

15th Discussion Meeting Of Harmonic Analysis Bangalore, Tuesday 19th December 2017

Titchmarsh theorem for Fourier transform of
Hölder-Lipschitz functions on compact
homogeneous manifolds

Radouan DAHER

University of Hassan II, Casablanca-Morocco
(Joint work with J. DELGADO and M. RUZHANSKY)

1 Introduction

2 General definitions

3 Titchmarsh's theorem

4 Applications

5 References

- Lipschitz([1864])

Lipschitz condition states that

$$|f(x) - f(y)| \leq M|x - y|^\alpha; \quad 0 < \alpha \leq 1.$$

He proved that this inequality is sufficient to have that the Fourier series of f converges everywhere to the value of f .
If we denote

$$w(h, f) = \sup_{|x-y| < h} |f(x) - f(y)|$$

the modulus of continuity, Lipschitz condition can be written as :(Landau's notation)

$$w((h, f)) = O(h^\alpha), \quad 0 < \alpha \leq 1.$$

- Dini([1872])

Dini-Lipschitz condition states

$$w(h, f) = o(\ln(\frac{1}{h})^{-1}).$$

- Dini([1872])

Dini-Lipschitz condition states

$$w(h, f) = o(\ln(\frac{1}{h})^{-1}).$$

- S.Bernstein's theorem ([1914])

The lipschitz functions have absolutely convergent Fourier series.

- Dini([1872])

Dini-Lipschitz condition states

$$w(h, f) = o(\ln(\frac{1}{h})^{-1}).$$

- S.Bernstein's theorem ([1914])

The lipschitz functions have absolutely convergent Fourier series.

- O.Szasz's theorem ([1922])

Let \mathbb{T} be the circle group, if

$$f \in \mathbb{L}ip_{\mathbb{T}}(\alpha, p) = \{f \in \mathbb{L}^p(\mathbb{T}) : \|\tau_h f - f\|_p = O(|h|^\alpha), \text{ as } h \rightarrow 0\},$$

then $\widehat{f} \in l^r$, where $\begin{cases} \alpha > \frac{1}{p} + \frac{1}{r} - 1, & \text{if } 1 < p \leq 2; \\ \alpha > \frac{1}{r} - \frac{1}{2}, & \text{if } p > 2. \end{cases}$

- E.C.Titchmarsh's theorem ([1927])

$$\mathbb{L}ip_{\mathbb{R}}(\alpha, p) = \{f \in \mathbb{L}^p(\mathbb{R}) : \|\tau_h f - f\|_p = O(h^\alpha), \text{ as } h \rightarrow 0\},$$

Theorem A ([Ti], Th 84) :

Let $0 < \alpha \leq 1$ and $1 < p \leq 2$.

If $f \in \mathbb{L}ip_{\mathbb{R}}(\alpha, p)$, then its Fourier transform \widehat{f} belong to \mathbb{L}^β for

$$\frac{p}{p + \alpha p - 1} < \beta \leq \frac{p}{p - 1}.$$

- Case $p = 2$

Theorem B([Ti], Th 85) :

$$f \in \mathbb{L}ip(\alpha, 2) \Leftrightarrow \int_{|x| \geq r} |\widehat{f}(x)|^2 dx = O(r^{-2\alpha}) \text{ as } r \rightarrow \infty.$$

- Case $p = 2$

Theorem B([Ti], Th 85) :

$$f \in \mathbb{L}ip(\alpha, 2) \Leftrightarrow \int_{|x| \geq r} |\widehat{f}(x)|^2 dx = O(r^{-2\alpha}) \text{ as } r \rightarrow \infty.$$

- Younis [1970] $\mathbb{R}^n, \mathbb{T}^n$

- Case $p = 2$

Theorem B([Ti], Th 85) :

$$f \in \mathbb{L}ip(\alpha, 2) \Leftrightarrow \int_{|x| \geq r} |\widehat{f}(x)|^2 dx = O(r^{-2\alpha}) \text{ as } r \rightarrow \infty.$$

- Younis [1970] $\mathbb{R}^n, \mathbb{T}^n$
- Younis [1986]

He showed that the result of Titchmarsh's theorem A does not hold for Dini-Lipschitz functions : It does not improve the Hausdorff-Young inequality and the conclusion is that $\widehat{f} \in \mathbb{L}^{p'}(\mathbb{R})$. Therefore, he considered some conditions which are rather situated in between the Lipschitz and Dini-Lipschitz conditions. These were inspired from Weiss and Zygmund [1959].

- Younis-Dini-Lipschitz conditions :

$$w(h, f) = O\left(h^\alpha \ln\left(\frac{1}{h}\right)^{-\delta}\right), \text{ where } \delta \geq 0.$$

He showed that Titchmarsh's theorem A and B could be extend to other setting as :

- Compact group [1974]

- Younis-Dini-Lipschitz conditions :

$$w(h, f) = O\left(h^\alpha \ln\left(\frac{1}{h}\right)^{-\delta}\right), \text{ where } \delta \geq 0.$$

He showed that Titchmarsh's theorem A and B could be extend to other setting as :

- Compact group [1974]
- Hyperbolic plan [1998]

- Younis-Dini-Lipschitz conditions :

$$w(h, f) = O\left(h^\alpha \ln\left(\frac{1}{h}\right)^{-\delta}\right), \text{ where } \delta \geq 0.$$

He showed that Titchmarsh's theorem A and B could be extend to other setting as :

- Compact group [1974]
- Hyperbolic plan [1998]
- Platonov [2005] (Th B) on N.C.S.S of rank 1.

- Younis-Dini-Lipschitz conditions :

$$w(h, f) = O\left(h^\alpha \ln\left(\frac{1}{h}\right)^{-\delta}\right), \text{ where } \delta \geq 0.$$

He showed that Titchmarsh's theorem A and B could be extend to other setting as :

- Compact group [1974]
- Hyperbolic plan [1998]
- Platonov [2005] (Th B) on N.C.S.S of rank 1.
- Daher-El Hamma Bessel Hypergroup [2012]

- Younis-Dini-Lipschitz conditions :

$$w(h, f) = O\left(h^\alpha \ln\left(\frac{1}{h}\right)^{-\delta}\right), \text{ where } \delta \geq 0.$$

He showed that Titchmarsh's theorem A and B could be extend to other setting as :

- Compact group [1974]
- Hyperbolic plan [1998]
- Platonov [2005] (Th B) on N.C.S.S of rank 1.
- Daher-El Hamma Bessel Hypergroup [2012]
- Daher et All[2012-2015] Dunkl setting Jacobi-Dunkl

- Younis-Dini-Lipschitz conditions :

$$w(h, f) = O(h^\alpha \ln(\frac{1}{h})^{-\delta}), \text{ where } \delta \geq 0.$$

He showed that Titchmarsh's theorem A and B could be extend to other setting as :

- Compact group [1974]
- Hyperbolic plan [1998]
- Platonov [2005] (Th B) on N.C.S.S of rank 1.
- Daher-El Hamma Bessel Hypergroup [2012]
- Daher et All[2012-2015] Dunkl setting Jacobi-Dunkl
- Daher- El ouadih [2016] N.C.S.S of rank one Th A ; Y.D.Lip

- Younis-Dini-Lipschitz conditions :

$$w(h, f) = O(h^\alpha \ln(\frac{1}{h})^{-\delta}), \text{ where } \delta \geq 0.$$

He showed that Titchmarsh's theorem A and B could be extend to other setting as :

- Compact group [1974]
- Hyperbolic plan [1998]
- Platonov [2005] (Th B) on N.C.S.S of rank 1.
- Daher-El Hamma Bessel Hypergroup [2012]
- Daher et All[2012-2015] Dunkl setting Jacobi-Dunkl
- Daher- El ouadiah [2016] N.C.S.S of rank one Th A ; Y.D.Lip
- Daher-El ouadiah [2017] (Th B) for Fourier Jacobi expansion.
-etc

The aim of this talk is to extend the Titchmarsh's theorems to the setting of general compact homogeneous manifolds.

As an application of such extension, we derive a Fourier multiplier theorem for \mathbb{L}^2 -Lipschitz spaces.

- Version of Titchmarsh's theorems on the \mathbb{T} = Circle group

Theorem A :

Let $0 < \alpha \leq 1$ and $1 < p \leq 2$.

If $f \in \mathbb{Lip}_{\mathbb{T}}(\alpha, p)$, then its Fourier transform \widehat{f} belongs to $\mathbb{L}^{\beta}(\mathbb{Z})$ for

$$\frac{p}{p + \alpha p - 1} < \beta \leq \frac{p}{p - 1}.$$

- Version of Titchmarsh's theorems on the \mathbb{T} = Circle group

Theorem A :

Let $0 < \alpha \leq 1$ and $1 < p \leq 2$.

If $f \in \mathbb{Lip}_{\mathbb{T}}(\alpha, p)$, then its Fourier transform \widehat{f} belongs to $\mathbb{L}^{\beta}(\mathbb{Z})$ for

$$\frac{p}{p + \alpha p - 1} < \beta \leq \frac{p}{p - 1}.$$

- ★ The lower bound $\frac{p}{p + \alpha p - 1}$ is sharp can be proved by means of Hardy and Littlewood's function :

$$f(x) = \sum_{n=1}^{\infty} \frac{e^{in \log n}}{n^{\frac{1}{2} + \alpha}} e^{inx}, \quad 0 < \alpha \leq 1$$

- Version of Titchmarsh's theorems on the \mathbb{T} = Circle group

Theorem A :

Let $0 < \alpha \leq 1$ and $1 < p \leq 2$.

If $f \in \mathbb{Lip}_{\mathbb{T}}(\alpha, p)$, then its Fourier transform \widehat{f} belongs to $\mathbb{L}^{\beta}(\mathbb{Z})$ for

$$\frac{p}{p + \alpha p - 1} < \beta \leq \frac{p}{p - 1}.$$

- ★ The lower bound $\frac{p}{p + \alpha p - 1}$ is sharp can be proved by means of Hardy and Littlewood's function :

$$f(x) = \sum_{n=1}^{\infty} \frac{e^{in \log n}}{n^{\frac{1}{2} + \alpha}} e^{inx}, \quad 0 < \alpha \leq 1$$

- ★ $f \in \mathbb{Lip}_{\mathbb{T}}(\alpha, 2)$ BUT $\widehat{f} \notin l^{\frac{2}{2\alpha}}(\mathbb{Z})$ (see [Z]).

Theorem B : p=2

Let $0 < \alpha \leq 1$; $f \in \mathbb{L}^2(\mathbb{T}^1)$, then

$$f \in \mathbb{L}ip_{\mathbb{T}^1}(\alpha, 2) \Leftrightarrow \sum_{|j| \geq N} |\widehat{f}(j)|^2 = O(N^{-2\alpha}) \text{ as } N \rightarrow \infty.$$

- Younis-Titchmarsh's theorem C :

Similar theorems, we have only to replace $O(h^\alpha)$ by
Y.D.Lipschitz condition $O(h^\alpha (\log(\frac{1}{|h|}))^\delta)$ as $h \rightarrow 0$.

1 Introduction

2 General definitions

3 Titchmarsh's theorem

4 Applications

5 References

In this section we recall some basic facts on the harmonic analysis on compact homogenous manifolds

- G compact Lie group.

In this section we recall some basic facts on the harmonic analysis on compact homogenous manifolds

- G compact Lie group.
- $\mu = dx$ normalized Haar measure.

In this section we recall some basic facts on the harmonic analysis on compact homogenous manifolds

- G compact Lie group.
- $\mu = dx$ normalized Haar measure.
- \widehat{G} : set of equivalence classes of continuous irreducible unitary representations of G .

In this section we recall some basic facts on the harmonic analysis on compact homogenous manifolds

- G compact Lie group.
- $\mu = dx$ normalized Haar measure.
- \widehat{G} : set of equivalence classes of continuous irreducible unitary representations of G .
- G is compact $\Rightarrow \widehat{G}$ is discrete.

In this section we recall some basic facts on the harmonic analysis on compact homogenous manifolds

- G compact Lie group.
- $\mu = dx$ normalized Haar measure.
- \widehat{G} : set of equivalence classes of continuous irreducible unitary representations of G .
- G is compact $\Rightarrow \widehat{G}$ is discrete.
- Fourier transform : If $f \in L^1(G)$ then

$$\widehat{f}(\xi) = \int_G f(x)\xi(x)^*dx.$$

In this section we recall some basic facts on the harmonic analysis on compact homogenous manifolds

- G compact Lie group.
- $\mu = dx$ normalized Haar measure.
- \widehat{G} : set of equivalence classes of continuous irreducible unitary representations of G .
- G is compact $\Rightarrow \widehat{G}$ is discrete.
- Fourier transform : If $f \in L^1(G)$ then

$$\widehat{f}(\xi) = \int_G f(x)\xi(x)^*dx.$$

- If ξ is matrix representation, we have $\widehat{f}(\xi) \in \mathbb{C}^{d_\xi \times d_\xi}$ where d_ξ is the dimension of the representation space of ξ .

In this section we recall some basic facts on the harmonic analysis on compact homogenous manifolds

- G compact Lie group.
- $\mu = dx$ normalized Haar measure.
- \widehat{G} : set of equivalence classes of continuous irreducible unitary representations of G .
- G is compact $\Rightarrow \widehat{G}$ is discrete.
- Fourier transform : If $f \in L^1(G)$ then

$$\widehat{f}(\xi) = \int_G f(x)\xi(x)^*dx.$$

- If ξ is matrix representation, we have $\widehat{f}(\xi) \in \mathbb{C}^{d_\xi \times d_\xi}$ where d_ξ is the dimension of the representation space of ξ .
- For $[\xi] \in \widehat{G}$, we can view ξ as a matrix-value function

$$\xi : G \longrightarrow \mathbb{C}^{d_\xi \times d_\xi}$$

- Fourier inversion formula :

$$f(x) = \sum_{[\xi] \in \widehat{G}} d_\xi \text{Tr}(\xi(x) \widehat{f}(\xi)).$$

- Fourier inversion formula :

$$f(x) = \sum_{[\xi] \in \widehat{G}} d_\xi \text{Tr}(\xi(x) \widehat{f}(\xi)).$$

- For each $[\xi] \in \widehat{G}$, the matrix elements of ξ are the eigenfunctions for the Laplacian \mathcal{L}_G with the same eigenvalue which we denote by $-\lambda_{[\xi]}^2$ so that

$$-\mathcal{L}_G \xi_{ij}(x) = \lambda_{[\xi]}^2 \xi_{ij}(x)$$

for all $1 \leq i, j \leq d_\xi$.

- Parseval identity :

$$\|f\|_{\mathbb{L}^2(G)} = \left(\sum_{|\xi| \in \widehat{G}} d_\xi \|\widehat{f}(\xi)\|_{HS}^2 \right)^{1/2}$$

where $\|\widehat{f}(\xi)\|_{HS}^2 = \text{Tr}(\widehat{f}(\xi)\widehat{f}(\xi)^*)$. which gives the norm on $l^2(\widehat{G})$.

- Parseval identity :

$$\|f\|_{\mathbb{L}^2(G)} = \left(\sum_{|\xi| \in \widehat{G}} d_\xi \|\widehat{f}(\xi)\|_{HS}^2 \right)^{1/2}$$

where $\|\widehat{f}(\xi)\|_{HS}^2 = \text{Tr}(\widehat{f}(\xi)\widehat{f}(\xi)^*)$. which gives the norm on $l^2(\widehat{G})$.

- The weight for measuring the decay or growth of Fourier coefficients in this setting is

$$\langle \xi \rangle = (1 + \lambda_{[\xi]}^2)^{1/2}.$$

the eigenvalues of the elliptic first-order pseudo-differential operator $(I - \mathcal{L}_G)^{1/2}$.

- Taylor expansion :
for $f \in C^\infty(G)$.

$$f(x) = \sum_{|\alpha| \leq N-1} D^N f(e) q_\alpha(x) + O(|x|^N)$$

- ★ for some invariant differential operators $D^{(\alpha)}$ of order $|\alpha|$.
for an admissible family of function q_α .
- ★ $|x|$ denoting the geodesic distance from x to e .

Definition :

Let G be a compact Lie group. Let $0 < \alpha \leq 1$ and $1 \leq p \leq \infty$.

We define the space $\mathbb{L}ip_G(\alpha, p)$.

$\mathbb{L}ip_G(\alpha, p) = \{f \in \mathbb{L}^p(G), \|f(h \cdot) - f(\cdot)\|_{\mathbb{L}^p(G)} = O(|h|^\alpha) \text{ as } |h| \rightarrow 0\}$

for $1 \leq p < \infty$, with a natural modification for $p = \infty$.

Definition :

- For $0 < p < \infty$, we will write $l^p(\widehat{G})$ for the space of all $H = H(\xi) \in \mathbb{C}^{d_\xi \times d_\xi}$ such that

$$\|H\|_{l^p(\widehat{G})} = \left(\sum_{|\xi| \in \widehat{G}_0} d_\xi^{p(\frac{2}{p} - \frac{1}{2})} \|H(\xi)\|_{HS}^p \right)^{\frac{1}{p}} < \infty.$$

Definition :

- For $0 < p < \infty$, we will write $l^p(\widehat{G})$ for the space of all $H = H(\xi) \in \mathbb{C}^{d_\xi \times d_\xi}$ such that

$$\|H\|_{l^p(\widehat{G})} = \left(\sum_{|\xi| \in \widehat{G}_0} d_\xi^{p(\frac{2}{p} - \frac{1}{2})} \|H(\xi)\|_{HS}^p \right)^{\frac{1}{p}} < \infty.$$

- If $1 \leq p < \infty$ the quantity $\|H(\xi)\|_{l^p(\widehat{G})}$ defines a norm and $l^p(\widehat{G})$ endowed with it becomes a Banach space.

Definition :

- For $0 < p < \infty$, we will write $l^p(\widehat{G})$ for the space of all $H = H(\xi) \in \mathbb{C}^{d_\xi \times d_\xi}$ such that
$$\|H\|_{l^p(\widehat{G})} = \left(\sum_{|\xi| \in \widehat{G}_0} d_\xi^{p(\frac{2}{p} - \frac{1}{2})} \|H(\xi)\|_{HS}^p \right)^{\frac{1}{p}} < \infty.$$
- If $1 \leq p < \infty$ the quantity $\|H(\xi)\|_{l^p(\widehat{G})}$ defines a norm and $l^p(\widehat{G})$ endowed with it becomes a Banach space.
- If $0 < p < 1$ we can associate a Fréchet metric and the associated space becomes a complete metric space.

- Asymptotic properties : $n = \dim G$

$$\sum_{\langle \xi \rangle \leq \lambda} d_\xi^2 \langle \xi \rangle^{rn} \asymp \lambda^{(r+1)n},$$

for $r > -1$. as $\lambda \rightarrow \infty$.

$$\sum_{\langle \xi \rangle \geq \lambda} d_\xi^2 \langle \xi \rangle^{rn} \asymp \lambda^{(r+1)n},$$

for $r < -1$.

- Asymptotic properties : $n = \dim G$

$$\sum_{\langle \xi \rangle \leq \lambda} d_\xi^2 \langle \xi \rangle^{rn} \asymp \lambda^{(r+1)n},$$

for $r > -1$. as $\lambda \rightarrow \infty$.

$$\sum_{\langle \xi \rangle \geq \lambda} d_\xi^2 \langle \xi \rangle^{rn} \asymp \lambda^{(r+1)n},$$

for $r < -1$.

- Convergence criterion :

$$\sum_{\langle \xi \rangle \leq \lambda} d_\xi^2 \langle \xi \rangle^{-s} < \infty \Leftrightarrow s > n$$

- Crucial reduction lemma

All theorems on G/K can be reduced to the case of compact Lie groups. For $f \in C^\infty(G/K)$ its canonical lifting \tilde{f} is defined by $\tilde{f}(yk) = f(y)$ for all $k \in K$ so that \tilde{f} is constant on the right cosets.

Lemma :

$$\tilde{f} \in \mathbb{L}ip_G(\alpha, p) \iff f \in \mathbb{L}ip_{G/k}(\alpha, p).$$

1 Introduction

2 General definitions

3 Titchmarsh's theorem

4 Applications

5 References

Lemma :

Let $H : \widehat{G} \rightarrow \bigcup_{d \in \mathbb{N}} \mathbb{C}^{d \times d}$. Be such that $H(\xi) \in \mathbb{C}^{d_\xi \times d_\xi}$. For each ξ . Let $1 \leq \beta_0 < \infty$. Then

$$\langle \xi \rangle H(\xi) \in l^{\beta_0}(\widehat{G}) \Rightarrow H \in l^\beta(\widehat{G}).$$

for $\frac{n\beta_0}{\beta_0 + n_0} < \beta < \infty$.

Theorem :

Let G be a compact Lie group of dimension n .

Let $0 < \alpha \leq 1$, $1 < p \leq 2$. and let $f \in \text{Lip}_G(\alpha, p)$ then

$(I - \widehat{\mathcal{L}_G})^{1/2} f \in l^p(\widehat{G})$ for

$$\frac{n}{\alpha + n - \frac{n}{p} - 1} \leq \beta \leq \frac{p}{p-1}$$

consequently $\widehat{f} \in l^\gamma(\widehat{G})$ for $\frac{np}{\alpha p + n\gamma - n} \leq \gamma \leq \frac{p}{p-1}$.

Remark :

In the case $G = \mathbb{T}$

we have $f \in \mathbb{L}ip_G(\alpha, p) \Rightarrow ((\widehat{I - \Delta})^{1/2} f) \in l^\beta(\mathbb{Z})$.

for $\frac{p}{p\alpha-1} < \beta$.

$f \in \mathbb{L}ip_{\mathbb{T}^1}(\alpha, p) \Rightarrow \widehat{f} \in l^\gamma(\mathbb{Z})$.

for $\frac{p}{p\alpha+p-1} < \gamma \leq \frac{p}{p-1}$.

Remark :

In the case $G = \mathbb{T}$

we have $f \in \mathbb{L}ip_G(\alpha, p) \Rightarrow ((\widehat{I - \Delta})^{1/2} f) \in l^\beta(\mathbb{Z})$.

for $\frac{p}{p\alpha-1} < \beta$.

$f \in \mathbb{L}ip_{\mathbb{T}^1}(\alpha, p) \Rightarrow \widehat{f} \in l^\gamma(\mathbb{Z})$.

for $\frac{p}{p\alpha+p-1} < \gamma \leq \frac{p}{p-1}$.

Duren's lemma :

suppose $c_k \geq 0$ and $0 < b < a$. Then $\sum_{k=1}^N k^a c_k = O(N^b)$ as $N \rightarrow \infty$.

$$\Leftrightarrow \sum_{k=N}^{\infty} c_k = O(N^{b-a})$$

as $N \rightarrow \infty$.

Theorem :

Let $0 < \alpha \leq 1$ and $f \in \mathbb{L}^2(G)$. then the conditions

$$f \in \mathbb{L}ip_G(\alpha, p),$$

and

$$\sum_{\tau \in \widehat{G}, \langle \xi \rangle \geq N} d_s \|\widehat{f}(\xi)\|_{HS}^2 = O(N^{-2\alpha})$$

as $N \rightarrow \infty$, are equivalents.

1 Introduction

2 General definitions

3 Titchmarsh's theorem

4 Applications

5 References

- Application to the regularity of Fourier multipliers on Hölder spaces :

Corollary :

Let $0 \leq \gamma < 1$ and let $a : \widehat{G} \rightarrow \bigcup_{d \in \mathbb{N}} \mathbb{C}^{d \times d}$ be such $a(\xi) \in \mathbb{C}^{d_\xi \times d_\xi}$ for each ξ and $\|a(\xi)\|_{op} \leq C\langle \xi \rangle^{-\gamma}$.

Let A be the Fourier multiplier with symbol a , i.e,

$$\widehat{Af}(\xi) = a(\xi)\widehat{f}(\xi), \text{ for all } \xi \in \widehat{G}.$$

Then $A : \mathbb{L}ip_G(\alpha, 2) \rightarrow \mathbb{L}ip_G(\alpha + \gamma, 2)$ is bounded for all α such that $0 < \alpha < 1 - \gamma$.

- Example : Lipschitz-Sobolev regularity for Bessel potential operators on compact lie groups.

If $A = (I - \mathcal{L}_G)^{-\frac{\gamma}{2}}$, $0 \leq \gamma < 1$. we have

$$\|(I - \mathcal{L}_G)^{-\frac{\gamma}{2}} f\|_{\text{Lip}_G(\alpha + \gamma, 2)} \leq C \|f\|_{\text{Lip}_G(\alpha, 2)}$$

for all α such that : $0 < \alpha < 1 - \gamma$.

Hence :

$$\|f\|_{\text{Lip}_G(\alpha + \gamma, 2)} \leq C \|(I - \mathcal{L}_G)^{-\frac{\gamma}{2}} f\|_{\text{Lip}_G(\alpha, 2)}.$$

- Sobolev-Lipschitz space

For $0 \leq \gamma < 1$ and $0 < \alpha \leq 1 - \gamma$

$$H^\gamma Lip_G(\alpha, 2) = \{f \in D'(G) : (I - \mathcal{L}_G)^{\frac{\gamma}{2}} f \in Lip_G(\alpha, 2)\}$$

we have :

Corollary :

For every $0 \leq \gamma < 1$ and $0 < \alpha \leq 1 - \gamma$, we have the continuous embedding

$$H^\gamma Lip_G(\alpha, 2) \hookrightarrow Lip_G(\alpha + \gamma, 2).$$

- Younis-Dini-Lipschitz conditions

Theorem :

Let G/K be a compact homogenous manifold of dimension n .

Let $0 < \alpha \leq 1$, $d \in \mathbb{R}$, $1 < p \leq 2$ and suppose that

$$\|f(h \cdot) - f(\cdot)\|_{L^p(G/K)} = O(|h|^\alpha (\log(\frac{1}{|h|}))^d, \text{ as } |h| \rightarrow 0.$$

Then we have $(I - \widehat{\mathcal{L}}_{G/K})^{\frac{1}{2}} \in l^\beta(\widehat{G}_0)$

provided that $\frac{n}{n+\alpha-\frac{n}{p}+1} < \beta \leq \frac{p}{p-1}$, for $d \leq 0$.

Consequently we have :

$$\widehat{f} \in l^\beta(\widehat{G}_0) \text{ for } \frac{np}{\alpha p + np - n} < \gamma \leq \frac{p}{p-1}.$$

- Case $p = 2$

Theorem :

Let $\alpha \geq 0$ and $d \in \mathbb{R}$. Then

$$\|f(h \cdot) - f(\cdot)\|_{L^p(G/K)} = O(|h|^\alpha (\log(\frac{1}{|h|}))^d, \text{ as } |h| \rightarrow 0,$$

and

$$\sum_{[\xi] \in \widehat{G}_0, \langle \xi \rangle \geq N} \|\widehat{f}(\xi)\|_{HS}^2 = O(N^{-2\alpha} (\log N)^{2d}), \text{ as } N \rightarrow \infty,$$

References

- [Ti] E.C.Titchmarsh. Theory of Fourier analysis. 1937.
- [Fa] J. Faraut. Analysis on Lie groups, volume 110.
- [Z] A. Zygmund. Trigonometric series, 1977.
- [R.T] M. Ruzhansky and V. Turenem Pseudo-differentiel operators and symmetries, 2010.
- [D1] R. Daher and S. El ouadiah, Charactirisation of Dini-Lipschitz functions for the Helgason-Fourier transform on N.C.S.S of rank one, Advances in pure and applied mathematics, Vol 7-2016.
- [D2] R. Daher and M. El hamma, Dunkl transform of (β, α) -Dunkl Lipschitz functions, Proc. Japan Acad 90, Ser A (2014).

References

- [D3] R. Daher and M. El hamma, Analog of Titchmarsh's theorem for Jacobi Hypergroup, Int. J Math. Anal 6-2012.
- [D4] R. Daher and S. El ouadih, Titchmarsh's theorem for Fourier-Jacobi Expansion. C.R.A.S, 2017
- [P] S. Platonov, Titchmarsh's theorem on locally compact Vilenkin group, 2017.

Thank you for your
attention.