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Problem Description

A two-person stochastic game is determined by six objects:
(X ,U,V , r1, r2,Q), where

X = {1, 2, · · · } is the state space,

U,V are action spaces of player 1 and 2 respectively, assumed to be
compact metric spaces,

ri : X × U × V → R, i = 1, 2 is the one-stage cost function for player i ,
assumed to be bounded and continuous,

Q : X × U × V → P(X ), is the transition stochastic kernel, assumed to
be continuous in (u, v) in the topology of weak convergence.
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Evolution of the system and information

The game is played as follows: At each stage players observe the current
state x ∈ X and then players independently choose actions u ∈ U, v ∈ V .
As a result two things happen

player i , i = 1, 2, pays an immediate cost ri (x , u, v)

the system moves to a new state x ′ ∈ X with probability Q(x ′|x , u, v).

The whole process then repeats from the new state x ′.
The available information at time t = 0, 1, 2, · · · , is given by the history

ht = (x0, (u0, v0), x1, (u1, v1), · · · , (ut−1, vt−1), xt ) ∈ Ht

where H0 = X , Ht = Ht−1 × U × V × X , H∞ = (U × V × X )∞.
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Strategies

A strategy for player 1 is a sequence

µ = {µt : Ht → P(U)}

Let Πi = the set of all strategies of player i .
A Markov strategy for player 1 is given by

µt : N× X → P(U)

A stationary strategy for player 1 is given by

µ : X → P(U)

We denote the set of all Markov strategies byMi and the set of all
stationary strategies by Si for the ith player.
Given an initial distribution π0 and a pair of strategies (µ, ν), the
corresponding state and action process {Xt}, {Ut}, {Vt} are defined on
the canonical sample space (H∞,B(H∞),Pµ,νπ0 ) via the standard
projections:

Xt (h∞) = xt ,Ut (h∞) = ut ,Vt (h∞) = vt .

When π0 = δx , we write Pµ,νx .
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Cost Evaluation Criteria

Risk-sensitive discounted cost

Let α ∈ (0, 1) be the discount factor and θ ∈ (0,Θ) the risk-sensitive
parameter. The risk-sensitive discounted cost is given by

ρµ,νi (x) :=
1
θ

ln Eµ,ν
x

[
eθ

∑∞
t=0 α

t ri (Xt ,Ut ,Vt )
]
, (1)

Definition 1

A pair of strategies (µ∗, ν∗) is called a Nash equilibrium if

ρµ
∗,ν∗

1 (x) ≤ ρµ,ν
∗

1 (x) for all µ ∈ Π1 and x ∈ X

and
ρµ
∗,ν∗

2 (x) ≤ ρµ
∗,ν

2 (x) for all ν ∈ Π2 and x ∈ X
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Cost Evaluation Criteria

Risk-sensitive average cost

βµ,νi (x) := lim sup
T→∞

1
θT

ln Eµ,ν
x

[
eθ

∑T−1
t=0 ri (Xt ,Ut ,Vt )

]
. (2)

Remark

When the parameter θ → 0, we obtain the risk-neutral cost criteria, viz

Jµ,νi (x) := Eµ,ν
x

[ ∞∑
t=0

αt ri (Xt ,Ut ,Vt )
]
,

which is the discounted cost.
The averse cost is given by

Lµ,νi (x) := lim sup
T→∞

1
T

Eµ,ν
x

[T−1∑
t=0

ri (Xt ,Ut ,Vt )
]
.
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Analysis of discounted cost criterion

Since logarithm is an increasing function, it suffices to consider the
(risk-sensitive) exponential cost criterion. For player i , the exponential cost is
given by

J µ,νi (θ, (x , t)) := Eµ,ν
x,t

[
eθ

∑∞
s=t α

s−t ri (Xs,Us,Vs)
]
.

Dynamic programming equations

Given (µ, ν) ∈M1 ×M2, consider the following equations
φ1(θ, (x , t)) = inf

ξ∈P(U)

[ ∫
U

∫
V

eθr1(x,u,v)
∑
y∈X

φ1(θα, (y , t + 1))

Q(y |x , u, v)ξ(du)νt (x)(dv)
]

with lim
θ→0

φ1(θ, (x , t)) = 1.

and



Problem Description Analysis of discounted cost criterion Risk-sensitive averse cost Zero-Sum Case References

Analysis of discounted cost criterion

Dynamic programming equations
φ2(θ, (x , t)) = inf

χ∈P(V )

[ ∫
U

∫
V

eθr2(x,u,v)
∑
y∈X

φ2(θα, (y , t + 1))

Q(y |x , u, v)µt (x)(du)χ(dv)
]

with lim
θ→0

φ2(θ, (x , t)) = 1.
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Analysis of discounted cost criterion

Theorem 2

Given (µ, ν) ∈M1 ×M2, there exist unique bounded solutions to the above
equations such that

φ̂1[ν](θ, (x , t)) = inf
µ̃
J µ̃,ν1 (θ, (x , t))

φ̂2[µ](θ, (x , t)) = inf
ν̃
J µ,ν̃2 (θ, (x , t))

Moreover there exist measurable maps

(µ̂[ν], ν̂[µ]) : (0,Θ)× (X × N)→ P(U)× P(V )

such that
inf

ξ∈P(U)

[ ∫
U

∫
V

eθr1(x,u,v)
∑
y∈X

φ̂1[ν](θα, (y , t + 1))Q(y |x , u, v)ξ(du)νt (x)(dv)
]

=

∫
U

∫
V

eθr1(x,u,v)
∑
y∈X

φ̂1[ν](θα, (y , t + 1))Q(y |x , u, v)µ̂[ν](θ, (x , t))(du)νt (x)(dv)

(3)
and
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Analysis of discounted cost criterion

Theorem 2 Continued


inf

χ∈P(V )

[ ∫
U

∫
V

eθr2(x,u,v)
∑
y∈X

φ̂2[µ](θα, (y , t + 1))Q(y |x , u, v)µt (x)(du)χ(dv)
]

=

∫
U

∫
V

eθr2(x,u,v)
∑
y∈X

φ̂2[µ](θα, (y , t + 1))Q(y |x , u, v)µt (x)(du)ν̂[µ](θ, (x , t))(dv).

(4)
Hence given (µ, ν) ∈M1 ×M2 and θ ∈ (0,Θ), the minimizing strategies
{µ∗t [ν]} ∈ M1, {ν∗t [µ]} ∈ M2 are given by

µ∗t [ν] = µ̂[ν](θαt , (Xt , t))

ν∗t [µ] = ν̂[µ](θαt , (Xt , t)).

Thus µ∗t [ν] (resp. ν∗t [µ]) is an optimal response (resp. player 2)
corresponding to ν ∈M2 (resp. µ ∈M1).
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Analysis of discounted cost criterion

Next define
Hi :Mj → 2Mi , i = 1, 2, i 6= j

by
H1[ν] = {µ∗t [ν] ∈M1 : µ∗t [ν] satisfies (3)}

H2[µ] = {ν∗t [µ] ∈M2 : ν∗t [µ] satisfies (4)}

Let H = H1 × H2 :M1 ×M2 → 2M1×M2 be given by

H(µ, ν) = H1[ν]× H2[µ]

Theorem 3

Given θ ∈ (0,Θ), there exists a Nash equilibrium inM1 ×M2.

Proof.

Follows by applying a standard fixed point theorem.
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Analysis of discounted cost criterion

Remark

Comparison with risk-neutral discounted case. In this case the dynamic
programming equations are as follows: for (µ, ν) ∈ S1 × S2, consider

ψ1[ν](x) = inf
µ̃∈Π1

J µ̃,ν1 (x)

ψ2[µ](x) = inf
ν̃∈Π2

Jµ,ν̃2 (x).

Then ψ1[ν](x) is the unique bounded solution of
ψ1[ν](x) = inf

µ∈P(U)

[ ∫
U

∫
V

{
r1(x , u, v) + α

∑
y∈X

ψ1[ν](y)Q(y |x , u, v)
}
µ(du)ν(x)(dv)

]
=

∫
U

∫
V

{
r1(x , u, v) + α

∑
y∈X

ψ1[ν](y)Q(y |x , u, v)
}
µ∗[ν](du)ν(x)(dv),

and
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Analysis of discounted cost criterion

Remark continued

ψ2[µ](x) is the unique bounded solution of
ψ2[µ](x) = inf

ν∈P(V )

[ ∫
U

∫
V

{
r2(x , u, v) + α

∑
y∈X

ψ2[µ](y)Q(y |x , u, v)
}
µ(x)(du)ν(dv)

]
=

∫
U

∫
V

{
r2(x , u, v) + α

∑
y∈X

ψ2[µ](y)Q(y |x , u, v)
}
µ(x)(du)ν∗[µ](dv),

Furthermore µ∗ ∈ S1 (resp. ν∗ ∈ S2) is an optimal response of player 1 (resp.
ν∗ of player 2) given player 2 (resp. player 1) is employing ν∗ ∈ S2 (resp.
µ∗ ∈ S1).
Using this one can show the existence of a Nash equilibrium in stationary
strategies.
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Assumption

(i) The process {Xt} is an irreducible, aperiodic Markov chain under any pair
of stationary Markov strategies.
(ii) (Lyapunov stability): There exist constants η < 1, b <∞ and a function
V : X → [1,∞) such that∑

y∈X

V (y)Q(y |x , u, v) ≤ ηV (x) + bIC(x).

Let
BV (X ) =

{
f : X → R| sup

x

|f (x)|
V (x)

<∞
}
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Risk-sensitive average cost

Dynamic programming equations

Given strategies (µ, ν) ∈ S1 × S2, consider the following equations
eθλ1+V1(θ,x) = inf

ξ∈P(U)

[ ∫
U

∫
V

eθr1(x,u,v)
∑
y∈X

eV1(θ,y)Q(y |x , u, v)ξ(du)ν(x)(dv)
]

=

∫
U

∫
V

eθr1(x,u,v)
∑
y∈X

eV1(θ,y)Q(y |x , u, v)µ∗[ν](x)(du)ν(x)(dv), say

and
eθλ2+V2(θ,x) = inf

χ∈P(V )

[ ∫
U

∫
V

eθr2(x,u,v)
∑
y∈X

eV2(θ,y)Q(y |x , u, v)µ(x)(du)χ(dv)
]

=

∫
U

∫
V

eθr2(x,u,v)
∑
y∈X

eV2(θ,y)Q(y |x , u, v)µ(x)(du)ν∗[µ](x)(dv), say.
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Risk-sensitive averse cost

Then λ1 = λ1[ν] is the optimal (risk-sensitive) average cost for player 1 if
player 2 employs ν and µ∗[ν] ∈ S1 is an optimal response of player 1.

Similarly, λ2 = λ2[µ] is the optimal average cost for player 2 if player 1
employs µ and ν∗[µ] ∈ S2 is an optimal response of player 2.

Using the above, we have the following theorem:
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Risk-sensitive average cost

Theorem 4

There exist scalars λ∗1 , λ
∗
2 strategies (µ∗, ν∗) ∈ S1 × S2 and functions

V ∗1 (θ, ·),V ∗2 (θ, ·) ∈ BV (X ) such that
eθλ
∗
1 +V∗1 (θ,x) = inf

ξ∈P(U)

[ ∫
U

∫
V

eθr1(x,u,v)
∑
y∈X

eV∗1 (θ,y)Q(y |x , u, v)ξ(du)ν∗(x)(dv)
]

=

∫
U

∫
V

eθr1(x,u,v)
∑
y∈X

eV∗1 (θ,y)Q(y |x , u, v)µ∗(x)(du)ν∗(x)(dv)

and
eθλ
∗
2 +V∗2 (θ,x) = inf

χ∈P(V )

[ ∫
U

∫
V

eθr2(x,u,v)
∑
y∈X

eV∗2 (θ,y)Q(y |x , u, v)µ∗(x)(du)χ(dv)
]

=

∫
U

∫
V

eθr2(x,u,v)
∑
y∈X

eV2(θ,y)Q(y |x , u, v)µ∗(x)(du)ν∗(x)(dv).

Moreover, (µ∗, ν∗) ∈ S1 × S2 is a Nash equilibrium and (λ∗1 , λ
∗
2 )

corresponding Nash Values.



Problem Description Analysis of discounted cost criterion Risk-sensitive averse cost Zero-Sum Case References

Zero-Sum Case

The usual zero sum game mean

r1(x , u, v) + r2(x , u, v) = 0

Thus
r1(x , u, v) = −r2(x , u, v) := r(x , u, v)

In this case player 1 is risk-averse whereas player 2 is risk-seeking. This
case again leads to coupled dynamic programming equations as in the
non-zero sum case

Suppose player 1 minimizes

lim sup
T→∞

1
θT

ln Eµ,ν
x

[
eθ

∑T−1
t=0 r(Xt ,Ut ,Vt )

]
,

over his strategies and player 2 tries to maximize the same.
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Zero-Sum Case

Then one gets a value of this game and saddle point strategies via the
following Shapley equations:

eθλ+V (θ,x) = inf
ξ∈P(U)

sup
χ∈P(V )

[ ∫
U

∫
V

eθr(x,u,v)
∑
y∈X

eV (θ,y)Q(y |x , u, v)ξ(du)χ(dv)
]

= sup
χ∈P(V )

inf
ξ∈P(U)

[ ∫
U

∫
V

eθr(x,u,v)
∑
y∈X

eV (θ,y)Q(y |x , u, v)ξ(du)χ(dv)
]

If the above equation has a suitable solution (λ,V (θ, x)) then λ is the
value of the game for the average cost.

Furthermore if (µ∗, ν∗) ∈ S1 × S2 be such that
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Zero-Sum Case

Furthermore if (µ∗, ν∗) ∈ S1 × S2 be such that
inf

ξ∈P(U)
sup

χ∈P(V )

[ ∫
U

∫
V

eθr(x,u,v)
∑
y∈X

eV (θ,y)Q(y |x , u, v)ξ(du)χ(dv)
]

= sup
χ∈P(V )

[ ∫
U

∫
V

eθr(x,u,v)
∑
y∈X

eV (θ,y)Q(y |x , u, v)µ∗(x)(du)χ(dv)
]

and
sup

χ∈P(V )

inf
ξ∈P(U)

[ ∫
U

∫
V

eθr(x,u,v)
∑
y∈X

eV (θ,y)Q(y |x , u, v)ξ(du)χ(dv)
]

= inf
ξ∈P(U)

[ ∫
U

∫
V

eθr(x,u,v)
∑
y∈X

eV (θ,y)Q(y |x , u, v)ξ(du)ν∗(x)(dv)
]

then (µ∗, ν∗) is a pair of saddle point strategies.
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