
Foundations Multidimensional Mechanism Design

Debasis Mishra
Indian Statistical Institute, Delhi

January 2016

Outline

◮ What is (multidimensional) mechanism design?

◮ Lessons from one-dimensional mechanism design.

◮ Description of incentive compatible mechanisms.

◮ Revenue equivalence result.

The Setting

A finite set of agents and each agent has some private
information.

A planner/mechanism designer takes two decision based on the
(reported) private information:

◮ an allocation decision

◮ a payment decision

Once the decisions are taken, agent realizes utility, quasilinear in
payments:

Utility from allocation - payment

Examples - Private and Public Good Allocation

◮ Single object sale: who to allocate and how much price to
charge

◮ Multiple objects sale: who to allocate which object and how
much to charge each agent

◮ Opening a public facility (a bridge or library or university):
whether to open it or where to open it and how much to
tax/subsidize each agent.

Reverse Engineering a Game

Mechanism designer does not know the private information of
agents.

If he knew the private information, he knows what decisions he
would have taken.

Needs to elicit information by providing incentives - design
mechanisms or a game-form.

Design the game-form in a manner such that equilibrium of the
resulting game coincides with what the designer wanted to do.

A One-Dimensional Example

A time slot (on a server) of 1 unit needs to be allocated to an
agent.

The agent has value v for the slot and if he receives only α ∈ [0, 1]
amount of time, then he gets a utility of αv and if he is asked to
pay p, then he gets a net utility of

αv − p.

The designer does not know how much value v agent has, but
knows that it is some non-negative real number.

A Reserve Price Mechanism

The designer announces a reserve price r and asks agent his value.

If the reported value is more than r , then the entire slot is given to
the agent. Else, no time is given to the agent.

If no time is given to the agent, then the agent pays zero. Else, he
pays the reserve price.

The agent cannot increase his utility by reporting a false value -
the mechanism is incentive compatible.

What is a mechanism?

Complicated to define a general mechanism.

But consider the following kind of mechanisms (direct
mechanisms).

A mechanism is a pair of functions (f , p), where

f : V → [0, 1]

and
p : V → R,

where V is the set of all possible values - assume it to be an
interval, say [0, β].

What is a mechanism?

Complicated to define a general mechanism.

But consider the following kind of mechanisms (direct
mechanisms).

A mechanism is a pair of functions (f , p), where

f : V → [0, 1]

and
p : V → R,

where V is the set of all possible values - assume it to be an
interval, say [0, β].

Incentive Compatibility

Definition
A mechanism (f , p) is incentive compatible if for every
v , v ′ ∈ V , we have

f (v) · v − p(v) ≥ f (v ′) · v − p(v ′).

Truth-telling is a weakly dominant strategy.

Revelation Principle. If there is a mechanism with a non-truthful
“equilibrium”, then there is a direct mechanism with a truthful
equilibrium achieving the same outcome.

Incentive Compatibility

Definition
A mechanism (f , p) is incentive compatible if for every
v , v ′ ∈ V , we have

f (v) · v − p(v) ≥ f (v ′) · v − p(v ′).

Truth-telling is a weakly dominant strategy.

Revelation Principle. If there is a mechanism with a non-truthful
“equilibrium”, then there is a direct mechanism with a truthful
equilibrium achieving the same outcome.

Question

What kind of mechanisms are incentive compatible?

Rewriting Incentive Compatibility

Given a mechanism M ≡ (f , p), denote the net utility of
truth-telling of an agent with value v as:

UM(v) := f (v) · v − p(v).

Incentive compatibility is equivalent to requiring: for all v , v ′ ∈ V ,

UM(v) ≥ f (v ′) · v − p(v ′)

= f (v ′) · (v − v ′) + f (v ′) · v ′ − p(v ′)

= UM(v ′) + f (v ′) · (v − v ′).

Convexity of Net Utility

Lemma
If M ≡ (f , p) is incentive compatible, then UM is a convex
function.

Remind: Convex functions are continuous in its interior and
differentiable almost everywhere.

So a mechanism M ≡ (f , p) is incentive compatible if the function
UM satisfies for all v , v ′ ∈ V ,

UM(v) ≥ UM(v ′) + f (v ′) · (v − v ′).

Convexity of Net Utility

Lemma
If M ≡ (f , p) is incentive compatible, then UM is a convex
function.

Remind: Convex functions are continuous in its interior and
differentiable almost everywhere.

So a mechanism M ≡ (f , p) is incentive compatible if the function
UM satisfies for all v , v ′ ∈ V ,

UM(v) ≥ UM(v ′) + f (v ′) · (v − v ′).

Careful Look

For every v , v ′ ∈ V , we need to satisfy incentive constraints
v → v ′ and v ′ → v :

UM(v) ≥ UM(v ′) + f (v ′) · (v − v ′).

UM(v ′) ≥ UM(v) + f (v) · (v ′ − v).

Hence, we have

f (v) · (v − v ′) ≥ UM(v) − UM(v ′) ≥ f (v ′) · (v − v ′)

As v ′ → v , we see that f (v) is the derivative of UM at v (if it is
differentiable at v).

Allocation is Subgradient of Net Utility
For convex functions, f (v) will be termed a subgradient of UM at
v : they are not decreasing functions.

v

UM(v) Non-differentiable point

Figure: A convex function and its subgradients

Fundamental Theorem of Convex Analysis (Calculus)

Every convex function can be written as a definite integral of its
subgradient.

For every v ∈ [0, β],

UM(v) = UM(0) +

∫ v

0

f (x)dx .

Alternatively,

p(v) = p(0) + f (v) · v −

∫ v

0

f (x)dx .

Fundamental Theorem of Convex Analysis (Calculus)

Every convex function can be written as a definite integral of its
subgradient.

For every v ∈ [0, β],

UM(v) = UM(0) +

∫ v

0

f (x)dx .

Alternatively,

p(v) = p(0) + f (v) · v −

∫ v

0

f (x)dx .

Fundamental Theorem of Convex Analysis (Calculus)

Every convex function can be written as a definite integral of its
subgradient.

For every v ∈ [0, β],

UM(v) = UM(0) +

∫ v

0

f (x)dx .

Alternatively,

p(v) = p(0) + f (v) · v −

∫ v

0

f (x)dx .

Two Necessary Conditions for Incentive Compatibility

f is non-decreasing.

For every v ∈ [0, β],

UM(v) = UM(0) +

∫ v

0

f (x)dx .

They are also sufficient.

Two Necessary Conditions for Incentive Compatibility

f is non-decreasing.

For every v ∈ [0, β],

UM(v) = UM(0) +

∫ v

0

f (x)dx .

They are also sufficient.

Myerson Characterization

Theorem (Myerson)

A mechanism M ≡ (f , p) is incentive compatible if and only if

◮ Monotonicity. for all v , v ′ ∈ [0, β] with v > v ′, we have
f (v) ≥ f (v ′).

◮ Payoff Equivalence. for all v ∈ [0, β],

UM(v) = UM(0) +

∫ v

0

f (x)dx .

Proof of Sufficiency

Remind: incentive compatibility requires us to show for all
v , v ′ ∈ [0, β],

UM(v) ≥ UM(v ′) + f (v ′) · (v − v ′).

UM(v) − UM(v ′) =

∫ v

v ′

f (x)dx ≥ f (v ′) · (v − v ′).

Proof of Sufficiency

Remind: incentive compatibility requires us to show for all
v , v ′ ∈ [0, β],

UM(v) ≥ UM(v ′) + f (v ′) · (v − v ′).

UM(v) − UM(v ′) =

∫ v

v ′

f (x)dx ≥ f (v ′) · (v − v ′).

Why is it Useful?

Monotonicity is an easy condition to check.

Payoff (revenue) equivalence is very powerful: Payoff (from
truth-telling) at every type is uniquely determined upto an additive
constant by the allocation rule.

If we take two incentive compatible mechanisms (f , p) and (f , p′),
they can only differ in the payment at the lowest value.

If we can set the payment at the lowest value, then the every
incentive compatible mechanism can be written in terms of f -
search space is the space of all non-decreasing f .

Implementation

Since a mechanism is almost uniquely pinned down by an
allocation rule, we frame the question slightly differently.

Definition
An allocation rule f is implementable if there exists a payment
rule p such that (f , p) is incentive compatible.

An immediate corollary of Myerson’s theorem is that f is
implementable if and only if it is non-decreasing - p that
implements f is almost uniquely determined by the revenue/payoff
equivalence formula.

Beyond this Example

Techniques developed here works for almost all one-dimensional
mechanism design problems.

Techniques extend to multiple agents case also (more later).

It forms the core of optimization done in mechanism design -
expected revenue maximizing mechanism, budget-balanced
mechanism, fair mechanism etc.

They are also starting point for analyzing multidimensional
mechanism design problems.

Multidimensional Mechanism Design

Private information of agents is no longer a single real number.

◮ Dichotomous Preference. Agent has some feasible dates of
travel - travel gives agent a value only his feasible day but
gives zero value on other days.

Value and feasible dates are private information.

◮ Multi object auction. Multiple objects for sale. Agent has
value for each bundle of objects.

◮ Locating a public good. A public good (bridge) can be
located at many places. Each location gives a different value
to the agent.

The One Agent Model

A finite set of alternatives A = {a, b, c , . . .} - set of objects, set of
locations etc.

Private information of agent is a value vector v ∈ R
|A|.

A mechanism M ≡ (f , p) is

f : V → L(A), p : V → R,

where L(A) are the set of all lotteries over A and V is the set of
all possible values.

The One Agent Model Contd.

An allocation rule is deterministic if fa(v) ∈ {0, 1} for all a and for
all v ∈ V .

If the agent has value v and reports v ′, then he gets a net utility of

f (v ′) · v − p(v ′).

Usual Examples

A represents the set of all objects and agent can be given one of
the objects. v(a) represents the value for object a.

A represents the set of all bundles of objects and agent can be
given any bundle. v(a) represents the value for bundle a.

A represents the set of all possible locations of the public good -
only one location will be chosen. v(a) represents the value for
location a.

Example - Dichotomous Preference

A is the set of all travel dates.

Private information consists of (S , x), where S ⊆ A are the feasible
travel dates and x ∈ R+ is the value of travel.

The value vector v ∈ R
|A| will consist of a vector where v(a) = x if

a ∈ S and v(a) = 0 otherwise.

Graphical Illustration

Value of c

Value of a

Value of b

Figure: Dichotomous values

Example - Scheduling

A is the dates of a month.

A firm (agent) needs delivery of a product in that month. The firm
has an “ideal” date - any date away from it gives him less value.

Note: Ideal date is not known and none of the values are known.

Value vector is single-peaked - values away from ideal date are
increasingly worse.

Example - Scheduling (contd.)

Suppose three dates a ≻ b ≻ c .

Then, any value v can have four possibilities:

v(a) ≥ v(b) ≥ v(c)

v(c) ≥ v(b) ≥ v(a)

v(b) ≥ v(a) ≥ v(c)

v(b) ≥ v(c) ≥ v(a).

What is not allowed:

v(a) > v(c) > v(b)

v(c) > v(a) > v(b).

Graphical Illustration

t(c) > t(b) > t(a)

t(c) > t(a) > t(b)

t(a) > t(c) > t(b)

t(a) > t(b) > t(c)

t(b) > t(a) > t(c)

t(b) > t(c) > t(a)

Figure: Single Peaked Values

Value Space

The domain of values play an important role in mechanism design
- defines the set of incentive constraints we need to worry about.

Mechanism designer has complete knowledge of domain of values.

The structure of domain of values determine the structure of
incentive compatible mechanisms.

An Example
Two alternatives {a, b}. Domain of values is the colored region
(except the boundaries).

v(a)

v(b)

1

1

fa(v) = 1

fb(v) = 1

A Mechanism for this Example

f as shown and p(v) = 0 for all v .

Is this incentive compatible?

◮ In red region, v(a) > v(b) and fa(v) = 1 - so agent will not
manipulate.

◮ In blue region, above 45-degree line, v(b) > v(a) and
fb(v) = 1 - so agent will not manipulate.

◮ In blue region, below 45-degree line, v(b) < v(a) and
fb(v) = 1 - so agent can manipulate to red region.

Manipulating in Both Dimensions

This manipulation requires agent to change his values on a and b.

Incentive constraints where agent only changes either a or b value
are satisfied.

Moral of the story: Incentive constraints in both dimensions have
to be taken care of - not one dimension at a time.

Incentive Constraints

The second example is again with A = {a, b}. Consider an
allocation rule f which either picks a or picks b (no other lottery)
in some domain V .

Define
V f

a := {v ∈ V : fa(v) = 1}

and
V f

b := {v ∈ V : fb(v) = 1}.

If (f , p) is an incentive compatible mechanism and v , v ′ ∈ V such
that f (v) = f (v ′), we have p(v) = p(v ′).

Hence, there are two numbers qa and qb such that for all v ∈ V f
a ,

we have p(v) = qa and for all v ∈ V f
b , we have p(v) = qb.

Incentive Constraints

Two sets of incentive constraints. For every v ∈ V f
a and every

v ′ ∈ V f
b , we must have

v(a) − qa ≥ v(b) − qb

v ′(b) − qb ≥ v ′(a) − qa.

Rewriting this, we note that

inf
v∈V f

a

[

v(a) − v(b)
]

≥ qa − qb

inf
v ′∈V f

b

[

v ′(b) − v ′(a)
]

≥ qb − qa.

A Necessary Condition

A necessary condition on f can be immediately found by adding
these incentive constraints.

inf
v∈V f

a

[

v(a) − v(b)
]

+ inf
v ′∈V f

b

[

v ′(b) − v ′(a)
]

≥ 0.

Now, consider an arbitrary mechanism (f , p). Suppose f satisfies
this condition.

Then, setting qa = 0 and

qb = inf
v ′∈V f

b

[

v ′(b) − v ′(a)
]

,

we can construct an incentive compatible mechanism

Sufficiency

We need to ensure

inf
v∈V f

a

[

v(a) − v(b)
]

≥ qa − qb

inf
v ′∈V f

b

[

v ′(b) − v ′(a)
]

≥ qb − qa.

Second inequality is satisfied trivially. For first, note

qa − qb = − inf
v ′∈V f

b

[

v ′(b) − v ′(a)
]

≤ inf
v∈V f

a

[

v(a) − v(b)
]

,

as desired by the first inequality.

Sufficiency

We need to ensure

inf
v∈V f

a

[

v(a) − v(b)
]

≥ qa − qb

inf
v ′∈V f

b

[

v ′(b) − v ′(a)
]

≥ qb − qa.

Second inequality is satisfied trivially. For first, note

qa − qb = − inf
v ′∈V f

b

[

v ′(b) − v ′(a)
]

≤ inf
v∈V f

a

[

v(a) − v(b)
]

,

as desired by the first inequality.

Observations

Rewriting: For every v ∈ V f
a and every v ′ ∈ V f

b , we have

v(a) − v(b) ≥ v ′(a) − v ′(b),

Different from Myerson monotonicity, but related.

We look at differences of values between the two alternatives.

To see this, suppose this condition is not true:

v(b) − v(a) > v ′(b) − v ′(a).

But fb(v
′) = 1 and fa(v

′) = 1.

Questions

What are necessary and sufficient conditions for f to be
implementable?

Does payoff/revenue equivalence still hold? What is the analogue
of Myerson’s theorem?

These questions map out the search space of incentive compatible
mechanisms.

Incentive Compatibility

Definition
A mechanism M ≡ (f , p) is incentive compatible if for every
v , v ′ ∈ V , we have

v · f (v) − p(v) ≥ v · f (v ′) − p(v ′),

or equivalently,

UM(v) ≥ UM(v ′) + (v − v ′) · f (v ′).

An allocation rule f is implementable if there exist a payment
rule p such that (f , p) is incentive compatible.

Extending Monotonicity

Definition
An allocation rule f is monotone if for every v , v ′ ∈ V , we have

(v − v ′) ·
(

f (v) − f (v ′)
)

≥ 0.

Why this extension?

◮ A necessary condition: derived by adding incentive constraints

UM(v) ≥ UM(v ′) + (v − v ′) · f (v ′)

UM(v ′) ≥ UM(v) + (v ′ − v) · f (v).

◮ Reduces to Myerson monotonicity if v is one-dimensional.

◮ If f is deterministic (only 0/1 probabilities), the condition
reduces to

v(f (v)) − v(f (v ′)) ≥ v ′(f (v)) − v ′(f (v ′)).

Myerson Extended

Theorem
Suppose V ⊆ R

|A| is convex. A mechanism M ≡ (f , p) is incentive
compatible if and only if

(a) f is monotone,

(b) for every v , v ′ ∈ V ,

UM(v ′) = UM(v) +

∫

1

0

ψv ,v ′

(z)dz ,

where ψv ,v ′

(z) = (v ′ − v) · f (v + z(v ′ − v)) for all z ∈ [0, 1].

Necessity

The necessity of these conditions:

◮ f monotone follows by adding incentive constraints.

◮ Second condition follows by looking at the line segment joining
v and v ′ (a one-dimensional space) and applying Myerson.

◮ To be able to apply incentive constraints along all the points
on the line segment, we need convexity of V .

Sufficiency

Sufficiency is established by showing that

◮ ψ is non-decreasing if f is monotone.

◮ Then,

UM(v ′) − UM(v) − (v ′ − v) · f (v)

=

∫

1

0

ψv ,v ′

(z)dz − (v ′ − v) · f (v)

≥ ψv ,v ′

(0) − (v ′ − v) · f (v)

= 0,

Good News: Payoff Equivalence

If we fix at UM some v0, it fixes the UM(v) for all v via f .

So, if we have (f , p) and (f , p′), then for all v , v ′ ∈ V ,

p(v) − p(v ′) = p′(v) − p′(v ′).

However, the revenue equivalence formula here is stronger - it
needs to hold for every pair of values v , v ′ as compared to v , v0 for
some v0 and for all v .

Good News: Payoff Equivalence

If we fix at UM some v0, it fixes the UM(v) for all v via f .

So, if we have (f , p) and (f , p′), then for all v , v ′ ∈ V ,

p(v) − p(v ′) = p′(v) − p′(v ′).

However, the revenue equivalence formula here is stronger - it
needs to hold for every pair of values v , v ′ as compared to v , v0 for
some v0 and for all v .

The Implementability Question

Since payoff equivalence holds, can we characterize implementable
allocation rules?

Conjecture: If V is convex, f is implementable if and only if it is
monotone.

The conjecture is false in general.

The reason is: fixing UM(v0) for some v0 and finding UM(v) for all
v using the payoff equivalence formula does not imply that payoff
equivalence formula is true for all v , v ′.

The Implementability Question

Since payoff equivalence holds, can we characterize implementable
allocation rules?

Conjecture: If V is convex, f is implementable if and only if it is
monotone.

The conjecture is false in general.

The reason is: fixing UM(v0) for some v0 and finding UM(v) for all
v using the payoff equivalence formula does not imply that payoff
equivalence formula is true for all v , v ′.

Stronger Conditions

Consider a sequence of values v1, . . . , vk . Consider the incentive
constraints along the cycle: v1 → v2 → v3 → . . .→ vk → v1:

v1 · f (v1) − p(v1) ≥ v1 · f (v2) − p(v2)

v2 · f (v2) − p(v2) ≥ v2 · f (v3) − p(v3)

. . . ≥ . . .

. . . ≥ . . .

vk−1 · f (vk−1) − p(vk−1) ≥ vk−1 · f (vk) − p(vk)

vk · f (vk) − p(vk) ≥ vk · f (v1) − p(v1).

Adding these payments cancel and you get a necessary condition
for f .

Cycle Monotonicity

For every allocation rule f and for every v , v ′, define

ℓf (v , v ′) := v ′ · (f (v ′) − f (v)).

Definition
An allocation rule f is K-cycle monotone if for all k ≤ K and for
all cycle of values (v1, . . . , vk , vk+1 ≡ v1), we have

k
∑

j=1

ℓf (v j , v j+1) = 0.

An allocation rule f is cyclically monotone if is K-cycle

monotone for all K .

Note monotonicity is 2-cycle monotonicity.

Graph Interpretation

Construct a complete directed graph with set of nodes as V
(which can be finite or infinite).

For every directed edge (v , v ′), the length is ℓf (v , v ′).

Cycle monotonicity requires that every cycle of this directed graph
has non-negative length.

The Rochet-Rockafellar Theorem

Theorem
An allocation rule f is implementable if and only if it is cyclically
monotone.

Necessity is by adding incentive constraints along each cycle.

Sufficiency is by constructing an explicit payment rule.

Fix any value (node) v0 and set p(v0) = 0, then for every v 6= v0,
set p(v) = s(v0, v) - the shortest path from v0 to v .

These shortest paths are finite because of no negative length cycle.

The Rochet-Rockafellar Theorem

Theorem
An allocation rule f is implementable if and only if it is cyclically
monotone.

Necessity is by adding incentive constraints along each cycle.

Sufficiency is by constructing an explicit payment rule.

Fix any value (node) v0 and set p(v0) = 0, then for every v 6= v0,
set p(v) = s(v0, v) - the shortest path from v0 to v .

These shortest paths are finite because of no negative length cycle.

Payments

The construction hints at many possible payment rules for the
same f (satisfying cycle monotonicity).

Revenue equivalence says that they should differ from each other
by a constant.

Revenue equivalence holds if V is convex (earlier theorem).
Anywhere else?

Revenue Equivalence

Definition
An allocation rule f : V → L(A) satisfies revenue equivalence if
for every p, p′ such that (f , p) and (f , p′) are incentive compatible,
we have

p(v) − p′(v) = p(v ′) − p′(v ′) ∀ v , v ′ ∈ V .

Theorem
An implementable (cyclically monotone) allocation rule
f : V → L(A) satisfies revenue equivalence if and only if

s(v , v ′) + s(v ′, v) = 0 ∀ v , v ′ ∈ V .

This condition is satisfied if (a) V is convex or (b) if f is
deterministic and V is connected.

Revenue Equivalence

Definition
An allocation rule f : V → L(A) satisfies revenue equivalence if
for every p, p′ such that (f , p) and (f , p′) are incentive compatible,
we have

p(v) − p′(v) = p(v ′) − p′(v ′) ∀ v , v ′ ∈ V .

Theorem
An implementable (cyclically monotone) allocation rule
f : V → L(A) satisfies revenue equivalence if and only if

s(v , v ′) + s(v ′, v) = 0 ∀ v , v ′ ∈ V .

This condition is satisfied if (a) V is convex or (b) if f is
deterministic and V is connected.

Revenue Equivalence

Definition
An allocation rule f : V → L(A) satisfies revenue equivalence if
for every p, p′ such that (f , p) and (f , p′) are incentive compatible,
we have

p(v) − p′(v) = p(v ′) − p′(v ′) ∀ v , v ′ ∈ V .

Theorem
An implementable (cyclically monotone) allocation rule
f : V → L(A) satisfies revenue equivalence if and only if

s(v , v ′) + s(v ′, v) = 0 ∀ v , v ′ ∈ V .

This condition is satisfied if (a) V is convex or (b) if f is
deterministic and V is connected.

Deterministic Allocation Rules

Cycle monotonicity is a very cumbersome condition to use.

Theorem
Suppose f is a deterministic allocation rule. Then, f is
implementable if and only if it |A|-cycle monotone.

Still not very useful because we need to verify all cycles of length
|A|.

Deterministic Allocation Rules

Cycle monotonicity is a very cumbersome condition to use.

Theorem
Suppose f is a deterministic allocation rule. Then, f is
implementable if and only if it |A|-cycle monotone.

Still not very useful because we need to verify all cycles of length
|A|.

Simpler Conditions

Theorem
Suppose f is a deterministic allocation rule. Further, suppose V is
either (a) convex or (b) contains all single-peaked value vectors.
Then, f is implementable if and only if it is (2-cycle) monotone.

Theorem
Suppose f is a deterministic allocation rule. Further, suppose V
contains all dichotomous value vectors. Then, f is implementable
if and only if it is 3-cycle monotone.

Simpler Conditions

Theorem
Suppose f is a deterministic allocation rule. Further, suppose V is
either (a) convex or (b) contains all single-peaked value vectors.
Then, f is implementable if and only if it is (2-cycle) monotone.

Theorem
Suppose f is a deterministic allocation rule. Further, suppose V
contains all dichotomous value vectors. Then, f is implementable
if and only if it is 3-cycle monotone.

Remind - Single Peaked Values

t(c) > t(b) > t(a)

t(c) > t(a) > t(b)

t(a) > t(c) > t(b)

t(a) > t(b) > t(c)

t(b) > t(a) > t(c)

t(b) > t(c) > t(a)

Figure: Single Peaked Values

Remind - Dichotomous Values

Value of c

Value of a

Value of b

Figure: Dichotomous values

Extension to Many Agents

Suppose the set of agents is N = {1, . . . , n}.

Every agent i has a space of values Vi and let V = V1 × . . .× Vn.

A mechanism is (f , p1, . . . , pn), where

f : V → L(A), pi : V → R, ∀ i ∈ N.

Definition
A mechanism (f , p1, . . . , pn) is dominant strategy incentive
compatible (DSIC) if for every i ∈ N, for every v−i , and for every
vi , v

′
i ∈ Vi , we have

f (vi , v−i) · vi − pi(vi , v−i) ≥ f (v ′
i , v−i) · vi − pi (v

′
i , v−i).

How to Extend?

With more agents and DSIC, we fix an agent i and values of other
agents at v−i .

The incentive constraints are then defined for agent i once we fix it
like this.

Hence, the problem is similar to a collection of “many” one-agent
problems.

All the results need to be stated for all i ∈ N and for all v−i .

Beyond DSIC

DSIC is a very demanding solution concept - irrespective of what
other agents report, an agent must have (weakly) dominant
strategy to report his true value.

Weaker solution concepts possible: Bayesian IC - this requires
defining what each agent believes other agents’ values are.

Some but not all results can be extended with Bayesian IC.

Summary

The structure of set of incentive compatible mechanisms is
complicated - unlike one dimensional problems.

However, monotonicity and revenue equivalent results of Myerson
extend to many interesting multidimensional domains.

Optimizing over the set of all incentive compatible mechanisms
becomes hard because of the complicated structure.

New ideas are needed that can utilize known structure to cleverly
define and solve optimization problems.

