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Insight: Formal explanation of Braess' paradox



Game Theory: Study of how self-interested agents interact.

Illustrative Applications:

e Traffic Networks

o Strategic vendor auctioning goods to self-interested
bidders

Insight: A simple auction with one extra bidder earns more
revenue than the optimal auction with the original bidders
(Bulow and Klemperer 1996).



Game Theory: Study of how self-interested agents interact.

Illustrative Applications:

e Traffic Networks
e Auctions

J Determine a stable assignment for
self-interested entities that have rankings for each other

Insight: The stark effect of competition (Ashlagi et al. 2015).
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Game Theory: Study of how self-interested agents interact.

Components of a Game: Players, Actions, Payoffs

Likely/Stable Outcome: Equilibria wherein no player has an
incentive to unilaterally deviate

Representation of a Game:

e Normal Form includes all action profiles and their
corresponding payoffs, for each player
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payoffs.
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2 <
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(me cirea 1990)  presentation (NE)

=

1Credit: Vincent Conitzer
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Do not pay
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(NA)

Pay
attention (A)

5 i Put effort into 0
t :‘j presentation (E) 27 2 —1, 0
‘ Do not put effort into _7 *8 O ()

(me circa 1990)  presentation (NE) ) 2

-

At (E, A) and at (NE, NA) no player has an incentive to
unilaterally deviate

1Credit: Vincent Conitzer




model settings in which two self-interested
entities simultaneously select actions to maximize their own

payoffs.

Example: Presentation Game!

Do not pay
attention
(NA)

Pay
attention (A)

3 | Put effort into p

rt N presentation (E) 27 2 —1, (]
‘ Do not put effort into

-7, -8 0,0

(me circa 1990)  presentation (NE)

(E, A) and (NE, NA) are Pure Nash Equilibria of the game

!Credit: Vincent Conitzer



model settings in which two self-interested
entities simultaneously select actions to maximize their own
payoffs.

Example: Rock-Paper-Scissors

Scissors

beats paper
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Notation:
ul(R, P) =—1
UQ(R, P) =1



model settings in which two self-interested
entities simultaneously select actions to maximize their own
payoffs.

Example: Rock-Paper-Scissors

P |11 |00 | -1,1

Amongst rational players, deterministic strategies are not stable.

Therefore, we must consider strategies in which players randomize
between actions.



Example: Rock-Paper-Scissors

Notation:
Ui (R, P) ==
u(R,P) =1

R P S
0,0 | -1,1 | 1,4
L1 |00 | -1,1
1,1 | 1,1 | 00




Example: Rock-Paper-Scissors

R p S

R [oo0 |11

L1 |00 | 1,1

1,1 | 1,1 | 00

e o := uniform distribution (3, 1, 3) over {R, P, S}.

o Expected utility of first player
UI(R, 0) = ul(Pa U) = ul(sa U) = 0.




Example: Rock-Paper-Scissors

R P S

L-1 | 00 | -1,1

e o := uniform distribution (3, 1, 3) over {R, P, S}.

o Expected utility of first player
ui(R,0) = ui(P,0) = u1(S,0) = 0. Hence, ui(o,0) = 0.
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Example: Rock-Paper-Scissors

e o := uniform distribution (%, %, %) over {R, P, S}.

o Expected utility of first player
ui(R,0) = ui(P,0) = u1(S,0) = 0. Hence, ui(o,0) = 0.
e Also, uz(o, R) = us(o, P) = us(0,S) = uz(o,0) = 0.

(0,0) is a Nash equilibrium of the game
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Notation:
e Players: {1,2,...,n}
e Player p's action set: A,
e Action profiles: [, A,
e Player p's utility: u, : Hp A, —R

In Rock-Paper-Scissors, n =2 and A; = Ay ={R, P, S}
ui(R,P) =—1, ug(R,P) =1,...



Nash equilibria denote distributions over players’ action pro-

files at which no player can benefit by unilateral deviation.

Notation:
e Players: {1,2,...,n}
e Player p's action set: A,
e Action profiles: [, A,
e Player p's utility: u, : Hp A, —R

Probability distributions (01,09, ...,0,) denote a
Nash equilibrium iff for each player p we have

Up(ap, 0—p) < up(op,0-p) Va, € Ap.

Here, o_p := (01,02,...,0p—1,0p41,...,0n).




Fundamental Results

Guaranteed Existence of Nash Equilibria

e In two-player zero-sum games [von Neumann 1928]
e In finite games [Nash 1950]

John von Neumann John Nash



Two-Player Zero-Sum Games

Recall Rock-Paper-Scissors:

R 2 S
R|[oo | -1,1 |1
1,1 | 00 | -1,1
S
1,1 | 1,1 | o0




Two-Player Zero-Sum Games

In general, for each action a1 € Ay and as € Ao

u1 (a1, a2) + uz(a1,a2) =0




Two-Player Zero-Sum Games

In general, for any action a; € A; and az € Ay

ug(ay, az) = —ui(ay, az)




Two-Player Zero-Sum Games

o [Vaximin value = largest utility that player 1 can guarantee

max min  uy(o1,02)
01EA(A1) o2€A(A2)




Two-Player Zero-Sum Games

o [Vaximin value = largest utility that player 1 can guarantee

0] € argmax 11;1211 ui(o1,09)
o1




Two-Player Zero-Sum Games

o [Vaximin value = largest utility that player 1 can guarantee

o] € argmax 1131211 ui(o1,09)
g1

o [linimax value = smallest utility that 2 can force on 1

min max uj (o1, 02)
g2 01




Two-Player Zero-Sum Games

o [Vaximin value = largest utility that player 1 can guarantee

o] € argmax 1131211 ui(o1,09)
g1

o [linimax value = smallest utility that 2 can force on 1

05 € arg min H}T?X uy(o1,02)
g2




Two-Player Zero-Sum Games

. = largest utility that player 1 can guarantee

o] € argmax min ui(o1,02)
o1 02
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Minimax Theorem (von Neumann 1928)
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o1 02

. = smallest utility that 2 can force on 1

o5 € arg min max ui(oy,09)
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Minimax Theorem (von Neumann 1928)

ming, wui(of,o2) = max,, ui(oi,o03)

Minimax Theorem = Existence of Nash Eq. in zero-sum games
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Two-Player Zero-Sum Games

. = largest utility that player 1 can guarantee

o] € argmax min ui(o1,02)
o1 02

. = smallest utility that 2 can force on 1

o5 € arg min max ui(oy,09)
o2 1

Minimax Theorem (von Neumann 1928)

ming, wui(of,o2) = max,, ui(oi,o03)

Minimax Theorem = Existence of Nash Eq. in zero-sum games [
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Nash equilibria denote distributions over players' action pro-

files at which no player can benefit by unilateral deviation.

Players {1,2,...,n} and action sets Aj, A, ..., A,
Player p's utility: uy, : [[, 4, = R

Prob. dist. (01, 09,...,0,) denote a Nash equilibrium iff
up(ap, o0—p) < up(op, 0_p) Vp, Va, € A,.

Here, 0_p == (01,02,...,0p—1,0p41,---,0n).
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Every finite game has at least one Nash equilibrium.




Nash equilibria denote distributions over players' action pro-
files at which no player can benefit by unilateral deviation.

Nash’s Existence Theorem (1950)

Every finite game has at least one Nash equilibrium.

Proof via Brouwer's fixed point theorem.



Fundamental Results

Guaranteed Existence of Nash Equilibria

v' In two-player zero-sum games [von Neumann 1928]
V' In finite games [Nash 1950]

John von Neumann John Nash
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Algorithmic Game Theory

Computer Game
Science Theory




Payoffs Nash Equilibrium

Prob.

90 m B (8 1m a Algorithm
S| — Player 1
a { ! o Prob.

Player 2




Payoffs Nash Equilibrium

Prob.

2 7 1 31 i Algorithm
5 s [ 15 ) — Player 1
1

Prob.

Player 2

Nash equilibria of zero-sum games can be computed in

polynomial time.

Minimax strategies via linear programming [Dantzig 1951].



©n

Complexity of Equilibria
V' Zero-Sum Games
o General Two-Player Games?

o Multi-Player Games?

Nash Equilibrium

(2 7o 1) (3 o Algorithm
s 2 o8| (15
o2 0 4) \ewos oo

Prob.

Player 1
Prob.

Player 2




Nash Equilibrium

2 7 - 1 8 2 ow 4 Algorithm
s 2 o8| [15 9
oo ) s o

Prob.

Player 1
Prob.

Player 2

Every instance of NASH admits a solution

NP-hardness cannot be applied to such problems




Payoffs Nash Equilibrium

Prob.

g . Bl H Algorithm
: P [ . J -_— Player 1
)

Prob.

Player 2

NasH € PPAD

PPAD (Polynomial Parity Arguments on Directed graphs) := Probs.
that can be solved via directed path-following algorithms.

source

sink

Exponentially
large graph



Payoffs

[ 2 7 1 33 i Algorithm
s s 5 9 >
1 8 ) [ J

\

Nash Equilibrium

Prob.

Player 1
Prob.

Player 2

Sperner’s Lemma
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NasH is PPAD-complete

Even for two player games [DGP06, CDT09]



Payoffs Nash Equilibrium

Prob.

g . Bl H Algorithm
: P [l ; J -_— Player 1

Prob.

Player 2

NasH is PPAD-hard

Even for two player games [DGP06, CDT09]

Central Open Question: A polynomial-time algorithm for
approximate Nash?
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No-regret dynamics

Other solution concepts, e.g. correlated eq.
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