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Sidon sets in the last century (Golden age)

N C ZZ is Sidon if

D ane™ € C(T) = |an| < o0

nen nen
Sidon sets (and more generally “thin sets” e.g. Helson sets) were
a very active subject in the 1960's and 1970's: Kahane, Malliavin,
Varopoulos, Yves Meyer, Bonami +others (in France), Edwards &
Gaudry (Australia), Figa-Talamanca (ltaly), Rudin, Hewitt & Ross,
Rider (USA), Hartman & Ryll-Nardzewski, Bozejko (Poland),
Katznelson (Israel), Herz, Drury (Canada)...
The first period culminated with Sam Drury’s solution of

“the Union problem”:
Drury (1970): The union of two Sidon sets is again a Sidon set.
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N C Z is Sidon if

D ane™ € C(T) =) an| < 00

neN nen

Equivalently: 3C such that VA C A with |A] < 0o

S el < €I ane™ o

neA neA

More generally, let G be a compact Abelian group, A = {¢,} C G
(characters on G), A is Sidon if 3C such that VA with |A| < oo

Z lan| < C]] Z anPn|loo

neA neA
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Fundamental Example

G=T"

Vz=(z,) € TV n(2) = 2z

| Zan‘PnHOO = Z lan| (C=1)

Note: (yn) are independent random variables
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More Examples

Hadamard lacunary sequences ny < np < --+ < ng,--- such that

.o Nkt
inf —*
Ny

>1

Explicit example
ng = 2k

Basic Example: Quasi-independent sets
N\ is quasi-independent if all the sums

{Z n|ACAN,|A| < oo} are distinct numbers
nceA

quasi-independent = Sidon
Main Open Problem
Is every Sidon set a finite union of quasi-independent sets 7
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The recent rebirth

Bourgain and Lewko (Ann. Inst. Fourier 2017) wondered whether
a group environment is needed for the known results about Sidon
sets

Question

What remains valid if A C G is replaced by a uniformly bounded

orthonormal system 7
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Let A= {pn} C Loo(T, m) orthonormal in Lo(T, m) ((T, m) any
probability space)
(i) We say that (¢5) is Sidon with constant C if for any N and
any complex sequence (a,) we have

N N
Zl lan| < C| Zl ann||oo-

(i) Let k > 1. We say that (y,) is ®*-Sidon with constant C if

the system {p,(t1) -~ pn(tk)} (or equivalently {p%k}) is
Sidon with constant C in L ( Tk, m®k).
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Let A= {pn} C Loo(T, m) orthonormal in Lo(T, m) ((T, m) any
probability space)
(i) We say that (¢5) is Sidon with constant C if for any N and
any complex sequence (a,) we have

N N
Zl lan| < C| Zl ann||oo-

(i) Let k > 1. We say that (y,) is ®*-Sidon with constant C if

the system {p,(t1) -~ pn(tk)} (or equivalently {p%k}) is
Sidon with constant C in L (Tk, m®k).

Crucial remark: For characters on a compact group T
Sidon < ®* — Sidon

because

N N
13" anpnlloo = 113 amenlts) -~ ity
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The Return of Union Problem

Theorem (Union problem for unif.bded o.n. systems)

Let (pn) be an orthonormal system bounded in Ly,. Assume that
(¢n) is the union of two (or finitely many) Sidon systems. Then
(¢n) is @*-Sidon.
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The Return of Union Problem

Theorem (Union problem for unif.bded o.n. systems)

Let (pn) be an orthonormal system bounded in Ly,. Assume that
(¢n) is the union of two (or finitely many) Sidon systems. Then
(¢n) is @*-Sidon.

But is it Sidon ?
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No !
Let (¢,) be i.i.d. £1-valued symmetric random variables
(e.g. the Rademacher functions)

Proposition
There are two orthonormal martingale difference sequences
(o) and (¢;,) in Ly with span[p/] L span[e, ] such that

(o) = (o) = (en) in distribution

but their union is not a Sidon system.
More precisely the union of {¢} | k < n} and {¢, | k < n} has a
Sidon constant C, =~ /n.

Same holds with (e,) replaced by our fundamental example (z,)
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About Randomly Sidon

We say that (¢,) is randomly Sidon with constant C if for any N
and any complex sequence (a,) we have

N N
Zl |an| < CAverage. || Zl +an¢n|cos

Theorem

Let (pn) be an orthonormal system system bounded in L. The
following are equivalent:

(i) The system (pn) is randomly Sidon.

(i) The system () is ®*-Sidon.

(i) The system (,) is @*-Sidon for all k > 4.
(iv) The system (¢,) is @*-Sidon for some k > 4.

This generalizes Rider’'s 1975 result that randomly Sidon implies
Sidon for characters
Open question: What about k =2 or k=37
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Non-commutative case

Two different possibilities have been considered

EITHER

(1) Replace the compact Abelian group (e.g. T) by a
non-Abelian compact group G such as SO(n), SU(n), U(n), ...
Then the set A C G is a subset of the dual object i.e. the set of
unitary irreducible representations

OR

(1) Replace the discrete Abelian group (e.g. Z) by a
non-Abelian discrete group I such as a free group IF,

Then ACT

In both cases | have obtained the analogues of the preceding i.e.
results for general orthonormal functions, that imply the case of
characters as special case using the notion of ®*-Sidon

Gilles Pisier Sidon sets in discrete groups



Sidon sets in duals of compact non-commutative

groups

G compact non-commutative group
G the set of distinct irreps, d = dim(H;)
A C G is called Sidon if 3C such that Va, € My, (7 € A) we have

<
Zﬂe dytr|ar| CIIZ drtr(man)]|oo-

A C G is called randomly Sidon if 3C such that Va, € Mg,
(m € N) we have

ZWGA dytr|ay| < CIB|| ZWE/\ drtr(exmar )| oo

where () are an independent family such that each ¢, is
uniformly distributed over O(dy).

Important Remark (easy proof) Different randomizations (e.g.
Gaussian random matrices) lead to equivalent definitions
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Fundamental example
G =[] u(d.

n>1

A={m|n>1}

mn: G — U(d,) n-th coordinate

C=1:> >1dtr\a,,]fHZ dntr(Than)||so-

Observe that for the functions ¢,(i,j) defined on (G, mg) by
en(i,)(8) = mn(8)ij

{d,%/2g0,,(i,j) |n>1,1<i,j<d,} is an orthonormal system.



Rider (1975, unpublished) extended all results previously
mentioned to arbitrary compact groups

in particular: randomly Sidon implies Sidon (solving the
non-commutative union problem)

| posted a paper on this on arxiv including (presumably) his proof
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General matricial systems

Assume given a sequence of finite dimensions d,,.
For each n let (¢,) be a random matrix of size d, x d, on (T, m).
We call this a “matricial system":

¢n = [pn(i,j)]
or rather for t € T

en(t) = [en(i,J)(1)]
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The uniform boundedness condition becomes
3CVn  |enllieemy,) < €
The orthonormality condition becomes :
1/2 .. ..
{dn SOH(I’J) | n 2 171 S 1) S dﬂ}

is an orthonormal system.
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The definition of ©*-Sidon now means that the family of matrix
products (pn(t1) - - - ¢n(t)) is Sidon on (T, m)®"

Theorem (The union problem)

The union of two “orthogonal” Sidon sets is &"*-Sidon

t— 1(t) € Myt (t) € My

(V1@12)(t1, t2) = Y1 (t1)¢a(t2)
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The definition of ©*-Sidon now means that the family of matrix
products (pn(t1) - - - ¢n(t)) is Sidon on (T, m)®"

Theorem (The union problem)

The union of two “orthogonal” Sidon sets is &"-Sidon

t— 1(t) € Myt (t) € My

(V1@12)(t1, t2) = Y1 (t1)¢a(t2)

Analogous result for Randomly Sidon
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Sidon sets in discrete non-commutative groups

I (arbitrary) discrete group,  C*(I') the full (or maximal)
C*-algebra of ' i.e. the C*-algebra generated by the universal
representation Ur : G — B(#) of I Consider a subset A C T
We set

= Ur(1)

Definition

A is called is “operator Sidon" if there is a constant C such that
for any finitely supported a : A — B(H) (H arbitrary, say H = /{5)
we have

sup {HZ t) @ zt||lB(He,H) < ||Z t) ® ¢l B(H@.H)-
tG/\ tG/\

z€B(H)
[lz¢I<1

Remark: This is much stronger than Sidon but when dim(H) =1
this reduces to the previous definition of Sidon sets, because

supyceun {301 70 © an| = 01 |an|

llznll<
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Consider N C T'. The Following Are Equivalent:

e (i) \ is operator Sidon
o (ii) span|p; | t € A] ~ £1(N) completely isomorphically
o (i) Yf : A = B(H) in £o(B(H)) 3f : T — B(H) of the form

vtel f(t) = Va(t)W

for some unitary representation w : I — B(H;) and
V, W € B(H, Hy).

Proof is easy:

(i) < (ii) is essentially obvious from definitions

proof of (i) = (iii) is by (Arveson) Hahn-Banach:

To any f associate ur : Span|y; | t € A] = C with |luf||ep < C
Variants of interpolation pty (iii) were considered for general
discrete groups in the 1980's by Bozejko, Picardello and others.
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Fundamental Example

I = IF o with free generators (g5)

A= {gn}

or more generally any free set is operator Sidon

If 3A C T infinite operator Sidon set then [ is non-amenable, but
we do not know whether IF> C I
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Recall A is operator Sidon IFF
o (iii) Vf : N — B(H) in £so(B(H)) 3F : T — B(H) of the form

Vtel F(t)=V*'n(t)W

for some unitary representation = : ' — B(H,) and
V. W € B(H, H).
Natural operator valued analogue of
“Fourier-Stieltjes algebra”:
For F: T — B(H)

IFllarsery) = Inf{IVIIIWII [ F() = Vir( )W}
Recall when [ is Abelian, T is compact then in the case B(H)=C
B(T) = M(P) and [|Flla = [Flye

o (iii) Vf € {(B(H)) 3F € B(T'; B(H)) such that FA = f and
IFlla(r:B(H)) < CllflleaB(H))-



The following was proved very recently:

Operator Sidon sets are stable by union.
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The following was proved very recently:

Operator Sidon sets are stable by union.

Finite union of translates of free sets are operator Sidon
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The following was proved very recently:

Operator Sidon sets are stable by union. \

Finite union of translates of free sets are operator Sidon

Open problem: Is every operator Sidon set the finite union of
translates of free sets ?
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Sidon sets in C*-algebras

The right framework for the preceding is C*-algebras
Let (¢n) be a bounded sequence in a C*-algebra

A C B(H)

Let K be another infinite dimensional Hilbert space (say K = ¢)
We say that (y,) is completely Sidon if there is C such that VN
and all a, € B(K) we have

N N
sup {1 2@ anll < CIIY a0 ®pnll.

zp€B(K)
llznll<1

We have also extended to this operator valued setting the result on
unions being ®*-Sidon...
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All the relevant preprints are available on arxiv

Thank you !
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