(1 + logm).

We obtain that

‖Bm‖L2(w)→L2(w) ¬ Cm[w]A2 min
(
1 + logm, [w]A2

)
.

Conjecture:
‖Bm‖L2(w)→L2(w) ¬ Cm[w]A2 .
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Commutators of Calderón-Zygmund operators

Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini
condition. The commutator of T with a locally integrable function b is
defined by

[b, T ]f(x) = b(Tf)(x)− T (bf)(x).

R. Coifman, R. Rochberg, G. Weiss (1976): if b ∈ BMO, then [b, T ]
is bounded on Lp for all 1 < p <∞.

They also proved that if [b, Rj ] is bounded on Lp for every Riesz
transform Rj , then b ∈ BMO. Later, S. Janson (1978) and
A. Uchiyama (1978) established the necessity of BMO for a wider
class of operators.

It follows from the approach by S. Janson that [b, T ] is bounded on
Lp(w) if w ∈ Ap.

D. Chung, C. Pereyra, C. Pérez (2012): for all p > 1,

‖[b, T ]‖Lp(w)→Lp(w) ¬ C(n, T )‖b‖BMO[w]
2 max

(
1, 1
p−1

)
Ap

,

and the exponent 2 max
(
1, 1

p−1

)
is best possible.
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Two-weighted theory

We say that b ∈ BMOν if

‖b‖BMOν = sup
Q

1
ν(Q)

∫
Q
|b(x)− bQ|dx <∞.

S. Bloom (1985): Let H be the Hilbert transform. Let µ, λ ∈ Ap,

1 < p <∞. Further, let ν =
(µ
λ

) 1
p . Then

‖[b,H]f‖Lp(λ) ¬ C‖f‖Lp(µ)

if and only if b ∈ BMOν .

I. Holmes, M. Lacey and B. Wick (2015) extended this result to
general Calderón-Zygmund operators.
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A sparse domination of commutators

Introduce the sparse operator TS,b defined by

TS,bf(x) =
∑
Q∈S
|b(x)− bQ|fQχQ(x).

Let T ?S,b be the adjoint operator to TS,b:

T ?S,bf(x) =
∑
Q∈S

(
1
|Q|

∫
Q
|b− bQ|f

)
χQ(x).

A.L., S. Ombrosi, I. Rivera-Ŕıos (2016): for every compactly
supported f ∈ L∞(Rn), there are 1

2·9n -sparse families
Sj ⊂ D (j), j = 1, . . . , 3n, such that for a.e. x ∈ Rn,

|[b, T ]f(x)| ¬ cnCT
3n∑
j=1

(
TSj ,b|f |(x) + T ?Sj ,b|f |(x)

)
.

In particular, this implies the following quantitative form of the
Bloom-Holmes-Lacey-Wick theorem:

‖[b, T ]f‖Lp(λ) ¬ cn,pCT
(
[µ]Ap [λ]Ap

)max
(
1, 1
p−1

)
‖b‖BMOν‖f‖Lp(µ).

If λ = µ = w, this recovers the sharp bound by Chung-Pereyra-Pérez:

‖[b, T ]‖Lp(w)→Lp(w) ¬ C(n, T )‖b‖BMO[w]
2max

(
1, 1p−1

)
Ap

.
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)
Ap

.



Some words about the proof

Consider T ?S,bf(x) =
∑
Q∈S

(
1
|Q|

∫
Q
|b− bQ|f

)
χQ(x).

By duality, it

suffices to prove that

‖T ?S,b‖Lp(µ)→Lp(λ) ¬ cn,p
(
[µ]Ap [λ]Ap

)max
(
1, 1
p−1

)
‖b‖BMOν . (∗)

The key technical ingredient is the following: given a dyadic lattice
D and a sparse family S ⊂ D , there exists a sparse family S̃ ⊂ D
containing S and such that if Q ∈ S̃, then for a.e. x ∈ Q,

|b(x)− bQ| ¬ 2n+2
∑

P∈S̃, P⊆Q

(
1
|P |

∫
P
|b− bP |

)
χP (x).

From this we obtain that

T ?S,bf(x) ¬ cn‖b‖BMOνAS̃
(
AS̃(f)ν

)
(x).

Applying

‖AS‖Lp(w)→Lp(w) ¬ cn,p[w]
max

(
1, 1
p−1

)
Ap

twice yields (∗).
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Iterated commutators

Define the iterated commutators inductively by

Tmb f = [b, Tm−1
b ]f, T 1

b f = [b, T ]f.

A.L., S. Ombrosi, I. Rivera-Ŕıos (2017): If b ∈ BMOν1/m (where
ν = (µ/λ)1/p), then

‖Tmb f‖Lp(λ) ¬ C‖b‖mBMO
ν1/m

(
[λ]Ap [µ]Ap

)m+1
2 max

(
1, 1
p−1

)
‖f‖Lp(µ).

A.L., S. Ombrosi, I. Rivera-Ŕıos (2017): assume that

TΩf(x) =
∫
Rn

Ω
( x− y
|x− y|

) 1
|x− y|n

f(y)dy (x 6∈ supp f),

where Ω is a measurable function on Sn−1, which does not change
sign and is not equivalent to zero on some open subset from Sn−1. If
there is C > 0 such that for every bounded measurable set E ⊂ Rn,

‖(TΩ)mb (χE)‖Lp(λ) ¬ Cµ(E)1/p,

then b ∈ BMOν1/m .
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G. Ibañez-Firnkorn, I. Rivera-Ŕıos (2017):
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The previous results due to I. Holmes, B. Wick (2015) and T. Hytönen
(2016) established the Lp(µ)→ Lp(λ) boundedness of Tmb under the
assumption b ∈ BMOν ∩BMO.

On the other hand, the assumption b ∈ BMOν1/m appeared much
earlier, in the work of J. Garćıa-Cuerva, E. Harboure, C. Segovia,
J.L. Torrea (1991) about commutators of strongly singular integrals.
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Thank you for your attention!


