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As a consequence we immediately obtain a rational functional calculus.

Several attempts were made to generalize von Neumann inequality. These

are

@ A generalization in two variables due to dilation theorem of Ando.
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.von Neumann inequality

von Neumann inequality says that

Given any contraction 7" on a Hilbert space H and a polynomial P in single

variable
|P(T)|| 2= < [ Plloo,p-

As a consequence we immediately obtain a rational functional calculus.
Several attempts were made to generalize von Neumann inequality. These
are

@ A generalization in two variables due to dilation theorem of Ando.

@ Replacing Hilbert space by general Banach space. This involves the so called
Matsaev's conjecture. (Upcoming slide.)
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.von Neumann inequality

von Neumann inequality says that

Given any contraction 7" on a Hilbert space H and a polynomial P in single
variable
IP(T)3-2 < [|Plloo,p-

As a consequence we immediately obtain a rational functional calculus.

Several attempts were made to generalize von Neumann inequality. These
are

@ A generalization in two variables due to dilation theorem of Ando.

@ Replacing Hilbert space by general Banach space. This involves the so called
Matsaev's conjecture. (Upcoming slide.)

However, Varopoulos and Kaijser gave an explicit counterexample for three
commuting contractions.
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, Loose dilation

We need the following definition.
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, Loose dilation

We need the following definition.

Let l<p#2<oo0. T=(T4,...,T,) is commuting tuple of bounded operators
on LP(9).
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, Loose dilation
We need the following definition.
Let l<p#2<oo0. T=(T4,...,T,) is commuting tuple of bounded operators

on LP(§2). We say T admits a joint isometric loose dilation if there is a measure
space )’ and a commuting tuple of onto isometries U = (Uy,...,U,), on LP())
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, Loose dilation

We need the following definition.

Let l<p#2<oo0. T=(T4,...,T,) is commuting tuple of bounded operators
on LP(§2). We say T admits a joint isometric loose dilation if there is a measure
space )’ and a commuting tuple of onto isometries U = (Uy,...,U,), on LP())
together with bounded operators Q : LP(Y) — LP(Q) and J : LP(Q) — LP (),
such that

Tl“ "'TriL" — QUlil "'Ufz"j

for all 41,...,4, € Np.
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, Loose dilation

We need the following definition.

Let l<p#2<oo0. T=(T4,...,T,) is commuting tuple of bounded operators
on LP(§2). We say T admits a joint isometric loose dilation if there is a measure
space )’ and a commuting tuple of onto isometries U = (Uy,...,U,), on LP())
together with bounded operators Q : LP(Y) — LP(Q) and J : LP(Q) — LP (),
such that

Tl“ "'TriL" — QUlil "'Ufz"j

for all 41,...,4, € Np.

In other words following diagram commutes

TflmTyil"
(@) — T )
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,Loose dilation continued. . .
Some examples of dilations are:
(1) (Nagy-Foias) Contractions on Hilbert spaces admit strict dilation.
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,Loose dilation continued. . .
Some examples of dilations are:
(1) (Nagy-Foias) Contractions on Hilbert spaces admit strict dilation.

(2) (Ando, 1963) Any commuting couple of contractions on a Hilbert space
admits a joint isometric strict dilation.

Samya Kumar Ray Joint functional calculus of Ritt operators



,Loose dilation continued. . .
Some examples of dilations are:
(1) (Nagy-Foias) Contractions on Hilbert spaces admit strict dilation.
(2) (Ando, 1963) Any commuting couple of contractions on a Hilbert space
admits a joint isometric strict dilation.
(3) (Akcoglu, Coifman-Weiss-Rochberg, 1977-78) Sub-positive contractions on
LP-spaces, 1 < p # 2 < 0o admit strict dilation. (What happens in

multivariable?)
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,Loose dilation continued. . .
Some examples of dilations are:
(1) (Nagy-Foias) Contractions on Hilbert spaces admit strict dilation.

(2) (Ando, 1963) Any commuting couple of contractions on a Hilbert space
admits a joint isometric strict dilation.

(3) (Akcoglu, Coifman-Weiss-Rochberg, 1977-78) Sub-positive contractions on
LP-spaces, 1 < p # 2 < 0o admit strict dilation. (What happens in
multivariable?)

(4) (Le Merdy, Arhancet and Fackler, 2014, 2017) Ritt operators on an
LP-space which satisfies a bounded H°-functional calculus admits isometric
loose dilation for 1 < p < co. (Next slide.)
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,Loose dilation continued. . .
Some examples of dilations are:
(1) (Nagy-Foias) Contractions on Hilbert spaces admit strict dilation.
(2) (Ando, 1963) Any commuting couple of contractions on a Hilbert space
admits a joint isometric strict dilation.
(3) (Akcoglu, Coifman-Weiss-Rochberg, 1977-78) Sub-positive contractions on
LP-spaces, 1 < p # 2 < 0o admit strict dilation. (What happens in

multivariable?)

(4) (Le Merdy, Arhancet and Fackler, 2014, 2017) Ritt operators on an
LP-space which satisfies a bounded H°-functional calculus admits isometric
loose dilation for 1 < p < co. (Next slide.)

@ Loose dilation = von Neumann type inequality, e.g., for any sub-positive
contraction T on an LP-space, 1 < p < oo the Matsaev's conjecture holds

i.e.
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,Loose dilation continued. . .
Some examples of dilations are:
(1) (Nagy-Foias) Contractions on Hilbert spaces admit strict dilation.
(2) (Ando, 1963) Any commuting couple of contractions on a Hilbert space
admits a joint isometric strict dilation.
(3) (Akcoglu, Coifman-Weiss-Rochberg, 1977-78) Sub-positive contractions on
LP-spaces, 1 < p # 2 < 0o admit strict dilation. (What happens in

multivariable?)

(4) (Le Merdy, Arhancet and Fackler, 2014, 2017) Ritt operators on an
LP-space which satisfies a bounded H°-functional calculus admits isometric
loose dilation for 1 < p < co. (Next slide.)

@ Loose dilation = von Neumann type inequality, e.g., for any sub-positive
contraction T on an LP-space, 1 < p < oo the Matsaev's conjecture holds

i.e.

I1P(T)||le—re < [[P(R)lle,v)—e,(v)- J
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,Loose dilation continued. . .
Some examples of dilations are:
(1) (Nagy-Foias) Contractions on Hilbert spaces admit strict dilation.
(2) (Ando, 1963) Any commuting couple of contractions on a Hilbert space
admits a joint isometric strict dilation.
(3) (Akcoglu, Coifman-Weiss-Rochberg, 1977-78) Sub-positive contractions on
LP-spaces, 1 < p # 2 < 0o admit strict dilation. (What happens in

multivariable?)

(4) (Le Merdy, Arhancet and Fackler, 2014, 2017) Ritt operators on an
LP-space which satisfies a bounded H°-functional calculus admits isometric
loose dilation for 1 < p < co. (Next slide.)

@ Loose dilation = von Neumann type inequality, e.g., for any sub-positive
contraction T on an LP-space, 1 < p < oo the Matsaev's conjecture holds

i.e.

I1P(T)||le—re < [[P(R)lle,v)—e,(v)- J

e In above R is the shift operator on £,(N).
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. Ritt operator

Ritt operator: For v € (0, 7), let B, (Stolz domain of angle ) be the interior
of the convex hull of 1 and the disc D(0,sin+). An operator T': X — X is said

to be a Ritt operator of type a € (0, §) if

(1) o(T) C Ba.
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. Ritt operator

Ritt operator: For v € (0, 7), let B, (Stolz domain of angle ) be the interior
of the convex hull of 1 and the disc D(0,sin+). An operator T': X — X is said
to be a Ritt operator of type a € (0, §) if

(1) o(T) C B,
(2) Forany B € (o, %), the set {(1 —A)R(A,T) : A € C\ Bs} is bounded.
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. Ritt operator

Ritt operator: For v € (0, 7), let B, (Stolz domain of angle ) be the interior
of the convex hull of 1 and the disc D(0,sin+). An operator T': X — X is said

to be a Ritt operator of type a € (0, §) if

(1) o(T) C B,
(2) Forany B € (o, %), the set {(1 —A)R(A,T) : A € C\ Bs} is bounded.

@ Following characterization of Ritt operators were obtained by a series of
work of Lyubich, Nagy-Zemanek and Nevanlinna.
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. Ritt operator

Ritt operator: For v € (0, 7), let B, (Stolz domain of angle ) be the interior
of the convex hull of 1 and the disc D(0,sin+). An operator T': X — X is said

s

to be a Ritt operator of type a € (0, §) if
(1) o(T) € Bu.
(2) Forany B € (o, %), the set {(1 —A)R(A,T) : A € C\ Bs} is bounded.
@ Following characterization of Ritt operators were obtained by a series of

work of Lyubich, Nagy-Zemanek and Nevanlinna.

Theorem LetT : X — X be an operator. Then T is Ritt iff
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. Ritt operator

Ritt operator: For v € (0, 7), let B, (Stolz domain of angle ) be the interior
of the convex hull of 1 and the disc D(0,sin+). An operator T': X — X is said

s

to be a Ritt operator of type a € (0, §) if
(1) o(T) C Be.
(2) Forany B € (o, %), the set {(1 —A)R(A,T) : A € C\ Bs} is bounded.

@ Following characterization of Ritt operators were obtained by a series of

work of Lyubich, Nagy-Zemanek and Nevanlinna.

Theorem LetT : X — X be an operator. Then T is Ritt iff
(1) T is power bounded.
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. Ritt operator

Ritt operator: For v € (0, 7), let B, (Stolz domain of angle ) be the interior
of the convex hull of 1 and the disc D(0,sin+). An operator T': X — X is said

s

to be a Ritt operator of type a € (0, §) if

(1) o(T) C B,
(2) Forany B € (o, %), the set {(1 —A)R(A,T) : A € C\ Bs} is bounded.

@ Following characterization of Ritt operators were obtained by a series of

work of Lyubich, Nagy-Zemanek and Nevanlinna.

Theorem LetT : X — X be an operator. Then T is Ritt iff
(1) T is power bounded.

(2) The set {n(T™ —T™ ') :n > 1} is bounded.
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. Ritt operator

Ritt operator: For v € (0, 7), let B, (Stolz domain of angle ) be the interior
of the convex hull of 1 and the disc D(0,sin+). An operator T': X — X is said

s

to be a Ritt operator of type a € (0, §) if

(1) o(T) C B,
(2) Forany B € (o, %), the set {(1 —A)R(A,T) : A € C\ Bs} is bounded.

@ Following characterization of Ritt operators were obtained by a series of

work of Lyubich, Nagy-Zemanek and Nevanlinna.

Theorem LetT : X — X be an operator. Then T is Ritt iff
(1) T is power bounded.

(2) The set {n(T™ —T™ ') :n > 1} is bounded.

@ Ritt operators are discrete analouge of sectorial operators. (Upcoming slide.)
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. Ritt operator

Ritt operator: For v € (0, 7), let B, (Stolz domain of angle ) be the interior
of the convex hull of 1 and the disc D(0,sin+). An operator T': X — X is said

s

to be a Ritt operator of type a € (0, §) if
(1) o(T) C Be.
(2) Forany B € (o, %), the set {(1 —A)R(A,T) : A € C\ Bs} is bounded.

@ Following characterization of Ritt operators were obtained by a series of
work of Lyubich, Nagy-Zemanek and Nevanlinna.

Theorem LetT : X — X be an operator. Then T is Ritt iff
(1) T is power bounded.

(2) The set {n(T™ —T™ ') :n > 1} is bounded.

@ Ritt operators are discrete analouge of sectorial operators. (Upcoming slide.)

e For any f € L' with | f||;1 <1 the map f + f g is a Ritt operator
on LP-space.
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, Joint functional calculus for Ritt operators.
o Lety; €(0,5), 1 <i<n.Denote H*([]", B,,) to be all bounded
holomorphic functions ¢ : [}, B,, — C such that
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, Joint functional calculus for Ritt operators.

o Lety; €(0,5), 1 <i<n.Denote H*([]", B,,) to be all bounded
holomorphic functions ¢ : [}, B,, — C such that

(AL, - A |<CH|1—A|S
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, Joint functional calculus for Ritt operators.

o Lety; €(0,5), 1 <i<n.Denote H*([]", B,,) to be all bounded
holomorphic functions ¢ : [}, B,, — C such that

(AL, - A |<CH|1—A|S

o Let I'g, denote the boundary of By oriented counterclockwise.
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, Joint functional calculus for Ritt operators.

o Lety; €(0,5), 1 <i<n.Denote H*([]", B,,) to be all bounded
holomorphic functions ¢ : [}, B,, — C such that

(AL, - A |<CH|1—A|S

o Let I'g, denote the boundary of By oriented counterclockwise.

e Let T = (T1,...,T,) be a commuting tuple such that each T; is Ritt
operator of type a; € (0, 5) for 1 <4 < n.
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, Joint functional calculus for Ritt operators.

Let v; € (0,%), 1 <i < n. Denote H3°([]_, B,,) to be all bounded
holomorphic functions ¢ : [}, B,, — C such that

(AL, - A |<CH|1—A|S

Let 'z, denote the boundary of B3 oriented counterclockwise.

Let T = (T1,...,T,) be a commuting tuple such that each 7 is Ritt
operator of type a; € (0, 5) for 1 <4 < n.

For B; € (i, i), 1 < i <n. We define
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, Joint functional calculus for Ritt operators.

o Lety; €(0,5), 1 <i<n.Denote H*([]", B,,) to be all bounded
holomorphic functions ¢ : [}, B,, — C such that

| (>‘17'-'7 |<CH|1_)\|S J

o Let I'g, denote the boundary of By oriented counterclockwise.

e Let T = (T1,...,T,) be a commuting tuple such that each T; is Ritt
operator of type a; € (0, 5) for 1 <4 < n.

e For f3; € (v, i), 1 <i < n.We define

(T) = (QLM)" /n . SO, ) f[ R(As, Ai)dAs. |
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, Joint functional calculus for Ritt operators.

o Lety; €(0,5), 1 <i<n.Denote H*([]", B,,) to be all bounded
holomorphic functions ¢ : [}, B,, — C such that

| (>‘17'-'7 |<CH|1_)\|S J

o Let I'g, denote the boundary of By oriented counterclockwise.

e Let T = (T1,...,T,) be a commuting tuple such that each T; is Ritt
operator of type a; € (0, 5) for 1 <4 < n.

e For f3; € (v, i), 1 <i < n.We define

211
i=1

o(T) = (1)"/ o rg, PO TT 2O A, |

e We say T admits a joint bounded H °-functional calculus (in short
j-b.f.c.) if the homomorphism ¢ — ¢(T) is bounded.
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. R-boundedness

@ Denote the probability space Qy = {+1}Z.
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. R-boundedness

@ Denote the probability space 2y = {+1}%. Denote the k-th Rademacher
function to be ex(w) = wg.
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. R-boundedness

@ Denote the probability space 2y = {+1}%. Denote the k-th Rademacher
function to be ex(w) = wg.

@ For 1 < p < oo we denote the Banach space Rad,(X) C LP(£, X) to be
the closure of the set span{e; @ zy, : k € Z,x, € X} in the Bochner space
LP(Q, X).
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. R-boundedness

@ Denote the probability space 2y = {+1}%. Denote the k-th Rademacher
function to be ex(w) = wg.

@ For 1 < p < oo we denote the Banach space Rad,(X) C LP(£, X) to be
the closure of the set span{e; @ zy, : k € Z,x, € X} in the Bochner space
L?(Qg, X). For p = 2 we simply denote Rad(X).
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. R-boundedness

@ Denote the probability space 2y = {+1}%. Denote the k-th Rademacher
function to be ex(w) = wg.

@ For 1 < p < oo we denote the Banach space Rad,(X) C LP(£, X) to be
the closure of the set span{e; @ zy, : k € Z,x, € X} in the Bochner space
L?(Qg, X). For p = 2 we simply denote Rad(X).

@ Wesay £ C B(X) is R-bounded provided
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. R-boundedness

@ Denote the probability space 2y = {+1}%. Denote the k-th Rademacher
function to be ex(w) = wg.

@ For 1 < p < oo we denote the Banach space Rad,(X) C LP(£, X) to be
the closure of the set span{e; @ zy, : k € Z,x, € X} in the Bochner space
L?(Qg, X). For p = 2 we simply denote Rad(X).

@ Wesay £ C B(X) is R-bounded provided

3 C >0 3V finite sequence (T})5_, of E and (zx)4_, of X,

N N
T < CH H : 1
H kZZOEk ® Tk (zk) Rad(X) = kzzoek R xg Rad(X) (1)
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. R-boundedness

@ Denote the probability space 2y = {+1}%. Denote the k-th Rademacher
function to be ex(w) = wg.

@ For 1 < p < oo we denote the Banach space Rad,(X) C LP(£, X) to be
the closure of the set span{e; @ zy, : k € Z,x, € X} in the Bochner space
L?(Qg, X). For p = 2 we simply denote Rad(X).

@ Wesay £ C B(X) is R-bounded provided

3 C >0 3V finite sequence (T})5_, of E and (zx)4_, of X,

N N
T < CH H : 1
H kZZOEk ® Tk (zk) Rad(X) = kzzoek R xg Rad(X) (1)

@ For the notion of R-Ritt we need to replace 'boundedness’ by
'R-boundedness’ in the definition of Ritt operators.
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., A big dilation theorem

Theorem (Mohanty—Ray, 2017). Let 1 < p < oo. Let X be a reflexive Banach
space such that both X and X* have finite cotype.
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., A big dilation theorem

Theorem (Mohanty—Ray, 2017). Let 1 < p < oo. Let X be a reflexive Banach
space such that both X and X* have finite cotype. Let T = (T1,...,T,) be a
commuting tuple of Ritt operators on X which admits a joint bounded
H*°-functional calculus.
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., A big dilation theorem

Theorem (Mohanty—Ray, 2017). Let 1 < p < oo. Let X be a reflexive Banach

space such that both X and X* have finite cotype. Let T = (T1,...,T,) be a

commuting tuple of Ritt operators on X which admits a joint bounded

H*°-functional calculus. Then, there exists a measure space ), a commuting

tuple of isometric isomorphisms U = (Uy,...,U,) on L?(Q, X), together with

two bounded operators Q : LP(Q, X) — X and J : X — LP(Q, X) such that
T - Tin = QU ---Uin Jfor all iy, ..., in € Np.
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., A big dilation theorem

Theorem (Mohanty—Ray, 2017). Let 1 < p < oo. Let X be a reflexive Banach

space such that both X and X* have finite cotype. Let T = (T1,...,T,) be a

commuting tuple of Ritt operators on X which admits a joint bounded

H*°-functional calculus. Then, there exists a measure space ), a commuting

tuple of isometric isomorphisms U = (Uy,...,U,) on L?(Q, X), together with

two bounded operators Q : LP(Q, X) — X and J : X — LP(Q, X) such that
T - Tin = QU ---Uin Jfor all iy, ..., in € Np.
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., A big dilation theorem

Theorem (Mohanty—Ray, 2017). Let 1 < p < oo. Let X be a reflexive Banach

space such that both X and X* have finite cotype. Let T = (T1,...,T,) be a

commuting tuple of Ritt operators on X which admits a joint bounded

H*°-functional calculus. Then, there exists a measure space ), a commuting

tuple of isometric isomorphisms U = (Uy,...,U,) on L?(Q, X), together with

two bounded operators Q : LP(Q, X) — X and J : X — LP(Q, X) such that
T - Tin = QU ---Uin Jfor all iy, ..., in € Np.

X S X

]
Uil..AUTZln

LP(Q, X) ——— LP(Q, X)
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., A big dilation theorem

Theorem (Mohanty—Ray, 2017). Let 1 < p < oo. Let X be a reflexive Banach

space such that both X and X* have finite cotype. Let T = (T1,...,T,) be a

commuting tuple of Ritt operators on X which admits a joint bounded

H*°-functional calculus. Then, there exists a measure space ), a commuting

tuple of isometric isomorphisms U = (Uy,...,U,) on L?(Q, X), together with

two bounded operators Q : LP(Q, X) — X and J : X — LP(Q, X) such that
T - Tin = QU ---Uin Jfor all iy, ..., in € Np.

X S X

I J
U Uln

L7(Q, X) —" 1 IP(Q, X)

@ The above result is a multivariate analogoue of a similar theorem proved by
Arhancet, Fackler and Le Merdy.
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.Sectorial operators
Sectorial operator: For w € (0,7), let ¥, :={z € C\ {0} : |argz| < w} be
the open sector of an angle 2w around the positive real axis (0, c0).
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.Sectorial operators

Sectorial operator: For w € (0,7), let ¥, :={z € C\ {0} : |argz| < w} be
the open sector of an angle 2w around the positive real axis (0,00). A densely
defined closed operator A : D(A) C X — X is sectorial of type w € (0, )
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.Sectorial operators

Sectorial operator: For w € (0,7), let ¥, :={z € C\ {0} : |argz| < w} be
the open sector of an angle 2w around the positive real axis (0,00). A densely
defined closed operator A : D(A) C X — X is sectorial of type w € (0, ) if, we
have

(1) o(4) C 5.

(2) For any v € (w,7), the set {zR(z,A): 2z € C\ X,} is bounded.
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.Sectorial operators

Sectorial operator: For w € (0,7), let ¥, :={z € C\ {0} : |argz| < w} be
the open sector of an angle 2w around the positive real axis (0,00). A densely
defined closed operator A : D(A) C X — X is sectorial of type w € (0, ) if, we
have

(1) o(4) C o,
(2) For any v € (w,7), the set {zR(z,A): 2z € C\ X,} is bounded.

Functional calculus associated to sectorial operators:
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.Sectorial operators

Sectorial operator: For w € (0,7), let ¥, :={z € C\ {0} : |argz| < w} be
the open sector of an angle 2w around the positive real axis (0,00). A densely
defined closed operator A : D(A) C X — X is sectorial of type w € (0, ) if, we
have

(1) o(4) C 2.

(2) For any v € (w,7), the set {zR(z,A): 2z € C\ X,} is bounded.
Functional calculus associated to sectorial operators: Pioneered by
Mcintosh and his coauthors.
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.Sectorial operators

Sectorial operator: For w € (0,7), let ¥, :={z € C\ {0} : |argz| < w} be
the open sector of an angle 2w around the positive real axis (0,00). A densely
defined closed operator A : D(A) C X — X is sectorial of type w € (0, ) if, we
have

(1) o(4) C o,
(2) For any v € (w,7), the set {zR(z,A): 2z € C\ X,} is bounded.

Functional calculus associated to sectorial operators: Pioneered by
Mcintosh and his coauthors.

@ Let v € (0,7) and I', be the boundary of ¥, oriented counter-clockwise.
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.Sectorial operators

Sectorial operator: For w € (0,7), let ¥, :={z € C\ {0} : |argz| < w} be
the open sector of an angle 2w around the positive real axis (0,00). A densely
defined closed operator A : D(A) C X — X is sectorial of type w € (0, ) if, we
have

(1) o(4) C o,
(2) For any v € (w,7), the set {zR(z,A): 2z € C\ X,} is bounded.

Functional calculus associated to sectorial operators: Pioneered by
Mcintosh and his coauthors.

@ Let v € (0,7) and I', be the boundary of ¥, oriented counter-clockwise.

@ For6; € (0,7), 1 <i<n,denote H3°([];_, Zo,) to be the set of all
bounded holomorphic functions f : H?:l 3, — C.
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Sectorial operator: For w € (0,7), let ¥, :={z € C\ {0} : |argz| < w} be
the open sector of an angle 2w around the positive real axis (0,00). A densely
defined closed operator A : D(A) C X — X is sectorial of type w € (0, ) if, we
have

(1) o(4) C o,
(2) For any v € (w,7), the set {zR(z,A): 2z € C\ X,} is bounded.

Functional calculus associated to sectorial operators: Pioneered by
Mcintosh and his coauthors.

@ Let v € (0,7) and I', be the boundary of ¥, oriented counter-clockwise.

@ For6; € (0,7), 1 <i<n,denote H3°([];_, Zo,) to be the set of all
bounded holomorphic functions f : H?:l 3, = C. such that

EN
|f(zla"'7 CH1+‘Z|23 9 Zla cy 2 GHZG
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.Sectorial operators

Sectorial operator: For w € (0,7), let ¥, :={z € C\ {0} : |argz| < w} be
the open sector of an angle 2w around the positive real axis (0,00). A densely
defined closed operator A : D(A) C X — X is sectorial of type w € (0, ) if, we
have

(1) o(4) C o,
(2) For any v € (w,7), the set {zR(z,A): 2z € C\ X,} is bounded.

Functional calculus associated to sectorial operators: Pioneered by
Mcintosh and his coauthors.

@ Let v € (0,7) and I', be the boundary of ¥, oriented counter-clockwise.

@ For6; € (0,7), 1 <i<n,denote H3°([];_, Zo,) to be the set of all
bounded holomorphic functions f : H?:l 3, = C. such that

EN
|f(zla"'7 CH1+‘Z|23 9 Zla cy 2 GHZG

@ The notion of j.b.f.c. can be defined in a similar manner to that of Ritt
operators.
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, Sketch of proof of the big dilation theorem

The most important tool is Littlewood-Paley square function associated to Ritt
operators.
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, Sketch of proof of the big dilation theorem

The most important tool is Littlewood-Paley square function associated to Ritt
operators.

laliza = || Yok + 1) Fe @ THI - T)%
k=0
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, Sketch of proof of the big dilation theorem

The most important tool is Littlewood-Paley square function associated to Ritt
operators.

, ¢ € X.
Rad(X)

laliza = || Yok + 1) Fe @ THI - T)%
k=0

e Since 17 admits a bounded H*°(By), 3 C' > 0 such that
H:EHT% < C|lz||x, forallz e X.
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, Sketch of proof of the big dilation theorem

The most important tool is Littlewood-Paley square function associated to Ritt
operators.

, ¢ € X.

1
o= E:k 1)% 2 XTkI—Ta
l=llz, Hko( )" e ( )i Rad(X)

e Since 17 admits a bounded H*°(By), 3 C' > 0 such that
H:EHT% < C|lz||x, forallz e X.

@ Use the square function estimate to construct maps Ji, Q1 and U to
obtain Vn >0

i
X X

I 9

X @, LP(Q0, X) — T X &, LP(Qp, X)
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wOketch of proof of the big dilation theorem continued...
The construction of these maps were done by Le Merdy-Fackler-Arhancet.
o U=1Ix® (u"® Ix) where u: LP(Qy) — LP() as
u(f){wrte) = f({wr—1}k) for f € LP(Qo).
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wOketch of proof of the big dilation theorem continued...
The construction of these maps were done by Le Merdy-Fackler-Arhancet.
o U=1Ix® (u"® Ix) where u: LP(Qy) — LP() as
u(f){wrte) = f({wr—1}k) for f € LP(Qo).
@ Use Mean Ergodic Theorem to decompose X and define the linear
maps J : Ker(Ix —T1) @ Ran(Ix —Th) — X &, LP(Qp, X) as

o
J(ao @) =20® Y e @ TF(Ix — )21
k=0
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wOketch of proof of the big dilation theorem continued...
The construction of these maps were done by Le Merdy-Fackler-Arhancet.
o U=1Ix® (u"® Ix) where u: LP(Qy) — LP() as
u(f){wrte) = f({wr—1}k) for f € LP(Qo).
@ Use Mean Ergodic Theorem to decompose X and define the linear
maps J : Ker(Ix —T1) @ Ran(Ix —Th) — X &, LP(Qp, X) as

o
J(ao @) =20® Y e @ TF(Ix — )21
k=0

and J : Ker(Ix+ — T}) ® Ran(Ix« — T}) — X* @, L' (Qo, X*) as

1
J(yo@yl)—yo@zﬁk®T1 (Ix+ = T7)2y
k=0
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wOketch of proof of the big dilation theorem continued...
The construction of these maps were done by Le Merdy-Fackler-Arhancet.
o U=1Ix® (u"® Ix) where u: LP(Qy) — LP() as
u(f){wrte) = f({wr—1}k) for f € LP(Qo).
@ Use Mean Ergodic Theorem to decompose X and define the linear
maps J : Ker(Ix —T1) @ Ran(Ix —Th) — X &, LP(Qp, X) as

J(ao @) =20® Y e @ TF(Ix — )21
k=0
and J : Ker(Ix~ —TY) @W) X @y Lp/mon*) as

1
J(yo@yl)—yo@zﬁk®T1 (Ix+ = T7)2y
k=0

@ Define @ = J* and J1 = JO to obtain T1' = Q1U™J1,n > 0.
@(xo D 1‘1) =29 D (IX + Tl)xl.
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.Completing the proof

@ From earlier constructions establish the identity
J1S = (S@ (IL;D(QO) ® S))Jl

where S : X — X is a bounded operator which commutes with 77 .
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.Completing the proof

@ From earlier constructions establish the identity
J1S = (S@ (IL;D(QO) ® S))Jl

where S : X — X is a bounded operator which commutes with 77 .

@ Assume (Tx,...,T,,) already satisfies the big dilation theorem with a
measure space 2. Notice that

ThTie .. Tim :QV(H U7 & (Iriay) ® Uy )))J
=2
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.Completing the proof

@ From earlier constructions establish the identity
J1S = (S@ (IL;D(QO) ® S))Jl

where S : X — X is a bounded operator which commutes with 77 .

@ Assume (Tx,...,T,,) already satisfies the big dilation theorem with a
measure space 2. Notice that

TTg .. T :QV(H (U} @ (Iw(og) ® U}’ )))J
Jj=2
where Q = Q1(Q2 © (I1r(y) ® Q2)),

J = (J2® (Ir(o)et,)) /1

and ,
V = (ILP(QH’X) (&) (UZ1 &® ILp(QH’X)))
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.Completing the proof

@ From earlier constructions establish the identity
J1S = (S@ (IL;D(QO) ® S))Jl

where S : X — X is a bounded operator which commutes with 77 .

@ Assume (Tx,...,T,,) already satisfies the big dilation theorem with a
measure space 2. Notice that

TTg .. T :QV(H (U} @ (Iw(og) ® U}’ )))J
Jj=2
where Q = Q1(Q2 © (I1r(y) ® Q2)),

J = (J2® (Ir(o)et,)) /1

and ,
V = (ILP(QH’X) (&) (UZ1 &® ILp(QH’X)))

Proof is completed by induction.
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. Transfer Principles
We use two transfer principles.

@ Coifman-Weiss Transference Principle.
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. Transfer Principles
We use two transfer principles.

@ Coifman-Weiss Transference Principle. Let G be a locally compact abelian
group. Let R: G — B(LP(Q,F, u)) satisfies the following conditions:
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. Transfer Principles
We use two transfer principles.

@ Coifman-Weiss Transference Principle. Let G be a locally compact abelian
group. Let R: G — B(LP(Q,F, u)) satisfies the following conditions:

(1) For each f € LP(Q,F, ), the map u — R, f is continuous.
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. Transfer Principles
We use two transfer principles.

@ Coifman-Weiss Transference Principle. Let G be a locally compact abelian
group. Let R: G — B(LP(Q,F, u)) satisfies the following conditions:
(1) For each f € LP(Q,F, ), the map u — R, f is continuous.
(2) The quantity Cg := sup,, || Rullzr(,F,u)—Lr(QF,u) is finite.
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. Transfer Principles
We use two transfer principles.
@ Coifman-Weiss Transference Principle. Let G be a locally compact abelian
group. Let R: G — B(LP(Q),F, u)) satisfies the following conditions:
(1) For each f € LP(Q,F, ), the map u — R, f is continuous.

(2) The quantity Cg := sup,, || Rullzr(,F,u)—Lr(QF,u) is finite.
(3) For all u,v € G, R,R, = Ry,.
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. Transfer Principles
We use two transfer principles.
@ Coifman-Weiss Transference Principle. Let G be a locally compact abelian
group. Let R: G — B(LP(Q),F, u)) satisfies the following conditions:
(1) For each f € LP(Q,F, ), the map u — R, f is continuous.

(2) The quantity Cg := sup,, || Rullzr(,F,u)—Lr(QF,u) is finite.
(3) For all u,v € G, R,R, = Ry,.

For all k € L'(G) with compact support define
ka o= fG k(u)Ruf, f S LP(Q,IF,M).Then HHk||LP(Q7[E‘HU,)_>LP(Q)]F,#) < C%Np(k‘)
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. Transfer Principles
We use two transfer principles.
@ Coifman-Weiss Transference Principle. Let G be a locally compact abelian
group. Let R: G — B(LP(Q,F, u)) satisfies the following conditions:
(1) For each f € LP(Q,F, ), the map u — R, f is continuous.
(2) The quantity Cg := sup,, || Rullzr(,F,u)—Lr(QF,u) is finite.
(3) For all u,v € G, R,R, = Ry,.

For all k € L'(G) with compact support define
ka o= fG k(u)Ruf, f S LP(Q,IF,M).Then HHk||LP(Q7[E‘HU,)_>LP(Q)]F,#) < C%Np(k‘)
where N, (k) is the operator norm of the convolution operator f — k * f on

LP(G).
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. Transfer Principles
We use two transfer principles.

@ Coifman-Weiss Transference Principle. Let G be a locally compact abelian
group. Let R: G — B(LP(Q,F, u)) satisfies the following conditions:
(1) For each f € LP(Q,F, ), the map u — R, f is continuous.
(2) The quantity Cg := sup,, || Rullzr(,F,u)—Lr(QF,u) is finite.
(3) For all u,v € G, R,R, = Ry,.

For all k € L'(G) with compact support define

ka o= fG k(u)Ruf, f S LP(Q,IF,M).Then HHk||LP(Q7[E‘HU,)_>LP(Q)]F,#) < C%Np(k‘)
where N, (k) is the operator norm of the convolution operator f — k * f on
L?(G).

From Transference to von Neumann inequality: Let T = (71,...,T),)
be commuting tuple of bounded operators on LP-space, 1 < p < oo which
admits a joint isometric loose dilation
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. Transfer Principles
We use two transfer principles.

@ Coifman-Weiss Transference Principle. Let G be a locally compact abelian
group. Let R: G — B(LP(Q,F, u)) satisfies the following conditions:
(1) For each f € LP(Q,F, ), the map u — R, f is continuous.
(2) The quantity Cg := sup,, || Rullzr(,F,u)—Lr(QF,u) is finite.
(3) For all u,v € G, R,R, = Ry,.

For all k € L'(G) with compact support define

ka o= fG k(u)Ruf, f S LP(Q,IF,M).Then HHk||LP(Q7[E‘HU,)_>LP(Q)]F,#) < C%Np(k‘)
where N, (k) is the operator norm of the convolution operator f — k * f on
L?(G).

From Transference to von Neumann inequality: Let T = (71,...,T),)
be commuting tuple of bounded operators on LP-space, 1 < p < oo which
admits a joint isometric loose dilation then T is jontly p-polynomially
bounded i.e., V P € C[Z,...,Z,]

[1P(T)||Lr—rr < CIP(S1, -, Sn)lle,(zm)—t,(2m)
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5 ' heorem on transferring the bounded j.f.c.

Theorem (Mohanty—Ray, 2017).
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5 ' heorem on transferring the bounded j.f.c.

Theorem (Mohanty—Ray, 2017). Suppose T = (T4,...,T,) is a commuting
tuple of Ritt operators on X. Let us denote the sectorial operators A; = Ix — T;
forl <i<n.
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5 ' heorem on transferring the bounded j.f.c.

Theorem (Mohanty—Ray, 2017). Suppose T = (T4,...,T,) is a commuting
tuple of Ritt operators on X. Let us denote the sectorial operators A; = I[x — T;

for 1 < i < n. The tuple T admits a joint bounded H> (]!, B,,) functional
calculus for some ~; € (0,%), 1 <i < n if and only if
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5 ' heorem on transferring the bounded j.f.c.

Theorem (Mohanty—-Ray, 2017). Suppose T = (11,
tuple of Ritt operators on X. Let us denote the sectorial operators A; = I[x — T;

for 1 < i < n. The tuple T admits a joint bounded H> (]!, B,,) functional
calculus for some «; € (0, %), 1 <4 < n if and only if the tuple
A= (A,

,Ap) admits a joint bounded H> ([}, X¢,) functional calculus for
some 6; € (0,75), 1 <i<n.

.., Ty) is a commuting
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5 ' heorem on transferring the bounded j.f.c.

Theorem (Mohanty—-Ray, 2017). Suppose T = (11,
tuple of Ritt operators on X. Let us denote the sectorial operators A; = I[x — T;

for 1 < i < n. The tuple T admits a joint bounded H> (]!, B,,) functional
calculus for some «; € (0, %), 1 <4 < n if and only if the tuple
A= (A,

,Ap) admits a joint bounded H> ([}, X¢,) functional calculus for
some 6; € (0,75), 1 <i<n.

.., Ty) is a commuting

@ The above result generalizes Le Merdy's one variable transfer principle.
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@ The above result generalizes Le Merdy's one variable transfer principle.

@ A crucial fact we will be using that LP-spaces have the n-f.c.p.
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5 ' heorem on transferring the bounded j.f.c.

Theorem (Mohanty—-Ray, 2017). Suppose T = (11,
tuple of Ritt operators on X. Let us denote the sectorial operators A; = I[x — T;

for 1 < i < n. The tuple T admits a joint bounded H> (]!, B,,) functional
calculus for some «; € (0, %), 1 <4 < n if and only if the tuple
A= (A,

,Ap) admits a joint bounded H> ([}, X¢,) functional calculus for
some 6; € (0,75), 1 <i<n.

.., Ty) is a commuting

@ The above result generalizes Le Merdy's one variable transfer principle.

@ A crucial fact we will be using that LP-spaces have the n-f.c.p.

Theorem (Mohanty-Ray, 2017). Let T = (11,

.., Tp,) be a commuting tuple of
positive contractions on LP-spaces (1 < p < oo) which are Ritt operators. Then
T admits a joint isometric loose dilation.
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5 ' heorem on transferring the bounded j.f.c.

Theorem (Mohanty—-Ray, 2017). Suppose T = (11,
tuple of Ritt operators on X. Let us denote the sectorial operators A; = I[x — T;

for 1 <i < mn. The tuple T admits a joint bounded H>(I]}_, B,,) functional
calculus for some «; € (0, %), 1 <4 < n if and only if the tuple
A= (A,

,Ap) admits a joint bounded H> ([}, X¢,) functional calculus for
some 6; € (0,75), 1 <i<n.

.., Ty) is a commuting

@ The above result generalizes Le Merdy's one variable transfer principle.

@ A crucial fact we will be using that LP-spaces have the n-f.c.p.

Theorem (Mohanty-Ray, 2017). Let T = (11,

.., Tp,) be a commuting tuple of
positive contractions on LP-spaces (1 < p < oo) which are Ritt operators. Then
T admits a joint isometric loose dilation.

@ The above result can be thought of a weak analogoue of multivariate
Akcoglu's dilation theorem.
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A characterization of joint bounded f.c.

Theorem (Mohanty—Ray, 2017). Let 1 < p # 2 < o0 and T = (11,

..., T,) be a
) n
commuting tuple of Ritt operators on LP()). Then the following assertions are
equivalent.
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A characterization of joint bounded f.c.

Theorem (Mohanty—Ray, 2017). Let 1 < p # 2 < o0 and T = (11,

..., T,) be a
) n
commuting tuple of Ritt operators on LP()). Then the following assertions are
equivalent.

1. The tuple T admits a joint bounded H>([]:_, B,,), v € (0, %), functional
calculus.
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A characterization of joint bounded f.c.

Theorem (Mohanty—Ray, 2017). Let 1 < p # 2 < o0 and T = (11,

..., T,) be a
) n
commuting tuple of Ritt operators on LP()). Then the following assertions are
equivalent.

1. The tuple T admits a joint bounded H>([]:_, B,,), v € (0, %), functional
calculus.

2. Each T;, 1 < i <nis R-Ritt and T admits a joint isometric loose dilation.
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A characterization of joint bounded f.c.

Theorem (Mohanty—Ray, 2017). Let 1 <p #2 < oo and T = (T1,...,T,) be a
commuting tuple of Ritt operators on LP()). Then the following assertions are

equivalent.

1. The tuple T admits a joint bounded H>([]:_, B,,), v € (0, %), functional
calculus.

2. Each T;, 1 < i <nis R-Ritt and T admits a joint isometric loose dilation.

3. Each T;, 1 < i <nis R-Ritt and T is jointly p-polynomially bounded.
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A characterization of joint bounded f.c.

Theorem (Mohanty—Ray, 2017). Let 1 <p #2 < oo and T = (T1,...,T,) be a
commuting tuple of Ritt operators on LP()). Then the following assertions are

equivalent.

1. The tuple T admits a joint bounded H>([]:_, B,,), v € (0, %), functional
calculus.

2. Each T;, 1 < i <nis R-Ritt and T admits a joint isometric loose dilation.
3. Each T;, 1 < i <nis R-Ritt and T is jointly p-polynomially bounded.

4. EachT;, 1 <i<mnis R-Ritt and (I —T4,...,I —T,) admits a joint
bounded H> (][, Xy,) functional calculus for 0; € (0, ) for each
1<i<n.
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A characterization of joint bounded f.c.

Theorem (Mohanty—Ray, 2017). Let 1 <p #2 < oo and T = (T1,...,T,) be a
commuting tuple of Ritt operators on LP()). Then the following assertions are
equivalent.

1. The tuple T admits a joint bounded H>([]:_, B,,), v € (0, %), functional
calculus.

2. Each T;, 1 < i <nis R-Ritt and T admits a joint isometric loose dilation.
3. Each T;, 1 < i <nis R-Ritt and T is jointly p-polynomially bounded.

4. EachT;, 1 <i<mnis R-Ritt and (I —T4,...,I —T,) admits a joint
bounded H> (][, Xy,) functional calculus for 0; € (0, ) for each
1<i<n.

@ The above result generalizes single variable characterizations of Le
Merdy-arhancet and Le Merdy-Fackler-Arhancet.
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sJoint similarity problem

(Pisier,1997) There exists a polynomially bounded operator on a Hilbert space
which is not similar to a contraction.(This resolves a long-standing open problem of
Paul Halmos.)
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(Pisier,1998) There exists two commuting bounded operators on a Hilbert
space, each of which being similar to a contractions but they are not
jointly similar to contractions.
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(Pisier,1997) There exists a polynomially bounded operator on a Hilbert space
which is not similar to a contraction.(This resolves a long-standing open problem of
Paul Halmos.)

(Pisier,1998) There exists two commuting bounded operators on a Hilbert
space, each of which being similar to a contractions but they are not
jointly similar to contractions.

@ Le Merdy showed Ritt operators are stable under Halmos similaity problem.
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sJoint similarity problem

(Pisier,1997) There exists a polynomially bounded operator on a Hilbert space
which is not similar to a contraction.(This resolves a long-standing open problem of

Paul Halmos.)

(Pisier,1998) There exists two commuting bounded operators on a Hilbert
space, each of which being similar to a contractions but they are not
jointly similar to contractions.

@ Le Merdy showed Ritt operators are stable under Halmos similaity problem.

Theorem(Mohanty-Ray, 2017): Let T = (T3,...,T,) commuting Ritt
operators on ‘H. TFAE

1. Each T; is similar to a contraction, 1 < i < n.

~
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sJoint similarity problem

(Pisier,1997) There exists a polynomially bounded operator on a Hilbert space
which is not similar to a contraction.(This resolves a long-standing open problem of

Paul Halmos.)

(Pisier,1998) There exists two commuting bounded operators on a Hilbert
space, each of which being similar to a contractions but they are not
jointly similar to contractions.

@ Le Merdy showed Ritt operators are stable under Halmos similaity problem.

Theorem(Mohanty-Ray, 2017): Let T = (T3,...,T,) commuting Ritt
operators on ‘H. TFAE

1. Each T; is similar to a contraction, 1 < i < n.
2. The tuple T = (T4,...,T,) admits a j.b.f.c.
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(Pisier,1997) There exists a polynomially bounded operator on a Hilbert space
which is not similar to a contraction.(This resolves a long-standing open problem of

Paul Halmos.)

(Pisier,1998) There exists two commuting bounded operators on a Hilbert
space, each of which being similar to a contractions but they are not
jointly similar to contractions.

@ Le Merdy showed Ritt operators are stable under Halmos similaity problem.

Theorem(Mohanty-Ray, 2017): Let T = (T3,...,T,) commuting Ritt
operators on ‘H. TFAE

1. Each T; is similar to a contraction, 1 < i < n.
2. The tuple T = (T4,...,T,) admits a j.b.f.c.

3. The tuple T = (T1,...,T,) is jointly similar to a commuting n-tuple
of contractions.

~
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Samya Kumar Ray Joint functional calculus of Ritt operators



,On general Banach space and non-commutative L”-space

Theorem(Mohanty-Ray, 2017). Let T = (11, - ,T),) be a commuting tuple of
bounded operators on X, which is jointly p-polynomially bounded. Then
(I-T,...,I—T,) is a commuting tuple of sectorial operators and admits a
joint bounded H>* (], X9,) functional calculus for all 6; € (5, ).

@ This generalizes a single variable result of Le Merdy and Arhancet. The
main ingredient of the proof is Marcinkiewicz multiplier theorem.

Theorem(Mohanty-Ray, 2017): Let .# be a von Neumann algebra
equipped with a normal faithful semifinite trace and 1 < p # 2 < oo and
T = (T1,...,T,) be a commuting tuple of R-Ritt operators on LP(.#).
Then we have (1) = (2) = (3).

1. The tuple T admits a joint bounded functional calculus.
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Theorem(Mohanty-Ray, 2017). Let T = (11, - ,T),) be a commuting tuple of
bounded operators on X, which is jointly p-polynomially bounded. Then
(I-T,...,I—T,) is a commuting tuple of sectorial operators and admits a
joint bounded H>* (], X9,) functional calculus for all 6; € (5, ).

@ This generalizes a single variable result of Le Merdy and Arhancet. The
main ingredient of the proof is Marcinkiewicz multiplier theorem.

Theorem(Mohanty-Ray, 2017): Let .# be a von Neumann algebra
equipped with a normal faithful semifinite trace and 1 < p # 2 < oo and
T = (T1,...,T,) be a commuting tuple of R-Ritt operators on LP(.#).
Then we have (1) = (2) = (3).

1. The tuple T admits a joint bounded functional calculus.

2. The tuple T admits a joint non-commutative loose dilation.
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Theorem(Mohanty-Ray, 2017). Let T = (11, - ,T),) be a commuting tuple of
bounded operators on X, which is jointly p-polynomially bounded. Then
(I-T,...,I—T,) is a commuting tuple of sectorial operators and admits a
joint bounded H>* (], X9,) functional calculus for all 6; € (5, ).

@ This generalizes a single variable result of Le Merdy and Arhancet. The
main ingredient of the proof is Marcinkiewicz multiplier theorem.

Theorem(Mohanty-Ray, 2017): Let .# be a von Neumann algebra
equipped with a normal faithful semifinite trace and 1 < p # 2 < oo and
T = (T1,...,T,) be a commuting tuple of R-Ritt operators on LP(.#).
Then we have (1) = (2) = (3).

1. The tuple T admits a joint bounded functional calculus.

2. The tuple T admits a joint non-commutative loose dilation.

3. There exists a .4 be a von Neumann algebra equipped with a normal
faithful semifinite trace .4 and a constant C > 0 such that
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