

Joint functional calculus of Ritt operators

Samya Kumar Ray
IIT Kanpur

samya@iitk.ac.in

Joint work with Prof. P Mohanty

December 20, 2017

${}_1$ von Neumann inequality

von Neumann inequality says that

₁von Neumann inequality

von Neumann inequality says that

Given any contraction T on a Hilbert space \mathcal{H} and a polynomial P in single variable

$$\|P(T)\|_{\mathcal{H} \rightarrow \mathcal{H}} \leq \|P\|_{\infty, \mathbb{D}}.$$

₁von Neumann inequality

von Neumann inequality says that

Given any contraction T on a Hilbert space \mathcal{H} and a polynomial P in single variable

$$\|P(T)\|_{\mathcal{H} \rightarrow \mathcal{H}} \leq \|P\|_{\infty, \mathbb{D}}.$$

As a consequence we immediately obtain a *rational functional calculus*.

₁von Neumann inequality

von Neumann inequality says that

Given any contraction T on a Hilbert space \mathcal{H} and a polynomial P in single variable

$$\|P(T)\|_{\mathcal{H} \rightarrow \mathcal{H}} \leq \|P\|_{\infty, \mathbb{D}}.$$

As a consequence we immediately obtain a *rational functional calculus*.

Several attempts were made to generalize von Neumann inequality. These are

₁von Neumann inequality

von Neumann inequality says that

Given any contraction T on a Hilbert space \mathcal{H} and a polynomial P in single variable

$$\|P(T)\|_{\mathcal{H} \rightarrow \mathcal{H}} \leq \|P\|_{\infty, \mathbb{D}}.$$

As a consequence we immediately obtain a *rational functional calculus*.

Several attempts were made to generalize von Neumann inequality. These are

- A generalization in two variables due to *dilation* theorem of Ando.

₁von Neumann inequality

von Neumann inequality says that

Given any contraction T on a Hilbert space \mathcal{H} and a polynomial P in single variable

$$\|P(T)\|_{\mathcal{H} \rightarrow \mathcal{H}} \leq \|P\|_{\infty, \mathbb{D}}.$$

As a consequence we immediately obtain a *rational functional calculus*.

Several attempts were made to generalize von Neumann inequality. These are

- A generalization in two variables due to *dilation* theorem of Ando.
- Replacing Hilbert space by general Banach space. This involves the so called **Matsaev's conjecture**. (**Upcoming slide.**)

₁von Neumann inequality

von Neumann inequality says that

Given any contraction T on a Hilbert space \mathcal{H} and a polynomial P in single variable

$$\|P(T)\|_{\mathcal{H} \rightarrow \mathcal{H}} \leq \|P\|_{\infty, \mathbb{D}}.$$

As a consequence we immediately obtain a *rational functional calculus*.

Several attempts were made to generalize von Neumann inequality. These are

- A generalization in two variables due to *dilation* theorem of Ando.
- Replacing Hilbert space by general Banach space. This involves the so called **Matsaev's conjecture.** (**Upcoming slide.**)

However, Varopoulos and Kaijser gave an explicit counterexample for three commuting contractions.

² Loose dilation

We need the following definition.

² Loose dilation

We need the following definition.

Let $1 < p \neq 2 < \infty$. $\mathbf{T} = (T_1, \dots, T_n)$ is **commuting tuple** of bounded operators on $L^p(\Omega)$.

² Loose dilation

We need the following definition.

Let $1 < p \neq 2 < \infty$. $\mathbf{T} = (T_1, \dots, T_n)$ is **commuting tuple** of bounded operators on $L^p(\Omega)$. We say \mathbf{T} admits a **joint isometric loose dilation** if there is a measure space Ω' and a commuting tuple of onto isometries $\mathbf{U} = (U_1, \dots, U_n)$, on $L^p(\Omega')$

² Loose dilation

We need the following definition.

Let $1 < p \neq 2 < \infty$. $\mathbf{T} = (T_1, \dots, T_n)$ is **commuting tuple** of bounded operators on $L^p(\Omega)$. We say \mathbf{T} admits a **joint isometric loose dilation** if there is a measure space Ω' and a commuting tuple of onto isometries $\mathbf{U} = (U_1, \dots, U_n)$, on $L^p(\Omega')$ together with bounded operators $\mathcal{Q} : L^p(\Omega') \rightarrow L^p(\Omega)$ and $\mathcal{J} : L^p(\Omega) \rightarrow L^p(\Omega')$, such that

$$T_1^{i_1} \cdots T_n^{i_n} = \mathcal{Q} U_1^{i_1} \cdots U_n^{i_n} \mathcal{J}$$

for all $i_1, \dots, i_n \in \mathbb{N}_0$.

² Loose dilation

We need the following definition.

Let $1 < p \neq 2 < \infty$. $\mathbf{T} = (T_1, \dots, T_n)$ is **commuting tuple** of bounded operators on $L^p(\Omega)$. We say \mathbf{T} admits a **joint isometric loose dilation** if there is a measure space Ω' and a commuting tuple of onto isometries $\mathbf{U} = (U_1, \dots, U_n)$, on $L^p(\Omega')$ together with bounded operators $\mathcal{Q} : L^p(\Omega') \rightarrow L^p(\Omega)$ and $\mathcal{J} : L^p(\Omega) \rightarrow L^p(\Omega')$, such that

$$T_1^{i_1} \cdots T_n^{i_n} = \mathcal{Q} U_1^{i_1} \cdots U_n^{i_n} \mathcal{J}$$

for all $i_1, \dots, i_n \in \mathbb{N}_0$.

In other words following diagram commutes

$$\begin{array}{ccc} L^p(\Omega) & \xrightarrow{T_1^{i_1} \cdots T_n^{i_n}} & L^p(\Omega) \\ \downarrow \mathcal{J} & & \uparrow \mathcal{Q} \\ L^p(\Omega') & \xrightarrow{U_1^{i_1} \cdots U_n^{i_n}} & L^p(\Omega') \end{array} .$$

³Loose dilation continued...

Some examples of dilations are:

- (1) ([Nagy-Foias](#)) Contractions on Hilbert spaces admit strict dilation.

³Loose dilation continued...

Some examples of dilations are:

- (1) ([Nagy-Foias](#)) Contractions on Hilbert spaces admit strict dilation.
- (2) ([Ando, 1963](#)) Any commuting couple of contractions on a Hilbert space admits a joint isometric strict dilation.

³Loose dilation continued...

Some examples of dilations are:

- (1) (Nagy-Foias) Contractions on Hilbert spaces admit strict dilation.
- (2) (Ando, 1963) Any commuting couple of contractions on a Hilbert space admits a joint isometric strict dilation.
- (3) (Akcoglu, Coifman-Weiss-Rochberg, 1977-78) **Sub-positive** contractions on L^p -spaces, $1 < p \neq 2 < \infty$ admit strict dilation. (**What happens in multivariable?**)

³Loose dilation continued...

Some examples of dilations are:

- (1) (Nagy-Foias) Contractions on Hilbert spaces admit strict dilation.
- (2) (Ando, 1963) Any commuting couple of contractions on a Hilbert space admits a joint isometric strict dilation.
- (3) (Akcoglu, Coifman-Weiss-Rochberg, 1977-78) **Sub-positive** contractions on L^p -spaces, $1 < p \neq 2 < \infty$ admit strict dilation. (**What happens in multivariable?**)
- (4) (Le Merdy, Arhancet and Fackler, 2014, 2017) **Ritt** operators on an L^p -space which satisfies a bounded H^∞ -functional calculus admits isometric loose dilation for $1 < p < \infty$. (**Next slide.**)

³Loose dilation continued...

Some examples of dilations are:

- (1) (Nagy-Foias) Contractions on Hilbert spaces admit strict dilation.
- (2) (Ando, 1963) Any commuting couple of contractions on a Hilbert space admits a joint isometric strict dilation.
- (3) (Akcoglu, Coifman-Weiss-Rochberg, 1977-78) **Sub-positive** contractions on L^p -spaces, $1 < p \neq 2 < \infty$ admit strict dilation. (**What happens in multivariable?**)
- (4) (Le Merdy, Arhancet and Fackler, 2014, 2017) **Ritt** operators on an L^p -space which satisfies a bounded H^∞ -functional calculus admits isometric loose dilation for $1 < p < \infty$. (**Next slide.**)

- Loose dilation \implies von Neumann **type** inequality, e.g., for any sub-positive contraction T on an L^p -space, $1 < p < \infty$ the Matsaev's conjecture holds i.e.

³Loose dilation continued...

Some examples of dilations are:

- (1) (Nagy-Foias) Contractions on Hilbert spaces admit strict dilation.
- (2) (Ando, 1963) Any commuting couple of contractions on a Hilbert space admits a joint isometric strict dilation.
- (3) (Akcoglu, Coifman-Weiss-Rochberg, 1977-78) **Sub-positive** contractions on L^p -spaces, $1 < p \neq 2 < \infty$ admit strict dilation. (**What happens in multivariable?**)
- (4) (Le Merdy, Arhancet and Fackler, 2014, 2017) **Ritt** operators on an L^p -space which satisfies a bounded H^∞ -functional calculus admits isometric loose dilation for $1 < p < \infty$. (**Next slide.**)

- Loose dilation \implies von Neumann **type** inequality, e.g., for any sub-positive contraction T on an L^p -space, $1 < p < \infty$ the Matsaev's conjecture holds i.e.

$$\|P(T)\|_{L^p \rightarrow L^p} \leq \|P(R)\|_{\ell_p(\mathbb{N}) \rightarrow \ell_p(\mathbb{N})}.$$

³Loose dilation continued...

Some examples of dilations are:

- (1) (Nagy-Foias) Contractions on Hilbert spaces admit strict dilation.
- (2) (Ando, 1963) Any commuting couple of contractions on a Hilbert space admits a joint isometric strict dilation.
- (3) (Akcoglu, Coifman-Weiss-Rochberg, 1977-78) **Sub-positive** contractions on L^p -spaces, $1 < p \neq 2 < \infty$ admit strict dilation. (**What happens in multivariable?**)
- (4) (Le Merdy, Arhancet and Fackler, 2014, 2017) **Ritt** operators on an L^p -space which satisfies a bounded H^∞ -functional calculus admits isometric loose dilation for $1 < p < \infty$. (**Next slide.**)

- Loose dilation \implies von Neumann **type** inequality, e.g., for any sub-positive contraction T on an L^p -space, $1 < p < \infty$ the Matsaev's conjecture holds i.e.

$$\|P(T)\|_{L^p \rightarrow L^p} \leq \|P(R)\|_{\ell_p(\mathbb{N}) \rightarrow \ell_p(\mathbb{N})}.$$

- In above R is the shift operator on $\ell_p(\mathbb{N})$.

⁴ Ritt operator

Ritt operator: For $\gamma \in (0, \frac{\pi}{2})$, let \mathcal{B}_γ (**Stolz** domain of angle γ) be the interior of the convex hull of 1 and the disc $D(0, \sin \gamma)$. An operator $T : X \rightarrow X$ is said to be a Ritt operator of type $\alpha \in (0, \frac{\pi}{2})$ if

$$(1) \ \sigma(T) \subseteq \overline{\mathcal{B}_\alpha}.$$

⁴ Ritt operator

Ritt operator: For $\gamma \in (0, \frac{\pi}{2})$, let \mathcal{B}_γ (**Stolz** domain of angle γ) be the interior of the convex hull of 1 and the disc $D(0, \sin \gamma)$. An operator $T : X \rightarrow X$ is said to be a Ritt operator of type $\alpha \in (0, \frac{\pi}{2})$ if

- (1) $\sigma(T) \subseteq \overline{\mathcal{B}_\alpha}$.
- (2) For any $\beta \in (\alpha, \frac{\pi}{2})$, the set $\{(1 - \lambda)R(\lambda, T) : \lambda \in \mathbb{C} \setminus \overline{\mathcal{B}_\beta}\}$ is bounded.

⁴ Ritt operator

Ritt operator: For $\gamma \in (0, \frac{\pi}{2})$, let \mathcal{B}_γ (**Stolz** domain of angle γ) be the interior of the convex hull of 1 and the disc $D(0, \sin \gamma)$. An operator $T : X \rightarrow X$ is said to be a Ritt operator of type $\alpha \in (0, \frac{\pi}{2})$ if

- (1) $\sigma(T) \subseteq \overline{\mathcal{B}_\alpha}$.
- (2) For any $\beta \in (\alpha, \frac{\pi}{2})$, the set $\{(1 - \lambda)R(\lambda, T) : \lambda \in \mathbb{C} \setminus \overline{\mathcal{B}_\beta}\}$ is bounded.

- Following characterization of Ritt operators were obtained by a series of work of [Lyubich](#), [Nagy-Zemanek](#) and [Nevanlinna](#).

⁴ Ritt operator

Ritt operator: For $\gamma \in (0, \frac{\pi}{2})$, let \mathcal{B}_γ (**Stolz** domain of angle γ) be the interior of the convex hull of 1 and the disc $D(0, \sin \gamma)$. An operator $T : X \rightarrow X$ is said to be a Ritt operator of type $\alpha \in (0, \frac{\pi}{2})$ if

- (1) $\sigma(T) \subseteq \overline{\mathcal{B}_\alpha}$.
- (2) For any $\beta \in (\alpha, \frac{\pi}{2})$, the set $\{(1 - \lambda)R(\lambda, T) : \lambda \in \mathbb{C} \setminus \overline{\mathcal{B}_\beta}\}$ is bounded.

- Following characterization of Ritt operators were obtained by a series of work of [Lyubich](#), [Nagy-Zemanek](#) and [Nevanlinna](#).

Theorem *Let $T : X \rightarrow X$ be an operator. Then T is Ritt iff*

⁴ Ritt operator

Ritt operator: For $\gamma \in (0, \frac{\pi}{2})$, let \mathcal{B}_γ (**Stolz** domain of angle γ) be the interior of the convex hull of 1 and the disc $D(0, \sin \gamma)$. An operator $T : X \rightarrow X$ is said to be a Ritt operator of type $\alpha \in (0, \frac{\pi}{2})$ if

- (1) $\sigma(T) \subseteq \overline{\mathcal{B}_\alpha}$.
- (2) For any $\beta \in (\alpha, \frac{\pi}{2})$, the set $\{(1 - \lambda)R(\lambda, T) : \lambda \in \mathbb{C} \setminus \overline{\mathcal{B}_\beta}\}$ is bounded.

- Following characterization of Ritt operators were obtained by a series of work of Lyubich, Nagy-Zemanek and Nevanlinna.

Theorem Let $T : X \rightarrow X$ be an operator. Then T is Ritt iff

- (1) T is power bounded.

⁴ Ritt operator

Ritt operator: For $\gamma \in (0, \frac{\pi}{2})$, let \mathcal{B}_γ (**Stolz** domain of angle γ) be the interior of the convex hull of 1 and the disc $D(0, \sin \gamma)$. An operator $T : X \rightarrow X$ is said to be a Ritt operator of type $\alpha \in (0, \frac{\pi}{2})$ if

- (1) $\sigma(T) \subseteq \overline{\mathcal{B}_\alpha}$.
- (2) For any $\beta \in (\alpha, \frac{\pi}{2})$, the set $\{(1 - \lambda)R(\lambda, T) : \lambda \in \mathbb{C} \setminus \overline{\mathcal{B}_\beta}\}$ is bounded.

- Following characterization of Ritt operators were obtained by a series of work of Lyubich, Nagy-Zemanek and Nevanlinna.

Theorem Let $T : X \rightarrow X$ be an operator. Then T is Ritt iff

- (1) T is power bounded.
- (2) The set $\{n(T^n - T^{n-1}) : n \geq 1\}$ is bounded.

⁴ Ritt operator

Ritt operator: For $\gamma \in (0, \frac{\pi}{2})$, let \mathcal{B}_γ (**Stolz** domain of angle γ) be the interior of the convex hull of 1 and the disc $D(0, \sin \gamma)$. An operator $T : X \rightarrow X$ is said to be a Ritt operator of type $\alpha \in (0, \frac{\pi}{2})$ if

- (1) $\sigma(T) \subseteq \overline{\mathcal{B}_\alpha}$.
- (2) For any $\beta \in (\alpha, \frac{\pi}{2})$, the set $\{(1 - \lambda)R(\lambda, T) : \lambda \in \mathbb{C} \setminus \overline{\mathcal{B}_\beta}\}$ is bounded.

- Following characterization of Ritt operators were obtained by a series of work of Lyubich, Nagy-Zemanek and Nevanlinna.

Theorem Let $T : X \rightarrow X$ be an operator. Then T is Ritt iff

- (1) T is power bounded.
- (2) The set $\{n(T^n - T^{n-1}) : n \geq 1\}$ is bounded.

- Ritt operators are discrete analogue of **sectorial** operators. (**Upcoming slide.**)

⁴ Ritt operator

Ritt operator: For $\gamma \in (0, \frac{\pi}{2})$, let \mathcal{B}_γ (**Stolz** domain of angle γ) be the interior of the convex hull of 1 and the disc $D(0, \sin \gamma)$. An operator $T : X \rightarrow X$ is said to be a Ritt operator of type $\alpha \in (0, \frac{\pi}{2})$ if

- (1) $\sigma(T) \subseteq \overline{\mathcal{B}_\alpha}$.
- (2) For any $\beta \in (\alpha, \frac{\pi}{2})$, the set $\{(1 - \lambda)R(\lambda, T) : \lambda \in \mathbb{C} \setminus \overline{\mathcal{B}_\beta}\}$ is bounded.

- Following characterization of Ritt operators were obtained by a series of work of Lyubich, Nagy-Zemanek and Nevanlinna.

Theorem Let $T : X \rightarrow X$ be an operator. Then T is Ritt iff

- (1) T is power bounded.
- (2) The set $\{n(T^n - T^{n-1}) : n \geq 1\}$ is bounded.

- Ritt operators are discrete analogue of **sectorial** operators. (**Upcoming slide.**)
- For any $f \in L^1$ with $\|f\|_{L^1} < 1$ the map $f \mapsto f * g$ is a Ritt operator on L^p -space.

₅ Joint functional calculus for Ritt operators.

- Let $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$. Denote $H_0^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ to be all bounded holomorphic functions $\phi : \prod_{i=1}^n \mathcal{B}_{\gamma_i} \rightarrow \mathbb{C}$ such that

⁵ Joint functional calculus for Ritt operators.

- Let $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$. Denote $H_0^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ to be all bounded holomorphic functions $\phi : \prod_{i=1}^n \mathcal{B}_{\gamma_i} \rightarrow \mathbb{C}$ such that

$$|\phi(\lambda_1, \dots, \lambda_n)| \leq c \prod_{i=1}^n |1 - \lambda_i|^s.$$

5 Joint functional calculus for Ritt operators.

- Let $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$. Denote $H_0^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ to be all bounded holomorphic functions $\phi : \prod_{i=1}^n \mathcal{B}_{\gamma_i} \rightarrow \mathbb{C}$ such that

$$|\phi(\lambda_1, \dots, \lambda_n)| \leq c \prod_{i=1}^n |1 - \lambda_i|^s.$$

- Let $\Gamma_{\mathcal{B}_\beta}$ denote the boundary of \mathcal{B}_β oriented counterclockwise.

5 Joint functional calculus for Ritt operators.

- Let $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$. Denote $H_0^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ to be all bounded holomorphic functions $\phi : \prod_{i=1}^n \mathcal{B}_{\gamma_i} \rightarrow \mathbb{C}$ such that

$$|\phi(\lambda_1, \dots, \lambda_n)| \leq c \prod_{i=1}^n |1 - \lambda_i|^s.$$

- Let $\Gamma_{\mathcal{B}_\beta}$ denote the boundary of \mathcal{B}_β oriented counterclockwise.
- Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple such that each T_i is Ritt operator of type $\alpha_i \in (0, \frac{\pi}{2})$ for $1 \leq i \leq n$.

5 Joint functional calculus for Ritt operators.

- Let $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$. Denote $H_0^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ to be all bounded holomorphic functions $\phi : \prod_{i=1}^n \mathcal{B}_{\gamma_i} \rightarrow \mathbb{C}$ such that

$$|\phi(\lambda_1, \dots, \lambda_n)| \leq c \prod_{i=1}^n |1 - \lambda_i|^s.$$

- Let $\Gamma_{\mathcal{B}_\beta}$ denote the boundary of \mathcal{B}_β oriented counterclockwise.
- Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple such that each T_i is Ritt operator of type $\alpha_i \in (0, \frac{\pi}{2})$ for $1 \leq i \leq n$.
- For $\beta_i \in (\alpha_i, \gamma_i)$, $1 \leq i \leq n$. We define

5 Joint functional calculus for Ritt operators.

- Let $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$. Denote $H_0^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ to be all bounded holomorphic functions $\phi : \prod_{i=1}^n \mathcal{B}_{\gamma_i} \rightarrow \mathbb{C}$ such that

$$|\phi(\lambda_1, \dots, \lambda_n)| \leq c \prod_{i=1}^n |1 - \lambda_i|^s.$$

- Let $\Gamma_{\mathcal{B}_\beta}$ denote the boundary of \mathcal{B}_β oriented counterclockwise.
- Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple such that each T_i is Ritt operator of type $\alpha_i \in (0, \frac{\pi}{2})$ for $1 \leq i \leq n$.
- For $\beta_i \in (\alpha_i, \gamma_i)$, $1 \leq i \leq n$. We define

$$\phi(\mathbf{T}) := \left(\frac{1}{2\pi i}\right)^n \int_{\prod_{i=1}^n \Gamma_{\mathcal{B}_{\beta_i}}} \phi(\lambda_1, \dots, \lambda_n) \prod_{i=1}^n R(\lambda_i, A_i) d\lambda_i.$$

5 Joint functional calculus for Ritt operators.

- Let $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$. Denote $H_0^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ to be all bounded holomorphic functions $\phi : \prod_{i=1}^n \mathcal{B}_{\gamma_i} \rightarrow \mathbb{C}$ such that

$$|\phi(\lambda_1, \dots, \lambda_n)| \leq c \prod_{i=1}^n |1 - \lambda_i|^s.$$

- Let $\Gamma_{\mathcal{B}_\beta}$ denote the boundary of \mathcal{B}_β oriented counterclockwise.
- Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple such that each T_i is Ritt operator of type $\alpha_i \in (0, \frac{\pi}{2})$ for $1 \leq i \leq n$.
- For $\beta_i \in (\alpha_i, \gamma_i)$, $1 \leq i \leq n$. We define

$$\phi(\mathbf{T}) := \left(\frac{1}{2\pi i}\right)^n \int_{\prod_{i=1}^n \Gamma_{\mathcal{B}_{\beta_i}}} \phi(\lambda_1, \dots, \lambda_n) \prod_{i=1}^n R(\lambda_i, A_i) d\lambda_i.$$

- We say \mathbf{T} admits a joint **bounded** H^∞ -functional calculus (in short j.b.f.c.) if the homomorphism $\phi \mapsto \phi(\mathbf{T})$ is bounded.

₆ *R*-boundedness

- Denote the probability space $\Omega_0 = \{\pm 1\}^{\mathbb{Z}}$.

₆ *R*-boundedness

- Denote the probability space $\Omega_0 = \{\pm 1\}^{\mathbb{Z}}$. Denote the k -th **Rademacher** function to be $\epsilon_k(\omega) = \omega_k$.

₆ *R*-boundedness

- Denote the probability space $\Omega_0 = \{\pm 1\}^{\mathbb{Z}}$. Denote the k -th **Rademacher** function to be $\epsilon_k(\omega) = \omega_k$.
- For $1 \leq p < \infty$ we denote the Banach space $\text{Rad}_p(X) \subseteq L^p(\Omega_0, X)$ to be the closure of the set $\text{span}\{\epsilon_k \otimes x_k : k \in \mathbb{Z}, x_k \in X\}$ in the Bochner space $L^p(\Omega_0, X)$.

₆ *R*-boundedness

- Denote the probability space $\Omega_0 = \{\pm 1\}^{\mathbb{Z}}$. Denote the k -th **Rademacher** function to be $\epsilon_k(\omega) = \omega_k$.
- For $1 \leq p < \infty$ we denote the Banach space $\text{Rad}_p(X) \subseteq L^p(\Omega_0, X)$ to be the closure of the set $\text{span}\{\epsilon_k \otimes x_k : k \in \mathbb{Z}, x_k \in X\}$ in the Bochner space $L^p(\Omega_0, X)$. For $p = 2$ we simply denote $\text{Rad}(X)$.

₆ *R*-boundedness

- Denote the probability space $\Omega_0 = \{\pm 1\}^{\mathbb{Z}}$. Denote the k -th **Rademacher** function to be $\epsilon_k(\omega) = \omega_k$.
- For $1 \leq p < \infty$ we denote the Banach space $\text{Rad}_p(X) \subseteq L^p(\Omega_0, X)$ to be the closure of the set $\text{span}\{\epsilon_k \otimes x_k : k \in \mathbb{Z}, x_k \in X\}$ in the Bochner space $L^p(\Omega_0, X)$. For $p = 2$ we simply denote $\text{Rad}(X)$.
- We say $E \subseteq B(X)$ is ***R*-bounded** provided

₆ *R*-boundedness

- Denote the probability space $\Omega_0 = \{\pm 1\}^{\mathbb{Z}}$. Denote the k -th **Rademacher** function to be $\epsilon_k(\omega) = \omega_k$.
- For $1 \leq p < \infty$ we denote the Banach space $\text{Rad}_p(X) \subseteq L^p(\Omega_0, X)$ to be the closure of the set $\text{span}\{\epsilon_k \otimes x_k : k \in \mathbb{Z}, x_k \in X\}$ in the Bochner space $L^p(\Omega_0, X)$. For $p = 2$ we simply denote $\text{Rad}(X)$.
- We say $E \subseteq B(X)$ is ***R*-bounded** provided

$\exists C > 0 \exists \forall$ finite sequence $(T_k)_{k=0}^N$ of E and $(x_k)_{k=0}^N$ of X ,

$$\left\| \sum_{k=0}^N \epsilon_k \otimes T_k(x_k) \right\|_{\text{Rad}(X)} \leq C \left\| \sum_{k=0}^N \epsilon_k \otimes x_k \right\|_{\text{Rad}(X)}. \quad (1)$$

⁶ *R*-boundedness

- Denote the probability space $\Omega_0 = \{\pm 1\}^{\mathbb{Z}}$. Denote the k -th **Rademacher** function to be $\epsilon_k(\omega) = \omega_k$.
- For $1 \leq p < \infty$ we denote the Banach space $\text{Rad}_p(X) \subseteq L^p(\Omega_0, X)$ to be the closure of the set $\text{span}\{\epsilon_k \otimes x_k : k \in \mathbb{Z}, x_k \in X\}$ in the Bochner space $L^p(\Omega_0, X)$. For $p = 2$ we simply denote $\text{Rad}(X)$.
- We say $E \subseteq B(X)$ is ***R*-bounded** provided

$\exists C > 0 \exists \forall$ finite sequence $(T_k)_{k=0}^N$ of E and $(x_k)_{k=0}^N$ of X ,

$$\left\| \sum_{k=0}^N \epsilon_k \otimes T_k(x_k) \right\|_{\text{Rad}(X)} \leq C \left\| \sum_{k=0}^N \epsilon_k \otimes x_k \right\|_{\text{Rad}(X)}. \quad (1)$$

- For the notion of ***R*-Ritt** we need to replace 'boundedness' by '*R*-boundedness' in the definition of Ritt operators.

7 A big dilation theorem

Theorem (Mohanty–Ray, 2017). *Let $1 < p < \infty$. Let X be a **reflexive** Banach space such that both X and X^* have **finite cotype**.*

7 A big dilation theorem

Theorem (Mohanty–Ray, 2017). *Let $1 < p < \infty$. Let X be a **reflexive** Banach space such that both X and X^* have **finite cotype**. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of Ritt operators on X which admits a joint bounded H^∞ -functional calculus.*

7 A big dilation theorem

Theorem (Mohanty–Ray, 2017). *Let $1 < p < \infty$. Let X be a **reflexive** Banach space such that both X and X^* have **finite cotype**. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of Ritt operators on X which admits a joint bounded H^∞ -functional calculus. Then, there exists a measure space Ω , a commuting tuple of isometric isomorphisms $\mathbf{U} = (U_1, \dots, U_n)$ on $L^p(\Omega, X)$, together with two bounded operators $\mathcal{Q} : L^p(\Omega, X) \rightarrow X$ and $\mathcal{J} : X \rightarrow L^p(\Omega, X)$ such that*

$$T_1^{i_1} \cdots T_n^{i_n} = \mathcal{Q} U_1^{i_1} \cdots U_n^{i_n} \mathcal{J} \text{ for all } i_1, \dots, i_n \in \mathbb{N}_0.$$

7 A big dilation theorem

Theorem (Mohanty–Ray, 2017). *Let $1 < p < \infty$. Let X be a **reflexive** Banach space such that both X and X^* have **finite cotype**. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of Ritt operators on X which admits a joint bounded H^∞ -functional calculus. Then, there exists a measure space Ω , a commuting tuple of isometric isomorphisms $\mathbf{U} = (U_1, \dots, U_n)$ on $L^p(\Omega, X)$, together with two bounded operators $\mathcal{Q} : L^p(\Omega, X) \rightarrow X$ and $\mathcal{J} : X \rightarrow L^p(\Omega, X)$ such that*

$$T_1^{i_1} \cdots T_n^{i_n} = \mathcal{Q} U_1^{i_1} \cdots U_n^{i_n} \mathcal{J} \text{ for all } i_1, \dots, i_n \in \mathbb{N}_0.$$

7 A big dilation theorem

Theorem (Mohanty–Ray, 2017). *Let $1 < p < \infty$. Let X be a **reflexive** Banach space such that both X and X^* have **finite cotype**. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of Ritt operators on X which admits a joint bounded H^∞ -functional calculus. Then, there exists a measure space Ω , a commuting tuple of isometric isomorphisms $\mathbf{U} = (U_1, \dots, U_n)$ on $L^p(\Omega, X)$, together with two bounded operators $\mathcal{Q} : L^p(\Omega, X) \rightarrow X$ and $\mathcal{J} : X \rightarrow L^p(\Omega, X)$ such that*

$$T_1^{i_1} \cdots T_n^{i_n} = \mathcal{Q} U_1^{i_1} \cdots U_n^{i_n} \mathcal{J} \text{ for all } i_1, \dots, i_n \in \mathbb{N}_0.$$

7 A big dilation theorem

Theorem (Mohanty–Ray, 2017). *Let $1 < p < \infty$. Let X be a **reflexive** Banach space such that both X and X^* have **finite cotype**. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of Ritt operators on X which admits a joint bounded H^∞ -functional calculus. Then, there exists a measure space Ω , a commuting tuple of isometric isomorphisms $\mathbf{U} = (U_1, \dots, U_n)$ on $L^p(\Omega, X)$, together with two bounded operators $\mathcal{Q} : L^p(\Omega, X) \rightarrow X$ and $\mathcal{J} : X \rightarrow L^p(\Omega, X)$ such that*

$$T_1^{i_1} \cdots T_n^{i_n} = \mathcal{Q} U_1^{i_1} \cdots U_n^{i_n} \mathcal{J} \text{ for all } i_1, \dots, i_n \in \mathbb{N}_0.$$

$$\begin{array}{ccc} X & \xrightarrow{T_1^{i_1} \cdots T_n^{i_n}} & X \\ \downarrow \mathcal{J} & & \uparrow \mathcal{Q} \\ L^p(\Omega, X) & \xrightarrow{U_1^{i_1} \cdots U_n^{i_n}} & L^p(\Omega, X) \end{array}$$

7 A big dilation theorem

Theorem (Mohanty–Ray, 2017). *Let $1 < p < \infty$. Let X be a **reflexive** Banach space such that both X and X^* have **finite cotype**. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of Ritt operators on X which admits a joint bounded H^∞ -functional calculus. Then, there exists a measure space Ω , a commuting tuple of isometric isomorphisms $\mathbf{U} = (U_1, \dots, U_n)$ on $L^p(\Omega, X)$, together with two bounded operators $\mathcal{Q} : L^p(\Omega, X) \rightarrow X$ and $\mathcal{J} : X \rightarrow L^p(\Omega, X)$ such that*

$$T_1^{i_1} \cdots T_n^{i_n} = \mathcal{Q} U_1^{i_1} \cdots U_n^{i_n} \mathcal{J} \text{ for all } i_1, \dots, i_n \in \mathbb{N}_0.$$

$$\begin{array}{ccc} X & \xrightarrow{T_1^{i_1} \cdots T_n^{i_n}} & X \\ \downarrow \mathcal{J} & & \uparrow \mathcal{Q} \\ L^p(\Omega, X) & \xrightarrow{U_1^{i_1} \cdots U_n^{i_n}} & L^p(\Omega, X) \end{array}$$

- The above result is a multivariate analogue of a similar theorem proved by **Arhancet, Fackler and Le Merdy**.

⁸Sectorial operators

Sectorial operator: For $\omega \in (0, \pi)$, let $\Sigma_\omega := \{z \in \mathbb{C} \setminus \{0\} : |\arg z| < \omega\}$ be the open sector of an angle 2ω around the positive real axis $(0, \infty)$.

⁸Sectorial operators

Sectorial operator: For $\omega \in (0, \pi)$, let $\Sigma_\omega := \{z \in \mathbb{C} \setminus \{0\} : |\arg z| < \omega\}$ be the open sector of an angle 2ω around the positive real axis $(0, \infty)$. A densely defined closed operator $A : D(A) \subseteq X \rightarrow X$ is **sectorial** of type $\omega \in (0, \pi)$

⁸Sectorial operators

Sectorial operator: For $\omega \in (0, \pi)$, let $\Sigma_\omega := \{z \in \mathbb{C} \setminus \{0\} : |\arg z| < \omega\}$ be the open sector of an angle 2ω around the positive real axis $(0, \infty)$. A densely defined closed operator $A : D(A) \subseteq X \rightarrow X$ is **sectorial** of type $\omega \in (0, \pi)$ if, we have

- (1) $\sigma(A) \subseteq \overline{\Sigma_\omega}$.
- (2) For any $\nu \in (\omega, \pi)$, the set $\{zR(z, A) : z \in \mathbb{C} \setminus \overline{\Sigma_\nu}\}$ is bounded.

8Sectorial operators

Sectorial operator: For $\omega \in (0, \pi)$, let $\Sigma_\omega := \{z \in \mathbb{C} \setminus \{0\} : |\arg z| < \omega\}$ be the open sector of an angle 2ω around the positive real axis $(0, \infty)$. A densely defined closed operator $A : D(A) \subseteq X \rightarrow X$ is **sectorial** of type $\omega \in (0, \pi)$ if, we have

- (1) $\sigma(A) \subseteq \overline{\Sigma_\omega}$.
- (2) For any $\nu \in (\omega, \pi)$, the set $\{zR(z, A) : z \in \mathbb{C} \setminus \overline{\Sigma_\nu}\}$ is bounded.

Functional calculus associated to sectorial operators:

8 Sectorial operators

Sectorial operator: For $\omega \in (0, \pi)$, let $\Sigma_\omega := \{z \in \mathbb{C} \setminus \{0\} : |\arg z| < \omega\}$ be the open sector of an angle 2ω around the positive real axis $(0, \infty)$. A densely defined closed operator $A : D(A) \subseteq X \rightarrow X$ is **sectorial** of type $\omega \in (0, \pi)$ if, we have

- (1) $\sigma(A) \subseteq \overline{\Sigma_\omega}$.
- (2) For any $\nu \in (\omega, \pi)$, the set $\{zR(z, A) : z \in \mathbb{C} \setminus \overline{\Sigma_\nu}\}$ is bounded.

Functional calculus associated to sectorial operators: Pioneered by **Mcintosh** and his coauthors.

8 Sectorial operators

Sectorial operator: For $\omega \in (0, \pi)$, let $\Sigma_\omega := \{z \in \mathbb{C} \setminus \{0\} : |\arg z| < \omega\}$ be the open sector of an angle 2ω around the positive real axis $(0, \infty)$. A densely defined closed operator $A : D(A) \subseteq X \rightarrow X$ is **sectorial** of type $\omega \in (0, \pi)$ if, we have

- (1) $\sigma(A) \subseteq \overline{\Sigma_\omega}$.
- (2) For any $\nu \in (\omega, \pi)$, the set $\{zR(z, A) : z \in \mathbb{C} \setminus \overline{\Sigma_\nu}\}$ is bounded.

Functional calculus associated to sectorial operators: Pioneered by **Mcintosh** and his coauthors.

- Let $\nu \in (0, \pi)$ and Γ_ν be the boundary of Σ_ν oriented counter-clockwise.

8 Sectorial operators

Sectorial operator: For $\omega \in (0, \pi)$, let $\Sigma_\omega := \{z \in \mathbb{C} \setminus \{0\} : |\arg z| < \omega\}$ be the open sector of an angle 2ω around the positive real axis $(0, \infty)$. A densely defined closed operator $A : D(A) \subseteq X \rightarrow X$ is **sectorial** of type $\omega \in (0, \pi)$ if, we have

- (1) $\sigma(A) \subseteq \overline{\Sigma_\omega}$.
- (2) For any $\nu \in (\omega, \pi)$, the set $\{zR(z, A) : z \in \mathbb{C} \setminus \overline{\Sigma_\nu}\}$ is bounded.

Functional calculus associated to sectorial operators: Pioneered by **Mcintosh** and his coauthors.

- Let $\nu \in (0, \pi)$ and Γ_ν be the boundary of Σ_ν oriented counter-clockwise.
- For $\theta_i \in (0, \pi)$, $1 \leq i \leq n$, denote $H_0^\infty\left(\prod_{i=1}^n \Sigma_{\theta_i}\right)$ to be the set of all bounded holomorphic functions $f : \prod_{i=1}^n \Sigma_{\theta_i} \rightarrow \mathbb{C}$.

⁸Sectorial operators

Sectorial operator: For $\omega \in (0, \pi)$, let $\Sigma_\omega := \{z \in \mathbb{C} \setminus \{0\} : |\arg z| < \omega\}$ be the open sector of an angle 2ω around the positive real axis $(0, \infty)$. A densely defined closed operator $A : D(A) \subseteq X \rightarrow X$ is **sectorial** of type $\omega \in (0, \pi)$ if, we have

- (1) $\sigma(A) \subseteq \overline{\Sigma_\omega}$.
- (2) For any $\nu \in (\omega, \pi)$, the set $\{zR(z, A) : z \in \mathbb{C} \setminus \overline{\Sigma_\nu}\}$ is bounded.

Functional calculus associated to sectorial operators: Pioneered by **Mcintosh** and his coauthors.

- Let $\nu \in (0, \pi)$ and Γ_ν be the boundary of Σ_ν oriented counter-clockwise.
- For $\theta_i \in (0, \pi)$, $1 \leq i \leq n$, denote $H_0^\infty\left(\prod_{i=1}^n \Sigma_{\theta_i}\right)$ to be the set of all bounded holomorphic functions $f : \prod_{i=1}^n \Sigma_{\theta_i} \rightarrow \mathbb{C}$. such that

$$|f(z_1, \dots, z_n)| \leq C \prod_{i=1}^n \frac{|z_i|^s}{1 + |z_i|^{2s}} , \quad \forall (z_1, \dots, z_n) \in \prod_{i=1}^n \Sigma_{\theta_i}.$$

⁸Sectorial operators

Sectorial operator: For $\omega \in (0, \pi)$, let $\Sigma_\omega := \{z \in \mathbb{C} \setminus \{0\} : |\arg z| < \omega\}$ be the open sector of an angle 2ω around the positive real axis $(0, \infty)$. A densely defined closed operator $A : D(A) \subseteq X \rightarrow X$ is **sectorial** of type $\omega \in (0, \pi)$ if, we have

- (1) $\sigma(A) \subseteq \overline{\Sigma_\omega}$.
- (2) For any $\nu \in (\omega, \pi)$, the set $\{zR(z, A) : z \in \mathbb{C} \setminus \overline{\Sigma_\nu}\}$ is bounded.

Functional calculus associated to sectorial operators: Pioneered by **Mcintosh** and his coauthors.

- Let $\nu \in (0, \pi)$ and Γ_ν be the boundary of Σ_ν oriented counter-clockwise.
- For $\theta_i \in (0, \pi)$, $1 \leq i \leq n$, denote $H_0^\infty\left(\prod_{i=1}^n \Sigma_{\theta_i}\right)$ to be the set of all bounded holomorphic functions $f : \prod_{i=1}^n \Sigma_{\theta_i} \rightarrow \mathbb{C}$. such that

$$|f(z_1, \dots, z_n)| \leq C \prod_{i=1}^n \frac{|z_i|^s}{1 + |z_i|^{2s}} , \quad \forall (z_1, \dots, z_n) \in \prod_{i=1}^n \Sigma_{\theta_i}.$$

- The notion of j.b.f.c. can be defined in a similar manner to that of Ritt operators.

${}_9$ Sketch of proof of the big dilation theorem

The most important tool is **Littlewood-Paley** square function associated to Ritt operators.

9 Sketch of proof of the big dilation theorem

The most important tool is **Littlewood-Paley** square function associated to Ritt operators.

$$\|x\|_{T,\alpha} := \left\| \sum_{k=0}^{\infty} (k+1)^{\alpha - \frac{1}{2}} \epsilon_k \otimes T^k (I-T)^\alpha x \right\|_{\text{Rad}(X)}, \quad x \in X.$$

9 Sketch of proof of the big dilation theorem

The most important tool is **Littlewood-Paley** square function associated to Ritt operators.

$$\|x\|_{T,\alpha} := \left\| \sum_{k=0}^{\infty} (k+1)^{\alpha - \frac{1}{2}} \epsilon_k \otimes T^k (I-T)^\alpha x \right\|_{\text{Rad}(X)}, \quad x \in X.$$

- Since T_1 admits a bounded $H^\infty(\mathcal{B}_\gamma)$, $\exists C > 0$ such that

$$\|x\|_{T,\frac{1}{2}} \leq C\|x\|_X, \quad \text{for all } x \in X.$$

9 Sketch of proof of the big dilation theorem

The most important tool is **Littlewood-Paley** square function associated to Ritt operators.

$$\|x\|_{T,\alpha} := \left\| \sum_{k=0}^{\infty} (k+1)^{\alpha - \frac{1}{2}} \epsilon_k \otimes T^k (I-T)^\alpha x \right\|_{\text{Rad}(X)}, \quad x \in X.$$

- Since T_1 admits a bounded $H^\infty(\mathcal{B}_\gamma)$, $\exists C > 0$ such that

$$\|x\|_{T,\frac{1}{2}} \leq C\|x\|_X, \quad \text{for all } x \in X.$$

- Use the square function estimate to construct maps J_1, Q_1 and U to obtain $\forall n \geq 0$

$$\begin{array}{ccc} X & \xrightarrow{T_1^n} & X \\ \downarrow J_1 & & \uparrow Q_1 \\ X \oplus_p L^p(\Omega_0, X) & \xrightarrow{U^n} & X \oplus_p L^p(\Omega_0, X) \end{array}$$

₁₀ Sketch of proof of the big dilation theorem continued...

The construction of these maps were done by [Le Merdy-Fackler-Arhancet](#).

- $U = I_X \oplus (\mathbf{u}^n \otimes I_X)$ where $\mathbf{u} : L^p(\Omega_0) \rightarrow L^p(\Omega_0)$ as
 $\mathbf{u}(f)(\{\omega_k\}_k) = f(\{\omega_{k-1}\}_k)$ for $f \in L^p(\Omega_0)$.

₁₀ Sketch of proof of the big dilation theorem continued...

The construction of these maps were done by [Le Merdy-Fackler-Arhancet](#).

- $U = I_X \oplus (\mathbf{u}^n \otimes I_X)$ where $\mathbf{u} : L^p(\Omega_0) \rightarrow L^p(\Omega_0)$ as $\mathbf{u}(f)(\{\omega_k\}_k) = f(\{\omega_{k-1}\}_k)$ for $f \in L^p(\Omega_0)$.
- Use [Mean Ergodic Theorem](#) to decompose X and define the linear maps $J : \text{Ker}(I_X - T_1) \oplus \overline{\text{Ran}(I_X - T_1)} \rightarrow X \oplus_p L^p(\Omega_0, X)$ as

$$J(x_0 \oplus x_1) = x_0 \oplus \sum_{k=0}^{\infty} \epsilon_k \otimes T_1^k (I_X - T_1)^{\frac{1}{2}} x_1$$

₁₀ Sketch of proof of the big dilation theorem continued...

The construction of these maps were done by [Le Merdy-Fackler-Arhancet](#).

- $U = I_X \oplus (\mathbf{u}^n \otimes I_X)$ where $\mathbf{u} : L^p(\Omega_0) \rightarrow L^p(\Omega_0)$ as $\mathbf{u}(f)(\{\omega_k\}_k) = f(\{\omega_{k-1}\}_k)$ for $f \in L^p(\Omega_0)$.
- Use [Mean Ergodic Theorem](#) to decompose X and define the linear maps $J : \text{Ker}(I_X - T_1) \oplus \overline{\text{Ran}(I_X - T_1)} \rightarrow X \oplus_p L^p(\Omega_0, X)$ as

$$J(x_0 \oplus x_1) = x_0 \oplus \sum_{k=0}^{\infty} \epsilon_k \otimes T_1^k (I_X - T_1)^{\frac{1}{2}} x_1$$

and $\tilde{J} : \text{Ker}(I_{X^*} - T_1^*) \oplus \overline{\text{Ran}(I_{X^*} - T_1^*)} \rightarrow X^* \oplus_{p'} L^{p'}(\Omega_0, X^*)$ as

$$\tilde{J}_1(y_0 \oplus y_1) = y_0 \oplus \sum_{k=0}^{\infty} \epsilon_k \otimes T_1^{*k} (I_{X^*} - T_1^*)^{\frac{1}{2}} y_1.$$

¹⁰Sketch of proof of the big dilation theorem continued...

The construction of these maps were done by [Le Merdy-Fackler-Arhancet](#).

- $U = I_X \oplus (\mathbf{u}^n \otimes I_X)$ where $\mathbf{u} : L^p(\Omega_0) \rightarrow L^p(\Omega_0)$ as $\mathbf{u}(f)(\{\omega_k\}_k) = f(\{\omega_{k-1}\}_k)$ for $f \in L^p(\Omega_0)$.
- Use [Mean Ergodic Theorem](#) to decompose X and define the linear maps $J : \text{Ker}(I_X - T_1) \oplus \overline{\text{Ran}(I_X - T_1)} \rightarrow X \oplus_p L^p(\Omega_0, X)$ as

$$J(x_0 \oplus x_1) = x_0 \oplus \sum_{k=0}^{\infty} \epsilon_k \otimes T_1^k (I_X - T_1)^{\frac{1}{2}} x_1$$

and $\tilde{J} : \text{Ker}(I_{X^*} - T_1^*) \oplus \overline{\text{Ran}(I_{X^*} - T_1^*)} \rightarrow X^* \oplus_{p'} L^{p'}(\Omega_0, X^*)$ as

$$\tilde{J}_1(y_0 \oplus y_1) = y_0 \oplus \sum_{k=0}^{\infty} \epsilon_k \otimes T_1^{*k} (I_{X^*} - T_1^*)^{\frac{1}{2}} y_1.$$

- Define $Q_1 = \tilde{J}^*$ and $J_1 = J\Theta$ to obtain $T_1^n = Q_1 U^n J_1, n \geq 0$.
 $\Theta(x_0 \oplus x_1) := x_0 \oplus (I_X + T_1)x_1$.

₁₁ Completing the proof

- From earlier constructions establish the identity

$$J_1 S = (S \oplus (I_{L^p(\Omega_0)} \otimes S)) J_1$$

where $S : X \rightarrow X$ is a bounded operator which commutes with T_1 .

₁₁ Completing the proof

- From earlier constructions establish the identity

$$J_1 S = (S \oplus (I_{L^p(\Omega_0)} \otimes S)) J_1$$

where $S : X \rightarrow X$ is a bounded operator which commutes with T_1 .

- Assume (T_2, \dots, T_m) already satisfies the big dilation theorem with a measure space Ω'' . Notice that

$$T_1^{i_1} T_2^{i_2} \dots T_m^{i_m} = \mathcal{Q}V \left(\prod_{j=2}^m (U_j^{i_j} \oplus (I_{L^p(\Omega_0)} \otimes U_j^{i_j})) \right) \mathcal{J}.$$

₁₁ Completing the proof

- From earlier constructions establish the identity

$$J_1 S = (S \oplus (I_{L^p(\Omega_0)} \otimes S)) J_1$$

where $S : X \rightarrow X$ is a bounded operator which commutes with T_1 .

- Assume (T_2, \dots, T_m) already satisfies the big dilation theorem with a measure space Ω'' . Notice that

$$T_1^{i_1} T_2^{i_2} \dots T_m^{i_m} = \mathcal{Q} V \left(\prod_{j=2}^m (U_j^{i_j} \oplus (I_{L^p(\Omega_0)} \otimes U_j^{i_j})) \right) \mathcal{J}.$$

where $\mathcal{Q} = Q_1(Q_2 \oplus (I_{L^p(\Omega_0)} \otimes Q_2))$,

$$\mathcal{J} = (J_2 \oplus (I_{L^p(\Omega_0)} \otimes J_2)) J_1$$

and

$$V = (I_{L^p(\Omega'', X)} \oplus (\mathbf{u}^{i_1} \otimes I_{L^p(\Omega'', X)}))$$

₁₁ Completing the proof

- From earlier constructions establish the identity

$$J_1 S = (S \oplus (I_{L^p(\Omega_0)} \otimes S)) J_1$$

where $S : X \rightarrow X$ is a bounded operator which commutes with T_1 .

- Assume (T_2, \dots, T_m) already satisfies the big dilation theorem with a measure space Ω'' . Notice that

$$T_1^{i_1} T_2^{i_2} \dots T_m^{i_m} = \mathcal{Q} V \left(\prod_{j=2}^m (U_j^{i_j} \oplus (I_{L^p(\Omega_0)} \otimes U_j^{i_j})) \right) \mathcal{J}.$$

where $\mathcal{Q} = Q_1(Q_2 \oplus (I_{L^p(\Omega_0)} \otimes Q_2))$,

$$\mathcal{J} = (J_2 \oplus (I_{L^p(\Omega_0)} \otimes J_2)) J_1$$

and

$$V = (I_{L^p(\Omega'', X)} \oplus (u^{i_1} \otimes I_{L^p(\Omega'', X)}))$$

Proof is completed by induction.

₁₂ Transfer Principles

We use two transfer principles.

- Coifman-Weiss Transference Principle.

₁₂ Transfer Principles

We use two transfer principles.

- **Coifman-Weiss Transference Principle.** Let G be a locally compact abelian group. Let $R : G \rightarrow B(L^p(\Omega, \mathbb{F}, \mu))$ satisfies the following conditions:

₁₂ Transfer Principles

We use two transfer principles.

- **Coifman-Weiss Transference Principle.** Let G be a locally compact abelian group. Let $R : G \rightarrow B(L^p(\Omega, \mathbb{F}, \mu))$ satisfies the following conditions:
 - (1) For each $f \in L^p(\Omega, \mathbb{F}, \mu)$, the map $u \mapsto R_u f$ is continuous.

₁₂ Transfer Principles

We use two transfer principles.

- **Coifman-Weiss Transference Principle.** Let G be a locally compact abelian group. Let $R : G \rightarrow B(L^p(\Omega, \mathbb{F}, \mu))$ satisfies the following conditions:
 - (1) For each $f \in L^p(\Omega, \mathbb{F}, \mu)$, the map $u \mapsto R_u f$ is continuous.
 - (2) The quantity $C_R := \sup_u \|R_u\|_{L^p(\Omega, \mathbb{F}, \mu) \rightarrow L^p(\Omega, \mathbb{F}, \mu)}$ is finite.

₁₂ Transfer Principles

We use two transfer principles.

- **Coifman-Weiss Transference Principle.** Let G be a locally compact abelian group. Let $R : G \rightarrow B(L^p(\Omega, \mathbb{F}, \mu))$ satisfies the following conditions:

- (1) For each $f \in L^p(\Omega, \mathbb{F}, \mu)$, the map $u \mapsto R_u f$ is continuous.
- (2) The quantity $C_R := \sup_u \|R_u\|_{L^p(\Omega, \mathbb{F}, \mu) \rightarrow L^p(\Omega, \mathbb{F}, \mu)}$ is finite.
- (3) For all $u, v \in G$, $R_u R_v = R_{uv}$.

₁₂ Transfer Principles

We use two transfer principles.

- **Coifman-Weiss Transference Principle.** Let G be a locally compact abelian group. Let $R : G \rightarrow B(L^p(\Omega, \mathbb{F}, \mu))$ satisfies the following conditions:

- (1) For each $f \in L^p(\Omega, \mathbb{F}, \mu)$, the map $u \mapsto R_u f$ is continuous.
- (2) The quantity $C_R := \sup_u \|R_u\|_{L^p(\Omega, \mathbb{F}, \mu) \rightarrow L^p(\Omega, \mathbb{F}, \mu)}$ is finite.
- (3) For all $u, v \in G$, $R_u R_v = R_{uv}$.

₁₂ Transfer Principles

We use two transfer principles.

- **Coifman-Weiss Transference Principle.** Let G be a locally compact abelian group. Let $R : G \rightarrow B(L^p(\Omega, \mathbb{F}, \mu))$ satisfies the following conditions:

- (1) For each $f \in L^p(\Omega, \mathbb{F}, \mu)$, the map $u \mapsto R_u f$ is continuous.
- (2) The quantity $C_R := \sup_u \|R_u\|_{L^p(\Omega, \mathbb{F}, \mu) \rightarrow L^p(\Omega, \mathbb{F}, \mu)}$ is finite.
- (3) For all $u, v \in G$, $R_u R_v = R_{uv}$.

For all $k \in L^1(G)$ with compact support define

$H_k f := \int_G k(u) R_u f, f \in L^p(\Omega, \mathbb{F}, \mu)$. Then $\|H_k\|_{L^p(\Omega, \mathbb{F}, \mu) \rightarrow L^p(\Omega, \mathbb{F}, \mu)} \leq C_R^2 N_p(k)$

₁₂ Transfer Principles

We use two transfer principles.

- **Coifman-Weiss Transference Principle.** Let G be a locally compact abelian group. Let $R : G \rightarrow B(L^p(\Omega, \mathbb{F}, \mu))$ satisfies the following conditions:

- (1) For each $f \in L^p(\Omega, \mathbb{F}, \mu)$, the map $u \mapsto R_u f$ is continuous.
- (2) The quantity $C_R := \sup_u \|R_u\|_{L^p(\Omega, \mathbb{F}, \mu) \rightarrow L^p(\Omega, \mathbb{F}, \mu)}$ is finite.
- (3) For all $u, v \in G$, $R_u R_v = R_{uv}$.

For all $k \in L^1(G)$ with compact support define

$H_k f := \int_G k(u) R_u f, f \in L^p(\Omega, \mathbb{F}, \mu)$. Then $\|H_k\|_{L^p(\Omega, \mathbb{F}, \mu) \rightarrow L^p(\Omega, \mathbb{F}, \mu)} \leq C_R^2 N_p(k)$ where $N_p(k)$ is the operator norm of the convolution operator $f \mapsto k * f$ on $L^p(G)$.

₁₂ Transfer Principles

We use two transfer principles.

- **Coifman-Weiss Transference Principle.** Let G be a locally compact abelian group. Let $R : G \rightarrow B(L^p(\Omega, \mathbb{F}, \mu))$ satisfies the following conditions:

- (1) For each $f \in L^p(\Omega, \mathbb{F}, \mu)$, the map $u \mapsto R_u f$ is continuous.
- (2) The quantity $C_R := \sup_u \|R_u\|_{L^p(\Omega, \mathbb{F}, \mu) \rightarrow L^p(\Omega, \mathbb{F}, \mu)}$ is finite.
- (3) For all $u, v \in G$, $R_u R_v = R_{uv}$.

For all $k \in L^1(G)$ with compact support define

$H_k f := \int_G k(u) R_u f, f \in L^p(\Omega, \mathbb{F}, \mu)$. Then $\|H_k\|_{L^p(\Omega, \mathbb{F}, \mu) \rightarrow L^p(\Omega, \mathbb{F}, \mu)} \leq C_R^2 N_p(k)$ where $N_p(k)$ is the operator norm of the convolution operator $f \mapsto k * f$ on $L^p(G)$.

From Transference to von Neumann inequality: Let $\mathbf{T} = (T_1, \dots, T_n)$ be commuting tuple of bounded operators on L^p -space, $1 < p < \infty$ which admits a joint isometric loose dilation

₁₂ Transfer Principles

We use two transfer principles.

- **Coifman-Weiss Transference Principle.** Let G be a locally compact abelian group. Let $R : G \rightarrow B(L^p(\Omega, \mathbb{F}, \mu))$ satisfies the following conditions:

- (1) For each $f \in L^p(\Omega, \mathbb{F}, \mu)$, the map $u \mapsto R_u f$ is continuous.
- (2) The quantity $C_R := \sup_u \|R_u\|_{L^p(\Omega, \mathbb{F}, \mu) \rightarrow L^p(\Omega, \mathbb{F}, \mu)}$ is finite.
- (3) For all $u, v \in G$, $R_u R_v = R_{uv}$.

For all $k \in L^1(G)$ with compact support define

$H_k f := \int_G k(u) R_u f, f \in L^p(\Omega, \mathbb{F}, \mu)$. Then $\|H_k\|_{L^p(\Omega, \mathbb{F}, \mu) \rightarrow L^p(\Omega, \mathbb{F}, \mu)} \leq C_R^2 N_p(k)$ where $N_p(k)$ is the operator norm of the convolution operator $f \mapsto k * f$ on $L^p(G)$.

From Transference to von Neumann inequality: Let $\mathbf{T} = (T_1, \dots, T_n)$ be commuting tuple of bounded operators on L^p -space, $1 < p < \infty$ which admits a joint isometric loose dilation then \mathbf{T} is jointly p -polynomially bounded i.e., $\forall P \in \mathbb{C}[Z_1, \dots, Z_n]$

$$\|P(\mathbf{T})\|_{L^p \rightarrow L^p} \leq C \|P(S_1, \dots, S_n)\|_{\ell_p(\mathbb{Z}^n) \rightarrow \ell_p(\mathbb{Z}^n)}$$

₁₃ Theorem on transferring the bounded j.f.c.

Theorem (Mohanty–Ray, 2017).

₁₃ Theorem on transferring the bounded j.f.c.

Theorem (Mohanty–Ray, 2017). *Suppose $\mathbf{T} = (T_1, \dots, T_n)$ is a commuting tuple of Ritt operators on X . Let us denote the sectorial operators $A_i = I_X - T_i$ for $1 \leq i \leq n$.*

₁₃ Theorem on transferring the bounded j.f.c.

Theorem (Mohanty–Ray, 2017). *Suppose $\mathbf{T} = (T_1, \dots, T_n)$ is a commuting tuple of Ritt operators on X . Let us denote the sectorial operators $A_i = I_X - T_i$ for $1 \leq i \leq n$. The tuple \mathbf{T} admits a joint bounded $H^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ functional calculus for some $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$ if and only if*

¹³ Theorem on transferring the bounded j.f.c.

Theorem (Mohanty–Ray, 2017). *Suppose $\mathbf{T} = (T_1, \dots, T_n)$ is a commuting tuple of Ritt operators on X . Let us denote the sectorial operators $A_i = I_X - T_i$ for $1 \leq i \leq n$. The tuple \mathbf{T} admits a joint bounded $H^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ functional calculus for some $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$ if and only if the tuple $\mathbf{A} = (A_1, \dots, A_n)$ admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for some $\theta_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$.*

¹³ Theorem on transferring the bounded j.f.c.

Theorem (Mohanty–Ray, 2017). *Suppose $\mathbf{T} = (T_1, \dots, T_n)$ is a commuting tuple of Ritt operators on X . Let us denote the sectorial operators $A_i = I_X - T_i$ for $1 \leq i \leq n$. The tuple \mathbf{T} admits a joint bounded $H^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ functional calculus for some $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$ if and only if the tuple $\mathbf{A} = (A_1, \dots, A_n)$ admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for some $\theta_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$.*

- The above result generalizes Le Merdy's one variable transfer principle.

¹³ Theorem on transferring the bounded j.f.c.

Theorem (Mohanty–Ray, 2017). *Suppose $\mathbf{T} = (T_1, \dots, T_n)$ is a commuting tuple of Ritt operators on X . Let us denote the sectorial operators $A_i = I_X - T_i$ for $1 \leq i \leq n$. The tuple \mathbf{T} admits a joint bounded $H^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ functional calculus for some $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$ if and only if the tuple $\mathbf{A} = (A_1, \dots, A_n)$ admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for some $\theta_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$.*

- The above result generalizes Le Merdy's one variable transfer principle.
- A crucial fact we will be using that L^p -spaces have the n-f.c.p.

¹³ Theorem on transferring the bounded j.f.c.

Theorem (Mohanty–Ray, 2017). *Suppose $\mathbf{T} = (T_1, \dots, T_n)$ is a commuting tuple of Ritt operators on X . Let us denote the sectorial operators $A_i = I_X - T_i$ for $1 \leq i \leq n$. The tuple \mathbf{T} admits a joint bounded $H^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ functional calculus for some $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$ if and only if the tuple $\mathbf{A} = (A_1, \dots, A_n)$ admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for some $\theta_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$.*

- The above result generalizes Le Merdy's one variable transfer principle.
- A crucial fact we will be using that L^p -spaces have the n-f.c.p.

¹³ Theorem on transferring the bounded j.f.c.

Theorem (Mohanty–Ray, 2017). *Suppose $\mathbf{T} = (T_1, \dots, T_n)$ is a commuting tuple of Ritt operators on X . Let us denote the sectorial operators $A_i = I_X - T_i$ for $1 \leq i \leq n$. The tuple \mathbf{T} admits a joint bounded $H^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ functional calculus for some $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$ if and only if the tuple $\mathbf{A} = (A_1, \dots, A_n)$ admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for some $\theta_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$.*

- The above result generalizes Le Merdy's one variable transfer principle.
- A crucial fact we will be using that L^p -spaces have the n-f.c.p.

Theorem (Mohanty–Ray, 2017).

¹³ Theorem on transferring the bounded j.f.c.

Theorem (Mohanty–Ray, 2017). *Suppose $\mathbf{T} = (T_1, \dots, T_n)$ is a commuting tuple of Ritt operators on X . Let us denote the sectorial operators $A_i = I_X - T_i$ for $1 \leq i \leq n$. The tuple \mathbf{T} admits a joint bounded $H^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ functional calculus for some $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$ if and only if the tuple $\mathbf{A} = (A_1, \dots, A_n)$ admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for some $\theta_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$.*

- The above result generalizes Le Merdy's one variable transfer principle.
- A crucial fact we will be using that L^p -spaces have the **n-f.c.p.**

Theorem (Mohanty–Ray, 2017). *Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of positive contractions on L^p -spaces ($1 < p < \infty$) which are Ritt operators. Then \mathbf{T} admits a joint isometric loose dilation.*

¹³ Theorem on transferring the bounded j.f.c.

Theorem (Mohanty–Ray, 2017). *Suppose $\mathbf{T} = (T_1, \dots, T_n)$ is a commuting tuple of Ritt operators on X . Let us denote the sectorial operators $A_i = I_X - T_i$ for $1 \leq i \leq n$. The tuple \mathbf{T} admits a joint bounded $H^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$ functional calculus for some $\gamma_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$ if and only if the tuple $\mathbf{A} = (A_1, \dots, A_n)$ admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for some $\theta_i \in (0, \frac{\pi}{2})$, $1 \leq i \leq n$.*

- The above result generalizes Le Merdy's one variable transfer principle.
- A crucial fact we will be using that L^p -spaces have the **n-f.c.p.**

Theorem (Mohanty–Ray, 2017). *Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of positive contractions on L^p -spaces ($1 < p < \infty$) which are Ritt operators. Then \mathbf{T} admits a joint isometric loose dilation.*

- The above result can be thought of a weak analogue of multivariate Akcoglu's dilation theorem.

₁₄A characterization of joint bounded f.c.

Theorem (Mohanty–Ray, 2017). *Let $1 < p \neq 2 < \infty$ and $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of Ritt operators on $L^p(\Omega)$. Then the following assertions are equivalent.*

₁₄A characterization of joint bounded f.c.

Theorem (Mohanty–Ray, 2017). *Let $1 < p \neq 2 < \infty$ and $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of Ritt operators on $L^p(\Omega)$. Then the following assertions are equivalent.*

1. *The tuple \mathbf{T} admits a joint bounded $H^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$, $\gamma_i \in (0, \frac{\pi}{2})$, functional calculus.*

₁₄A characterization of joint bounded f.c.

Theorem (Mohanty–Ray, 2017). *Let $1 < p \neq 2 < \infty$ and $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of Ritt operators on $L^p(\Omega)$. Then the following assertions are equivalent.*

1. *The tuple \mathbf{T} admits a joint bounded $H^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$, $\gamma_i \in (0, \frac{\pi}{2})$, functional calculus.*
2. *Each T_i , $1 \leq i \leq n$ is R-Ritt and \mathbf{T} admits a joint isometric loose dilation.*

¹⁴A characterization of joint bounded f.c.

Theorem (Mohanty–Ray, 2017). *Let $1 < p \neq 2 < \infty$ and $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of Ritt operators on $L^p(\Omega)$. Then the following assertions are equivalent.*

1. *The tuple \mathbf{T} admits a joint bounded $H^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$, $\gamma_i \in (0, \frac{\pi}{2})$, functional calculus.*
2. *Each T_i , $1 \leq i \leq n$ is R-Ritt and \mathbf{T} admits a joint isometric loose dilation.*
3. *Each T_i , $1 \leq i \leq n$ is R-Ritt and \mathbf{T} is jointly p -polynomially bounded.*

¹⁴A characterization of joint bounded f.c.

Theorem (Mohanty–Ray, 2017). *Let $1 < p \neq 2 < \infty$ and $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of Ritt operators on $L^p(\Omega)$. Then the following assertions are equivalent.*

1. *The tuple \mathbf{T} admits a joint bounded $H^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$, $\gamma_i \in (0, \frac{\pi}{2})$, functional calculus.*
2. *Each T_i , $1 \leq i \leq n$ is R-Ritt and \mathbf{T} admits a joint isometric loose dilation.*
3. *Each T_i , $1 \leq i \leq n$ is R-Ritt and \mathbf{T} is jointly p -polynomially bounded.*
4. *Each T_i , $1 \leq i \leq n$ is R-Ritt and $(I - T_1, \dots, I - T_n)$ admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for $\theta_i \in (0, \pi)$ for each $1 \leq i \leq n$.*

¹⁴A characterization of joint bounded f.c.

Theorem (Mohanty–Ray, 2017). *Let $1 < p \neq 2 < \infty$ and $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of Ritt operators on $L^p(\Omega)$. Then the following assertions are equivalent.*

1. *The tuple \mathbf{T} admits a joint bounded $H^\infty(\prod_{i=1}^n \mathcal{B}_{\gamma_i})$, $\gamma_i \in (0, \frac{\pi}{2})$, functional calculus.*
2. *Each T_i , $1 \leq i \leq n$ is R-Ritt and \mathbf{T} admits a joint isometric loose dilation.*
3. *Each T_i , $1 \leq i \leq n$ is R-Ritt and \mathbf{T} is jointly p -polynomially bounded.*
4. *Each T_i , $1 \leq i \leq n$ is R-Ritt and $(I - T_1, \dots, I - T_n)$ admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for $\theta_i \in (0, \pi)$ for each $1 \leq i \leq n$.*

- The above result generalizes single variable characterizations of Le Merdy-arthancet and Le Merdy-Fackler-Arhancet.

₁₅Joint similarity problem

(Pisier,1997) There exists a polynomially bounded operator on a Hilbert space which is not similar to a contraction. **(This resolves a long-standing open problem of Paul Halmos.)**

¹⁵Joint similarity problem

(Pisier,1997) There exists a polynomially bounded operator on a Hilbert space which is not similar to a contraction. **(This resolves a long-standing open problem of Paul Halmos.)**

¹⁵Joint similarity problem

(Pisier,1997) There exists a polynomially bounded operator on a Hilbert space which is not similar to a contraction. **(This resolves a long-standing open problem of Paul Halmos.)**

(Pisier,1998) There exists two commuting bounded operators on a Hilbert space, each of which being similar to a contractions but they are not jointly similar to contractions.

¹⁵Joint similarity problem

(Pisier,1997) There exists a polynomially bounded operator on a Hilbert space which is not similar to a contraction. **(This resolves a long-standing open problem of Paul Halmos.)**

(Pisier,1998) There exists two commuting bounded operators on a Hilbert space, each of which being similar to a contractions but they are not jointly similar to contractions.

- Le Merdy showed Ritt operators are stable under Halmos similarity problem.

₁₅Joint similarity problem

(Pisier,1997) There exists a polynomially bounded operator on a Hilbert space which is not similar to a contraction. **(This resolves a long-standing open problem of Paul Halmos.)**

(Pisier,1998) There exists two commuting bounded operators on a Hilbert space, each of which being similar to a contractions but they are not jointly similar to contractions.

- Le Merdy showed Ritt operators are stable under Halmos similarity problem.

Theorem(Mohanty-Ray, 2017): Let $\mathbf{T} = (T_1, \dots, T_n)$ commuting Ritt operators on \mathcal{H} . TFAE

1. Each T_i is similar to a contraction, $1 \leq i \leq n$.

₁₅Joint similarity problem

(Pisier,1997) There exists a polynomially bounded operator on a Hilbert space which is not similar to a contraction. **(This resolves a long-standing open problem of Paul Halmos.)**

(Pisier,1998) There exists two commuting bounded operators on a Hilbert space, each of which being similar to a contractions but they are not jointly similar to contractions.

- Le Merdy showed Ritt operators are stable under Halmos similarity problem.

Theorem(Mohanty-Ray, 2017): Let $\mathbf{T} = (T_1, \dots, T_n)$ commuting Ritt operators on \mathcal{H} . TFAE

1. Each T_i is similar to a contraction, $1 \leq i \leq n$.
2. The tuple $\mathbf{T} = (T_1, \dots, T_n)$ admits a j.b.f.c.

₁₅Joint similarity problem

(Pisier,1997) There exists a polynomially bounded operator on a Hilbert space which is not similar to a contraction. **(This resolves a long-standing open problem of Paul Halmos.)**

(Pisier,1998) There exists two commuting bounded operators on a Hilbert space, each of which being similar to a contractions but they are not jointly similar to contractions.

- Le Merdy showed Ritt operators are stable under Halmos similarity problem.

Theorem(Mohanty-Ray, 2017): Let $\mathbf{T} = (T_1, \dots, T_n)$ commuting Ritt operators on \mathcal{H} . TFAE

1. Each T_i is similar to a contraction, $1 \leq i \leq n$.
2. The tuple $\mathbf{T} = (T_1, \dots, T_n)$ admits a j.b.f.c.
3. The tuple $\mathbf{T} = (T_1, \dots, T_n)$ is jointly similar to a commuting n -tuple of contractions.

¹⁶On general Banach space and non-commutative L^p -space

Theorem(Mohanty-Ray, 2017). *Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of bounded operators on X , which is jointly p -polynomially bounded.*

¹⁶On general Banach space and non-commutative L^p -space

Theorem(Mohanty-Ray, 2017). *Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of bounded operators on X , which is jointly p -polynomially bounded. Then $(I - T_1, \dots, I - T_n)$ is a commuting tuple of sectorial operators and admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for all $\theta_i \in (\frac{\pi}{2}, \pi)$.*

¹⁶On general Banach space and non-commutative L^p -space

Theorem(Mohanty-Ray, 2017). *Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of bounded operators on X , which is jointly p -polynomially bounded. Then $(I - T_1, \dots, I - T_n)$ is a commuting tuple of sectorial operators and admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for all $\theta_i \in (\frac{\pi}{2}, \pi)$.*

- This generalizes a single variable result of Le Merdy and Arhancet. The main ingredient of the proof is Marcinkiewicz multiplier theorem.

¹⁶On general Banach space and non-commutative L^p -space

Theorem(Mohanty-Ray, 2017). *Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of bounded operators on X , which is jointly p -polynomially bounded. Then $(I - T_1, \dots, I - T_n)$ is a commuting tuple of sectorial operators and admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for all $\theta_i \in (\frac{\pi}{2}, \pi)$.*

- This generalizes a single variable result of Le Merdy and Arhancet. The main ingredient of the proof is Marcinkiewicz multiplier theorem.

Theorem(Mohanty-Ray, 2017): Let \mathcal{M} be a von Neumann algebra equipped with a normal faithful semifinite trace and $1 < p \neq 2 < \infty$ and $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of R -Ritt operators on $L^p(\mathcal{M})$. Then we have (1) \Rightarrow (2) \Rightarrow (3).

1. The tuple \mathbf{T} admits a joint bounded functional calculus.

¹⁶On general Banach space and non-commutative L^p -space

Theorem(Mohanty-Ray, 2017). *Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of bounded operators on X , which is jointly p -polynomially bounded. Then $(I - T_1, \dots, I - T_n)$ is a commuting tuple of sectorial operators and admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for all $\theta_i \in (\frac{\pi}{2}, \pi)$.*

- This generalizes a single variable result of Le Merdy and Arhancet. The main ingredient of the proof is Marcinkiewicz multiplier theorem.

Theorem(Mohanty-Ray, 2017): Let \mathcal{M} be a von Neumann algebra equipped with a normal faithful semifinite trace and $1 < p \neq 2 < \infty$ and $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of R -Ritt operators on $L^p(\mathcal{M})$. Then we have (1) \Rightarrow (2) \Rightarrow (3).

1. The tuple \mathbf{T} admits a joint bounded functional calculus.
2. The tuple \mathbf{T} admits a joint non-commutative loose dilation.

¹⁶On general Banach space and non-commutative L^p -space

Theorem(Mohanty-Ray, 2017). *Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of bounded operators on X , which is jointly p -polynomially bounded. Then $(I - T_1, \dots, I - T_n)$ is a commuting tuple of sectorial operators and admits a joint bounded $H^\infty(\prod_{i=1}^n \Sigma_{\theta_i})$ functional calculus for all $\theta_i \in (\frac{\pi}{2}, \pi)$.*

- This generalizes a single variable result of Le Merdy and Arhancet. The main ingredient of the proof is Marcinkiewicz multiplier theorem.

Theorem(Mohanty-Ray, 2017): Let \mathcal{M} be a von Neumann algebra equipped with a normal faithful semifinite trace and $1 < p \neq 2 < \infty$ and $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting tuple of R -Ritt operators on $L^p(\mathcal{M})$. Then we have (1) \Rightarrow (2) \Rightarrow (3).

1. The tuple \mathbf{T} admits a joint bounded functional calculus.
2. The tuple \mathbf{T} admits a joint non-commutative loose dilation.
3. There exists a \mathcal{N} be a von Neumann algebra equipped with a normal faithful semifinite trace \mathcal{N} and a constant $C > 0$ such that

References

 Arhancet, Cédric and Le Merdy, Christian; *Dilation of Ritt operators on L^p -spaces*. Israel Journal of Mathematics 201.1 (2014): 373-414.

References

- Arhancet, Cédric and Le Merdy, Christian; *Dilation of Ritt operators on L^p -spaces*. Israel Journal of Mathematics 201.1 (2014): 373-414.
- Arhancet Cédric, Fackler, Stephan and Le Merdy, Christian; *Isometric dilations and H^∞ calculus for bounded analytic semigroups and Ritt operators*. Transactions of the American Mathematical Society (2017).

17 References

- Arhancet, Cédric and Le Merdy, Christian; *Dilation of Ritt operators on L^p -spaces*. Israel Journal of Mathematics 201.1 (2014): 373-414.
- Arhancet Cédric, Fackler, Stephan and Le Merdy, Christian; *Isometric dilations and H^∞ calculus for bounded analytic semigroups and Ritt operators*. Transactions of the American Mathematical Society (2017).
- Akcoglu, M. A. and Sucheston, Louis ; *Dilations of positive contractions on L^p spaces*. Can. J. Math. Bull 20 (1977): 285-292.

17 References

- Arhancet, Cédric and Le Merdy, Christian; *Dilation of Ritt operators on L^p -spaces*. Israel Journal of Mathematics 201.1 (2014): 373-414.
- Arhancet Cédric, Fackler, Stephan and Le Merdy, Christian; *Isometric dilations and H^∞ calculus for bounded analytic semigroups and Ritt operators*. Transactions of the American Mathematical Society (2017).
- Akcoglu, M. A. and Sucheston, Louis ; *Dilations of positive contractions on L^p spaces*. Can. J. Math. Bull 20 (1977): 285-292.
- Ando, Tsuyoshi; *On a pair of commutative contractions*. Acta Sci. Math.(Szeged) 24.1-2 (1963): 88-90.

17 References

- Arhancet, Cédric and Le Merdy, Christian; *Dilation of Ritt operators on L^p -spaces*. Israel Journal of Mathematics 201.1 (2014): 373-414.
- Arhancet Cédric, Fackler, Stephan and Le Merdy, Christian; *Isometric dilations and H^∞ calculus for bounded analytic semigroups and Ritt operators*. Transactions of the American Mathematical Society (2017).
- Akcoglu, M. A. and Sucheston, Louis ; *Dilations of positive contractions on L^p spaces*. Can. J. Math. Bull 20 (1977): 285-292.
- Ando, Tsuyoshi; *On a pair of commutative contractions*. Acta Sci. Math.(Szeged) 24.1-2 (1963): 88-90.
- Halmos, Paul R; *Ten problems in Hilbert space*. Bulletin of the American Mathematical Society 76.5 (1970): 887-933.

17 References

- Arhancet, Cédric and Le Merdy, Christian; *Dilation of Ritt operators on L^p -spaces*. Israel Journal of Mathematics 201.1 (2014): 373-414.
- Arhancet Cédric, Fackler, Stephan and Le Merdy, Christian; *Isometric dilations and H^∞ calculus for bounded analytic semigroups and Ritt operators*. Transactions of the American Mathematical Society (2017).
- Akcoglu, M. A. and Sucheston, Louis ; *Dilations of positive contractions on L^p spaces*. Can. J. Math. Bull 20 (1977): 285-292.
- Ando, Tsuyoshi; *On a pair of commutative contractions*. Acta Sci. Math.(Szeged) 24.1-2 (1963): 88-90.
- Halmos, Paul R; *Ten problems in Hilbert space*. Bulletin of the American Mathematical Society 76.5 (1970): 887-933.
- Lancien, Florence, Gilles Lancien and Le Merdy Christian; *A joint functional calculus for sectorial operators with commuting resolvents*. Proceedings of the London Mathematical Society 77.2 (1998): 387-414.

References

 McIntosh, Alan; *Operators which have an H_∞ functional calculus.* Miniconference on operator theory and partial differential equations. Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University, 1986.

References

- McIntosh, Alan; *Operators which have an H_∞ functional calculus.* Miniconference on operator theory and partial differential equations. Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University, 1986.
- Pisier, Gilles; *A polynomially bounded operator on Hilbert space which is not similar to a contraction.* Journal of the American Mathematical Society 10.2 (1997): 351-369.

References

- McIntosh, Alan; *Operators which have an H_∞ functional calculus.* Miniconference on operator theory and partial differential equations. Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University, 1986.
- Pisier, Gilles; *A polynomially bounded operator on Hilbert space which is not similar to a contraction.* Journal of the American Mathematical Society 10.2 (1997): 351-369.
- Pisier, Gilles; *Joint similarity problems and the generation of operator algebras with bounded length.* Integral Equations and Operator Theory 31.3 (1998): 353-370.

References

- McIntosh, Alan; *Operators which have an H_∞ functional calculus.* Miniconference on operator theory and partial differential equations. Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University, 1986.
- Pisier, Gilles; *A polynomially bounded operator on Hilbert space which is not similar to a contraction.* Journal of the American Mathematical Society 10.2 (1997): 351-369.
- Pisier, Gilles; *Joint similarity problems and the generation of operator algebras with bounded length.* Integral Equations and Operator Theory 31.3 (1998): 353-370.
- Varopoulos, N. Th. *On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory.* Journal of Functional Analysis 16.1 (1974): 83-100.

References

- McIntosh, Alan; *Operators which have an H_∞ functional calculus.* Miniconference on operator theory and partial differential equations. Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University, 1986.
- Pisier, Gilles; *A polynomially bounded operator on Hilbert space which is not similar to a contraction.* Journal of the American Mathematical Society 10.2 (1997): 351-369.
- Pisier, Gilles; *Joint similarity problems and the generation of operator algebras with bounded length.* Integral Equations and Operator Theory 31.3 (1998): 353-370.
- Varopoulos, N. Th. *On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory.* Journal of Functional Analysis 16.1 (1974): 83-100.
- Neumann, Johann Von; *Eine Spektraltheorie fr allgemeine Operatoren eines unitren Raumes. Erhard Schmidt zum 75. Geburtstag in*