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Lipschitz([1864])
Lipschitz condition states that

|f(x)− f(y)| ≤M |x− y|α; 0 < α ≤ 1.

He proved that this inequality is sufficient to have that the
Fourier series of f converges everywhere to the value of f .
If we denote

w(h, f) = sup
|x−y|<h

|f(x)− f(y)|

the modulus of continuity, Lipschitz condition can be
written as :(Landau’s notation)

w((h, f) = O(hα), 0 < α ≤ 1.
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Dini([1872])
Dini-Lipschitz condition states

w(h, f) = o(ln(
1

h
)−1).

S.Bernstein’s theorem ([1914])
The lipschitz functions have absolutely convergent Fourier
series.

O.Szasz’s theorem ([1922])
Let T be the circle group, if

f ∈ LipT(α, p) = {f ∈ Lp(T) : ‖τhf−f‖p = O(|h|α), as h→ 0},

then f̂ ∈ lr, where

{
α > 1

p + 1
r − 1, if 1 < p ≤ 2 ;

α > 1
r −

1
2 , if p > 2.
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E.C.Titchmarsh’s theorem ([1927])

LipR(α, p) = {f ∈ Lp(R) : ‖τhf − f‖p = O(hα), as h→ 0},

Theorem A ([Ti], Th 84) :

Let 0 < α ≤ 1 and 1 < p ≤ 2.
If f ∈ LipR(α, p), then its Fourier transform f̂ belong to Lβ for

p

p+ αp− 1
< β ≤ p

p− 1
.
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Case p = 2

Theorem B([Ti], Th 85) :

f ∈ Lip(α, 2)⇔
∫
|x|≥r

|f̂(x)|2dx = O(r−2α) as r →∞.

Younis [1970] Rn,Tn

Younis [1986]
He showed that the result of Titchmarsh’s theorem A does
not holds for Dini-Lipschitz functions : It does not improve
the Hausdorff-Young inequality and the conclusion is that
f̂ ∈ Lp′(R). Therefore, he considered some conditions which
are rather situated in between the Lipschitz and
Dini-Lipschitz conditions. These were inspired from Weiss
and Zygmund [1959].
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Younis-Dini-Lipschitz conditions :

w(h, f) = O(hαln(
1

h
)−δ), where δ ≥ 0.

He showed that Titchmarsh’s theorem A and B could be
extend to other setting as :

Compact group [1974]

Hyperbolic plan [1998]
Platonov [2005] (Th B) on N.C.S.S of rank 1.
Daher-El Hamma Bessel Hypergroup [2012]
Daher et All[2012-2015] Dunkl setting Jacobi-Dunkl
Daher- El ouadih [2016] N.C.S.S of rank one Th A ; Y.D.Lip
Daher-El ouadih [2017] (Th B) for Fourier Jacobi expansion.
.....etc
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The aim of this talk is to extend the Titchmarsh’s theorems to
the setting of general compact homogeneous manifolds.

As an application of such extension, we derive a Fourier
multiplier theorem for L2-Lipschitz spaces.
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Version of Titchmarsh’s theorems on the T =Circle group

Theorem A :

Let 0 < α ≤ 1 and 1 < p ≤ 2.
If f ∈ LipT(α, p), then its Fourier transform f̂ belongs to Lβ(Z)
for

p

p+ αp− 1
< β ≤ p

p− 1
.

? The lower bound p
p+αp−1 is sharp can be proved by means

of Hardy and Littlwood’s function :

f(x) =

∞∑
n=1

ein logn

n
1
2
+α

einx, 0 < α ≤ 1

? f ∈ LipT(α, 2) BUT f̂ /∈ l
2
2α (Z)(see[Z]).
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Theorem B : p=2

Let 0 < α ≤ 1; f ∈ L2(T1), then

f ∈ LipT1(α, 2)⇔
∑
|j|≥N

|f̂(j)|2 = O(N−2α) as N →∞.

Younis-Titchmarsh’s theorem C :
Similar theorems, we have only to replace O(hα) by
Y.D.Lipschitz conditionO(hα(log( 1

|h|))
δ) as h→ 0.
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In this section we recall some basic facts on the harmonic
analysis on compact homogenous manifolds

G compact Lie group.

µ = dx normalized Haar measure.
Ĝ : set of equivalence classes of continuous irreducible
unitary representations of G.
G is compact ⇒ Ĝ is discrete.
Fourier transform : If f ∈ L1(G) then

f̂(ξ) =

∫
G
f(x)ξ(x)∗dx.

If ξ is matrix representation, we have f̂(ξ) ∈ Cdξ×dξ
where dξ is the dimension of the representation space of ξ.

For [ξ] ∈ Ĝ, we can view ξ as a matrix-value function

ξ : G −→ Cdξ×dξ
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Fourier transform : If f ∈ L1(G) then

f̂(ξ) =

∫
G
f(x)ξ(x)∗dx.

If ξ is matrix representation, we have f̂(ξ) ∈ Cdξ×dξ
where dξ is the dimension of the representation space of ξ.
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Fourier inversion formula :

f(x) =
∑
[ξ]∈Ĝ

dξTr(ξ(x)f̂(ξ)).

For each [ξ] ∈ Ĝ, the matrix elements of ξ are the
eigenfunctions for the Laplacian LG with the same
eigenvalue which we denote by −λ2[ξ] so that

−LGξij(x) = λ2[ξ]ξij(x)

for all 1 ≤ i, j ≤ dξ.
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Parseval identiy :

‖f‖L2(G) =

∑
|ξ|∈Ĝ

dξ‖f̂(ξ)‖2HS

1/2

where ‖f̂(ξ)‖2HS = Tr(f̂(ξ))f̂(ξ)∗). which gives the norm on

l2(Ĝ).

The weight for measuring the decay or growth of Fourier
coefficients in this setting is

〈ξ〉 = (1 + λ2[ξ])
1/2.

the eigenvalues of the elliptic first-order pseudo-differential
operator (I − LG)1/2.
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Taylor expansion :
for f ∈ C∞(G).

f(x) =
∑

|α|≤N−1

DNf(e)qα(x) +O(|x|N )

? for some invariant differential operators D(α) of order |α|.
for an admissible family of function qα.

? |x| denoting the geodesic distance from x to e.
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Definition :

Let G be a compact Lie group. Let 0 < α ≤ 1 and 1 ≤ p∞.
We define the space LipG(α, p).
LipG(α, p) = {f ∈ Lp(G), ‖f(h.)− f(.)‖Lp(G) = O(|h|α) as
|h| → 0}
for 1 ≤ p <∞, with a natural modification for p =∞.
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Definition :

For 0 < p <∞, we will write lp(Ĝ) for the space of all
H = H(ξ) ∈ Cdξ×dξ such that

‖H‖
lp(Ĝ)

=

(∑
|ξ|∈Ĝ0

d
p( 2
p
− 1

2
)

ξ ‖H(ξ)‖pHS

) 1
p

<∞.

If 1 ≤ p <∞ the quantity ‖H(ξ)‖
lp(Ĝ)

defines a norm and

lp(Ĝ) endowed with it becomes a Banach space.

If 0 < p < 1 we can associate a Fréchet metric and the
associated space becomes a complete metric space.
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Asymptotic properties : n = dimG∑
〈ξ〉≤λ

d2ξ〈ξ〉rn � λ(r+1)n,

for r > −1. as λ→∞.∑
〈ξ〉≥λ

d2ξ〈ξ〉rn � λ(r+1)n,

for r < −1.

Convergence criterion :∑
〈ξ〉≤λ

d2ξ〈ξ〉−s <∞⇔ s > n
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Crucial reduction lemma
All theorems on G/K can be reduced to the case of
compact Lie groups. For f ∈ C∞(G/K) its canonical lifting
f̃ is defined by f̃(yk) = f(y) for all k ∈ K so that f̃ is
constant on the right cosets.

Lemma :

f̃ ∈ LipG(α, p)⇐⇒ f ∈ LipG/k(α, p).
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Lemma :

Let H : Ĝ→
⋃
d∈NCd×d. Be such that H(ξ) ∈ Cdξ×dξ . For each

ξ. Let 1 ≤ β0 <∞. Then

〈ξ〉H(ξ) ∈ lβ0(Ĝ)⇒ H ∈ lβ(Ĝ).

for nβ0
β0+n0

< β <∞.
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Theorem :

Let G be a compact Lie group of dimension n.
Let 0 < α ≤ 1, 1 < p ≤ 2. and let f ∈ LipG(α, p) then

̂(I − LG)1/2f ∈ lp(Ĝ) for

n

α+ n− n
p − 1

≤ β ≤ p

p− 1

consequently f̂ ∈ lγ(Ĝ) for np
αp+nγ−n ≤ γ ≤

p
p−1 .
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Remark :

In the case G = T
we have f ∈ LipG(α, p)⇒ ( ̂(I −∆)1/2f) ∈ lβ(Z).
for p

pα−1 < β.

f ∈ LipT1(α, p)⇒ f̂ ∈ lγ(Z).
for p

pα+p−1 < γ ≤ p
p−1 .

Duren’s lemma :

suppose ck ≥ 0 and 0 < b < a. Then
∑N

k=1 k
ack = O(N b) as

N →∞.

⇔
∞∑
k=N

ck = O(N b−a)

as N →∞.
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Remark :

In the case G = T
we have f ∈ LipG(α, p)⇒ ( ̂(I −∆)1/2f) ∈ lβ(Z).
for p

pα−1 < β.

f ∈ LipT1(α, p)⇒ f̂ ∈ lγ(Z).
for p

pα+p−1 < γ ≤ p
p−1 .

Duren’s lemma :

suppose ck ≥ 0 and 0 < b < a. Then
∑N

k=1 k
ack = O(N b) as

N →∞.

⇔
∞∑
k=N

ck = O(N b−a)

as N →∞.
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Theorem :

Let 0 < α ≤ 1 and f ∈ L2(G). then the conditions

f ∈ LipG(α, p),

and ∑
τ∈Ĝ,〈ξ〉≥N

ds‖f̂(ξ)‖2HS = O(N−2α)

as N →∞, are equivalents.
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Application to the regularity of Fourier multipliers on
Hölder spaces :

Corollary :

Let 0 ≤ γ < 1 and let a : Ĝ→
⋃
d∈NCd×d be such

a(ξ) ∈ Cdξ×dξ for each ξ and ‖a(ξ)‖op ≤ C〈ξ〉−γ .
Let A be the Fourier multiplier with symbol a, i.e,

Âf(ξ) = a(ξ)f̂(ξ), for all ξ ∈ Ĝ.

Then A : LipG(α, 2)→ LipG(α+ γ, 2) is bounded for all α such
that 0 < α < 1− γ.
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Example : Lipschitz-Sobolev regularity for Bessel potential
operators on compact lie groups.
If A = (I − LG)−

γ
2 , 0 ≤ γ < 1. we have

‖(I − LG)−
γ
2 f‖LipG(α+ γ, 2) ≤ C‖f‖LipG(α,2)

for all α such that : 0 < α < 1− γ.
Hence :

‖f‖LipG(α+γ,2) ≤ C‖(I − LG)−
γ
2 f‖LipG(α,2).
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Sobolev-Lipschitz space
For 0 ≤ γ < 1 and 0 < α ≤ 1− γ

HγLipG(α, 2) = {f ∈ D′(G) : (I − LG)
γ
2 f ∈ LipG(α, 2)

we have :

Corollary :

For every 0 ≤ γ < 1 and 0 < α ≤ 1− γ, we have the continuous
embedding

HγLipG(α, 2) ↪→ LipG(α+ γ, 2).
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Younis-Dini-Lipschitz conditions

Theorem :

Let G/K be a compact homogenous manifold of dimension n.
Let 0 < α ≤ 1, d ∈ R, 1 < p ≤ 2 and suppose that

‖f(h.)− f(.)‖Lp(G/K) = O(|h|α(log(
1

|h|
)d, as |h| → 0.

Then we have
̂

(I − LG/K)
1
2 ∈ lβ(Ĝ0)

provided that n
n+α−n

p
+1 < β ≤ p

p−1 , for d ≤ 0.

Consequently we have :

f̂ ∈ lβ(Ĝ0) for
np

αp+ np− n
< γ ≤ p

p− 1
.
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Case p = 2

Theorem :

Let α ≥ 0 and d ∈ R. Then

‖f(h.)− f(.)‖Lp(G/K) = O(|h|α(log(
1

|h|
)d, as |h| → 0,

and ∑
[ξ]∈Ĝ0,<ξ>≥N

‖f̂(ξ)‖2HS = O(N−2α(logN)2d), asN →∞,
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attention.
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