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Problem Description

Problem Description

A two-person stochastic game is determined by six objects:
(X,U,V,n,r,Q), where
@ X =1{1,2,---}is the state space,
@ U, V are action spaces of player 1 and 2 respectively, assumed to be
compact metric spaces,
@ ri: XxUxV—R,i=1,2isthe one-stage cost function for player /,
assumed to be bounded and continuous,

@ Q: X x Ux V — P(X),is the transition stochastic kernel, assumed to
be continuous in (u, v) in the topology of weak convergence.



Problem Description

Evolution of the system and information

The game is played as follows: At each stage players observe the current
state x € X and then players independently choose actions u € U, v € V.
As a result two things happen

@ player i, i = 1,2, pays an immediate cost ri(x, u, v)
@ the system moves to a new state x’ € X with probability Q(x’|x, u, v).

The whole process then repeats from the new state x’.
The available information at time t = 0,1,2, - - -, is given by the history

he = (XO, (Uo, Vo),X1,(U1, V1)7 o ,(Ut—1, Vt—1)7xf) € H;

where Ho = X, Hr=Hi—1 x UXx V x X, Hoo = (U x V x X)>.



Problem Description

Strategies

@ A strategy for player 1 is a sequence
p=A{pe: H = P(U)}
Let N; = the set of all strategies of player i.
@ A Markov strategy for player 1 is given by
e N x X — P(U)
@ A stationary strategy for player 1 is given by
p: X =P

@ We denote the set of all Markov strategies by M, and the set of all
stationary strategies by S; for the ith player.

@ Given an initial distribution 7o and a pair of strategies (u, v), the
corresponding state and action process {X:}, {U:}, {V:} are defined on
the canonical sample space (Hoo, B(Hwo), Pi;”) via the standard
projections:

Xt(hoo) = Xt, Uf(hoo) = U, Vt(hoo) = Vt.

When my = J§y, we write P{"".



Problem Description

Cost Evaluation Criteria

Risk-sensitive discounted cost

Let a € (0, 1) be the discount factor and 6 € (0, ©) the risk-sensitive
parameter. The risk-sensitive discounted cost is given by

1

Pv(x) = 3 In [ TR0t M) (1)

Definition 1

A pair of strategies (u*,v*) is called a Nash equilibrium if
P (x) < piY(x)forall p e My and x € X

and
pg*’”* (x) < pg‘*’”(x) forallv ey, and x € X




Problem Description

Cost Evaluation Criteria

Risk-sensitive average cost

B8 (x) = limsup = In Ep [6f Zuso 1L W] @)

T—o0 0T

v

When the parameter § — 0, we obtain the risk-neutral cost criteria, viz

10 = B[S ol Uy ),

t=0
which is the discounted cost.
The averse cost is given by
1 T—1
LY (x) = ”T_:solip 7E;“" [Z ri(Xe, U, Vr)] :

t=0




Analysis of discounted cost criterion

Analysis of discounted cost criterion

Since logarithm is an increasing function, it suffices to consider the
(risk-sensitive) exponential cost criterion. For player i, the exponential cost is
given by

T, (x, 1) = By [ef et e ]

Dynamic programming equations

Given (u,v) € My x Mo, consider the following equations

o1(0, (x, 1)) = infU) [1]/\/@% (x,u,v) Z¢1 (o, (y, t+ 1))

£eP( yex

QyIx, u, V)E(du)(x)(dv)
with ellmo o1(0,(x, b)) =1.

and




Analysis of discounted cost criterion

Analysis of discounted cost criterion

Dynamic programming equations

$2(6, (x, 1)) = inf [/U/Ve%(x‘”"’)Z¢2(9a,(y,t+1))

eP(V
XEP(V) Py

QyIx, U, V)ae(x) () ()]
with e“ﬂ]o ¢2(0, (x, 1)) =1.




Analysis of discounted cost criterion

Analysis of discounted cost criterion

Given (u,v) € M1 x My, there exist unique bounded solutions to the above
equations such that

S0, (x, 1) = Inf T (0, (x,1))
Galul(6, (x, 1)) = intT3"" (6, (x. 1))
Moreover there exist measurable maps
(Alv], {u]) = (0,8) x (X x N) = P(U) x P(V)

such that

inf [ /U [ &S e (3.t + 1D)QIx. . V)E((x) W)

U
£eP(U) vex

—

- / / &1 ™ 3 ] (8ax, (v, t+ 1) QU IX, U, VIR, (x, £)) (du)wi(x)(dv)

yex
3)

and




Analysis of discounted cost criterion

Analysis of discounted cost criterion

Theorem 2 Continued

it [ [ @m0 S dalil(00 (v, 1+ 1))@ Ix.u i) ) ()

XEP(V)

= /U/V gfr(x.u,v) Z (Zgz[ﬂ](ﬁa, (v, t+ 1))Q(y|x, u, v)pe(x)(du)o[u] (0, (x, )

yex
4)
Hence given (u,v) € M1 x Mz and 0 € (0, ©), the minimizing strategies
{ui[v]} € Ma,{vi[u]} € Mz are given by

pilvl = Apl(oa’, (X 1)
vilul = 2lul(0a, (X, 1)).

Thus pf[v] (resp. v{ [u]) is an optimal response (resp. player 2)
corresponding to v € Mz (resp. p € My).

yex

—~

av).




Analysis of discounted cost criterion

Analysis of discounted cost criterion

Next define
Hi: My —2Mi =12 i#j

by
Hi[v] = {ui[v] € My : ug[v] satisfies (3)}

Ho[u] = {vi[u] € Mz : vf [p] satisfies (4)}
Let H= Hi x Hp : My x My — 2M1>Mz pe given by

H(p,v) = Hilv] x Helu]

Given 0 € (0, ©), there exists a Nash equilibrium in M1 x M. \
Follows by applying a standard fixed point theorem. O




Analysis of discounted cost criterion

Analysis of discounted cost criterion

Comparison with risk-neutral discounted case. In this case the dynamic
programming equations are as follows: for (i, v) € Sy x Sz, consider

W) = inf U (0
alil(x) = inf S0 ().

vely

Then 1[v](x) is the unique bounded solution of

P [v](x) = inf //{n (x,u,v) +a2¢1[u] Q(y|x, u,v) }u du)v(x

uGP(U)

—

dv)]

Ny

:/U/V{H(X»Ua V)+O¢Zl/}1[1/](y)0(y|x,u, v)}u*[y](du)u(x)(dv
yex

and




Analysis of discounted cost criterion

Analysis of discounted cost criterion

Remark continued
¥2[u](x) is the unique bounded solution of

velid(0 = int, [ [ [ {0y + a3 veld )@y v buto(ah(ay)|

yex

/ | {rxu ) 3l QI ) P

Furthermore p* € Sy (resp. v* € S,) is an optimal response of player 1 (resp.
v* of player 2) given player 2 (resp. player 1) is employing v* € Sz (resp.

ur e Sq).

Using this one can show the existence of a Nash equilibrium in stationary
strategies.

~




Risk-sensitive averse cost

Assumption

(i) The process {X;} is an irreducible, aperiodic Markov chain under any pair
of stationary Markov strategies.

(ii) (Lyapunov stability): There exist constants n < 1, b < oo and a function
V : X —[1,00) such that

STVQlylx,uv) < gV(x) + blo(x).
yex
Let

Bu(X) = {f: x— | sup ‘v(( ))| < oo}



Risk-sensitive averse cost

Risk-sensitive average cost

Dynamic programming equations

Given strategies (u,v) € St x S, consider the following equations

QJ

y.

NN = i / / e YEZX &' Q(y|x, u, v)&(du)w(x)(av)]
/ / fra(ey yz; "N Q(y|x, u, v)u' ) (x)(du)(x)(dV), S

and
&0 = int | / / z; & Q(y|x, u, v)u(x)(du)x(dv)]
/ / A yzx "2 Q(y|x, u, v)u(x)(du)v*[u](x)(av), s




Risk-sensitive averse cost

Risk-sensitive averse cost

@ Then A\i = \[v] is the optimal (risk-sensitive) average cost for player 1 if
player 2 employs v and p*[v] € Sy is an optimal response of player 1.

@ Similarly, A\ = A\z[] is the optimal average cost for player 2 if player 1
employs n and v*[u] € Sz is an optimal response of player 2.

@ Using the above, we have the following theorem:



Risk-sensitive averse cost

Risk-sensitive average cost

There exist scalars A7, \; strategies (u*,v*) € St x Sz and functions
Vi(0,-), V5 (9, -) € By(X) such that

M TVI(OX) _ i // e%n xuV)ZeV1 9y)Q(y|x u, v)é(du)v (x)(dv)]
EEP(U yex
/ / e 5% N Qy|x, u, v)u (x)(du)v (x)(dv)
yex
and
ONS+V5 (0,X) __ Oy (X,u,v V5 (6,y)
gf2 V2 ‘xe'v%[/u/vez yg(ez Q(y|x, u, v)u™(x)(du)x (dV]
= [ [ ST 400y ix, v ey (x)(aw).
yex

Moreover, (1", v*) € Sy x Sz is a Nash equilibrium and (A7, \3)
corresponding Nash Values.




Zero-Sum Case

Zero-Sum Case

@ The usual zero sum game mean
r(x,u,v)+ r(x,u,v) =0
Thus
r(x,u,v) = —n(x,u,v) :=r(x,u,v)

@ In this case player 1 is risk-averse whereas player 2 is risk-seeking. This
case again leads to coupled dynamic programming equations as in the
non-zero sum case

@ Suppose player 1 minimizes

lim sup 1 In Ef" [eg iy '(X”U”V’)] ,
T— oo 0T

over his strategies and player 2 tries to maximize the same.



Zero-Sum Case

Zero-Sum Case

@ Then one gets a value of this game and saddle point strategies via the
following Shapley equations:

VN — inf  sup // rixeu) N VO Q(y|x, u, v)E(du)x(dv)
EEP(U xE'P yGZX :|

= inf // eI N VO Q(y|x, u, v)E(du)x(dv

sup nf, Z (y1x, u, v)E(du)x(dv) |

@ If the above equation has a suitable solution (A, V(0, x)) then X is the
value of the game for the average cost.

@ Furthermore if (1*,v") € St x Sz be such that



Zero-Sum Case

Zero-Sum Case

@ Furthermore if (1*,v") € Sy x Sz be such that

inf  sup // eI N "IN Q(y|x, u, v)E (du)x(dv)]

£eP(U xep(v yex

= sup // s N VN Qy|x, u, vt (x)(du)x (dv)]

XEP(V yex

and

sup gE.gf // U 3 N Q(y|x, u, v)E (du)x(dv)}

XEP(V yex

~ inf // 0 S 0N Qyx, u, V)E(du)” (x) (V)]

eP(U
¢ yex

@ then (u*,v™) is a pair of saddle point strategies.
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