Risk Sensitive Stochastic Games

Mrinal K. Ghosh (Coauthor: A. Basu)

Department of Mathematics Indian Institute of Science

Workshop on Game Theory and Mechanism Design 11-15 January, 2016

KORKARYKERKE PORCH

KORK ERKER ADAM ADA

Problem Description

A two-person stochastic game is determined by six objects:

 (X, U, V, r_1, r_2, Q) , where

- $\bullet X = \{1, 2, \dots\}$ is the state space,
- *U*, *V* are action spaces of player 1 and 2 respectively, assumed to be compact metric spaces,
- $r_i: X \times U \times V \rightarrow \mathbb{R}, i = 1, 2$ is the one-stage cost function for player *i*, assumed to be bounded and continuous,
- • $Q: X \times U \times V \rightarrow \mathcal{P}(X)$, is the transition stochastic kernel, assumed to be continuous in (u, v) in the topology of weak convergence.

Evolution of the system and information

The game is played as follows: At each stage players observe the current state $x \in X$ and then players independently choose actions $u \in U$, $v \in V$. As a result two things happen

- player *i*, $i = 1, 2$, pays an immediate cost $r_i(x, u, v)$
- the system moves to a new state $x' \in X$ with probability $Q(x'|x, u, v)$.

The whole process then repeats from the new state x' . The available information at time $t = 0, 1, 2, \dots$, is given by the history

$$
h_t = (x_0, (u_0, v_0), x_1, (u_1, v_1), \cdots, (u_{t-1}, v_{t-1}), x_t) \in H_t
$$

 $\mathsf{where} \ H_0 = X, \ H_t = H_{t-1} \times U \times V \times X, \ H_\infty = (U \times V \times X)^\infty.$

KORKARA KERKER DAGA

Strategies

• A strategy for player 1 is a sequence

 $\mu = {\mu_t : H_t \rightarrow \mathcal{P}(U)}$

Let Π_i = the set of all strategies of player *i*.

• A Markov strategy for player 1 is given by

 $\mu_t : \mathbb{N} \times X \to \mathcal{P}(U)$

A stationary strategy for player 1 is given by

 $\mu: X \to \mathcal{P}(\mathcal{U})$

- We denote the set of all Markov strategies by M*ⁱ* and the set of all stationary strategies by S*ⁱ* for the ith player.
- Given an initial distribution π_0 and a pair of strategies (μ, ν), the corresponding state and action process {*Xt*}, {*Ut*}, {*Vt*} are defined on the canonical sample space $(H_\infty, \mathcal{B}(H_\infty), P^{\mu,\nu}_{\pi_0})$ via the standard projections:

$$
X_t(h_\infty)=x_t,U_t(h_\infty)=u_t,V_t(h_\infty)=v_t.
$$

When $\pi_0 = \delta_x$, we write $P^{\mu,\nu}_x$.

KORKAR KERKER E VOOR

KORK ERKER ADAM ADA

Cost Evaluation Criteria

Risk-sensitive discounted cost

Let $\alpha \in (0, 1)$ be the discount factor and $\theta \in (0, \Theta)$ the risk-sensitive parameter. The risk-sensitive discounted cost is given by

$$
\rho_i^{\mu,\nu}(x) := \frac{1}{\theta} \ln E_x^{\mu,\nu} \left[e^{\theta \sum_{t=0}^{\infty} \alpha^t r_i(X_t,U_t,V_t)} \right], \qquad (1)
$$

Definition 1

A pair of strategies (μ^*,ν^*) is called a Nash equilibrium if

$$
\rho_1^{\mu^*,\nu^*}(x) \leq \rho_1^{\mu,\nu^*}(x)
$$
 for all $\mu \in \Pi_1$ and $x \in X$

and

$$
\rho_2^{\mu^*,\nu^*}(x) \ \leq \ \rho_2^{\mu^*,\nu}(x) \ \text{for all} \ \nu \in \Pi_2 \ \ \text{and} \ x \in X
$$

Cost Evaluation Criteria

Risk-sensitive average cost

$$
\beta_i^{\mu,\nu}(x) := \limsup_{T\to\infty} \frac{1}{\theta T} \ln E_x^{\mu,\nu} \left[e^{\theta \sum_{t=0}^{T-1} r_i(X_t,U_t,V_t)} \right]. \tag{2}
$$

Remark

When the parameter $\theta \rightarrow 0$, we obtain the risk-neutral cost criteria, viz

$$
J_i^{\mu,\nu}(x) \; := \; E_x^{\mu,\nu} \Bigl[\sum_{t=0}^\infty \alpha^t r_i(X_t,U_t,V_t) \Bigr] \,,
$$

which is the discounted cost.

The averse cost is given by

$$
L_i^{\mu,\nu}(x) := \limsup_{T \to \infty} \frac{1}{T} E_x^{\mu,\nu} \Biggl[\sum_{t=0}^{T-1} r_i(X_t, U_t, V_t) \Biggr].
$$

K ロ ト K 何 ト K ヨ ト K ヨ ト \Rightarrow 2990

.

Analysis of discounted cost criterion

Since logarithm is an increasing function, it suffices to consider the (risk-sensitive) exponential cost criterion. For player *i*, the exponential cost is given by

$$
\mathcal{J}^{\mu,\nu}_i(\theta,(x,t)) \; := \; E^{\mu,\nu}_{x,t} \left[e^{\theta \sum_{s=t}^{\infty} \alpha^{s-t} r_i(X_s,U_s,V_s)} \right]
$$

Dynamic programming equations

Given $(\mu, \nu) \in \mathcal{M}_1 \times \mathcal{M}_2$, consider the following equations

$$
\phi_1(\theta, (x, t)) = \inf_{\xi \in \mathcal{P}(U)} \Big[\int_U \int_V e^{\theta r_1(x, u, v)} \sum_{y \in X} \phi_1(\theta \alpha, (y, t + 1))
$$

$$
Q(y|x, u, v) \xi(du) \nu_t(x)(dv) \Big]
$$
with $\lim_{\theta \to 0} \phi_1(\theta, (x, t)) = 1$.

and

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

wi

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Analysis of discounted cost criterion

Dynamic programming equations

$$
\phi_2(\theta, (x, t)) = \inf_{x \in \mathcal{P}(V)} \Big[\int_U \int_V e^{\theta r_2(x, u, v)} \sum_{y \in X} \phi_2(\theta \alpha, (y, t + 1))
$$

$$
Q(y|x, u, v)\mu_t(x)(du)\chi(dv) \Big]
$$
th $\lim_{\theta \to 0} \phi_2(\theta, (x, t)) = 1.$

Analysis of discounted cost criterion

Theorem 2

Given (μ, ν) \in $\mathcal{M}_1 \times \mathcal{M}_2$, there exist unique bounded solutions to the above *equations such that*

$$
\hat{\phi}_1[\nu](\theta,(x,t)) = \inf_{\tilde{\mu}} \mathcal{J}_1^{\tilde{\mu},\nu}(\theta,(x,t))
$$

$$
\hat{\phi}_2[\mu](\theta,(x,t)) = \inf_{\tilde{\nu}} \mathcal{J}_2^{\mu,\tilde{\nu}}(\theta,(x,t))
$$

Moreover there exist measurable maps

$$
(\hat{\mu}[\nu], \hat{\nu}[\mu]): (0, \Theta) \times (X \times \mathbb{N}) \to \mathcal{P}(U) \times \mathcal{P}(V)
$$

such that

$$
\begin{cases}\n\inf_{\xi \in \mathcal{P}(U)} \left[\int_{U} \int_{V} e^{\theta r_1(x,u,v)} \sum_{y \in X} \hat{\phi}_1[\nu](\theta \alpha, (y, t+1)) Q(y|x, u, v) \xi(du) \nu_t(x) (dv) \right] \\
= \int_{U} \int_{V} e^{\theta r_1(x,u,v)} \sum_{y \in X} \hat{\phi}_1[\nu](\theta \alpha, (y, t+1)) Q(y|x, u, v) \hat{\mu}[\nu](\theta, (x, t)) (du) \nu_t(x) (dv)\n\end{cases}
$$
\n(3)

and

Analysis of discounted cost criterion

Theorem 2 Continued

$$
\begin{cases}\n\inf_{x \in \mathcal{P}(V)} \left[\int_{U} \int_{V} e^{\theta r_2(x,u,v)} \sum_{y \in X} \hat{\phi}_2[\mu](\theta \alpha, (y, t+1)) Q(y|x, u, v) \mu_t(x) (du) \chi(dv) \right] \\
= \int_{U} \int_{V} e^{\theta r_2(x,u,v)} \sum_{y \in X} \hat{\phi}_2[\mu](\theta \alpha, (y, t+1)) Q(y|x, u, v) \mu_t(x) (du) \hat{\nu}[\mu](\theta, (x, t)) (dv).\n\end{cases}
$$
\n(4)

Hence given $(\mu, \nu) \in \mathcal{M}_1 \times \mathcal{M}_2$ and $\theta \in (0, \Theta)$, the minimizing strategies $\{\mu_t^*[\nu]\}\in \mathcal{M}_1, \{\nu_t^*[\mu]\}\in \mathcal{M}_2$ are given by

> $\mu_t^*[\nu] = \hat{\mu}[\nu](\theta \alpha^t, (X_t, t))$ $\nu_t^*[\mu] = \hat{\nu}[\mu](\theta \alpha^t, (X_t, t)).$

Thus $\mu_t^*[\nu]$ (resp. $\nu_t^*[\mu]$) is an optimal response (resp. player 2) corresponding to $\nu \in M_2$ (resp. $\mu \in M_1$).

 \Box

KORKARA KERKER DAGA

Analysis of discounted cost criterion

Next define

$$
H_i: \mathcal{M}_j \to 2^{\mathcal{M}_i}, i = 1, 2, i \neq j
$$

by

$$
H_1[\nu] = \{\mu_t^*[\nu] \in \mathcal{M}_1 : \mu_t^*[\nu] \text{ satisfies (3)}\}
$$

$$
H_2[\mu] = \{\nu_t^*[\mu] \in \mathcal{M}_2 : \nu_t^*[\mu] \text{ satisfies (4)}\}
$$

$$
\text{Let } H = H_1 \times H_2 : \mathcal{M}_1 \times \mathcal{M}_2 \to 2^{\mathcal{M}_1 \times \mathcal{M}_2} \text{ be given by}
$$

$$
H(\mu, \nu) = H_1[\nu] \times H_2[\mu]
$$

Theorem 3

Given $\theta \in (0, \Theta)$ *, there exists a Nash equilibrium in* $\mathcal{M}_1 \times \mathcal{M}_2$ *.*

Proof.

Follows by applying a standard fixed point theorem.

Analysis of discounted cost criterion

Remark

Comparison with risk-neutral discounted case. In this case the dynamic programming equations are as follows: for $(\mu, \nu) \in S_1 \times S_2$, consider

$$
\psi_1[\nu](x) = \inf_{\tilde{\mu} \in \Pi_1} J_1^{\tilde{\mu}, \nu}(x) \n\psi_2[\mu](x) = \inf_{\tilde{\nu} \in \Pi_2} J_2^{\mu, \tilde{\nu}}(x).
$$

Then $\psi_1[\nu](x)$ is the unique bounded solution of

$$
\begin{cases}\n\psi_1[\nu](x) = \inf_{\mu \in \mathcal{P}(U)} \left[\int_U \int_V \left\{ r_1(x, u, v) + \alpha \sum_{y \in X} \psi_1[\nu](y) Q(y|x, u, v) \right\} \mu(du) \nu(x) (dv) \right] \\
= \int_U \int_V \left\{ r_1(x, u, v) + \alpha \sum_{y \in X} \psi_1[\nu](y) Q(y|x, u, v) \right\} \mu^*[\nu](du) \nu(x) (dv),\n\end{cases}
$$

and

Analysis of discounted cost criterion

Remark continued

 $\psi_2[\mu](x)$ is the unique bounded solution of

$$
\begin{cases}\n\psi_2[\mu](x) = \inf_{\nu \in \mathcal{P}(V)} \left[\int_U \int_V \left\{ r_2(x, u, v) + \alpha \sum_{y \in X} \psi_2[\mu](y) Q(y | x, u, v) \right\} \mu(x) (du) \nu(dv) \right] \\
= \int_U \int_V \left\{ r_2(x, u, v) + \alpha \sum_{y \in X} \psi_2[\mu](y) Q(y | x, u, v) \right\} \mu(x) (du) \nu^*[\mu](dv),\n\end{cases}
$$

Furthermore $\mu^*\in\mathcal{S}_1$ (resp. $\nu^*\in\mathcal{S}_2$) is an optimal response of player 1 (resp. ν^* of player 2) given player 2 (resp. player 1) is employing $\nu^* \in \mathcal{S}_2$ (resp. $\mu^* \in \mathcal{S}_1$). Using this one can show the existence of a Nash equilibrium in stationary strategies.

KORKARYKERKE PORCH

Assumption

(i) The process {*Xt*} is an irreducible, aperiodic Markov chain under any pair of stationary Markov strategies.

(ii) (*Lyapunov stability*): There exist constants $\eta < 1$, $b < \infty$ and a function $V: X \rightarrow [1, \infty)$ such that

$$
\sum_{y\in X} V(y)Q(y|x,u,v) \leq \eta V(x) + bl_C(x).
$$

Let

$$
B_V(X) = \left\{ f : X \to \mathbb{R} \vert \sup_x \frac{\vert f(x) \vert}{V(x)} < \infty \right\}
$$

Risk-sensitive average cost

Dynamic programming equations

Given strategies $(\mu, \nu) \in S_1 \times S_2$, consider the following equations

$$
\begin{cases}\n e^{\theta \lambda_1 + V_1(\theta, x)} = \inf_{\xi \in \mathcal{P}(U)} \left[\int_U \int_V e^{\theta r_1(x, u, v)} \sum_{y \in X} e^{V_1(\theta, y)} Q(y | x, u, v) \xi(du) \nu(x) (dv) \right] \\
= \int_U \int_V e^{\theta r_1(x, u, v)} \sum_{y \in X} e^{V_1(\theta, y)} Q(y | x, u, v) \mu^* [\nu](x) (du) \nu(x) (dv), \text{ say}\n\end{cases}
$$

and

$$
\begin{cases}\n e^{\theta \lambda_2 + V_2(\theta, x)} = \inf_{x \in \mathcal{P}(V)} \left[\int_U \int_V e^{\theta r_2(x, u, v)} \sum_{y \in X} e^{V_2(\theta, y)} Q(y | x, u, v) \mu(x) (du) \chi(dv) \right] \\
= \int_U \int_V e^{\theta r_2(x, u, v)} \sum_{y \in X} e^{V_2(\theta, y)} Q(y | x, u, v) \mu(x) (du) \nu^* [\mu](x) (dv), \text{ say.} \n\end{cases}
$$

KORK ERKER ADAM ADA

Risk-sensitive averse cost

- Then $\lambda_1 = \lambda_1[\nu]$ is the optimal (risk-sensitive) average cost for player 1 if player 2 employs ν and $\mu^*[\nu]\in\mathcal{S}_1$ is an optimal response of player 1.
- Similarly, $\lambda_2 = \lambda_2[\mu]$ is the optimal average cost for player 2 if player 1 employs μ and $\nu^*[\mu]\in\mathcal{S}_2$ is an optimal response of player 2.
- Using the above, we have the following theorem:

Risk-sensitive average cost

Theorem 4

There exist scalars λ_1^*, λ_2^* *strategies* $(\mu^*, \nu^*) \in S_1 \times S_2$ *and functions* $V_1^*(\theta, \cdot), V_2^*(\theta, \cdot) \in B_V(X)$ *such that*

$$
\begin{cases}\n e^{\theta \lambda_1^* + V_1^* (\theta, x)} = \inf_{\xi \in \mathcal{P}(U)} \left[\int_U \int_V e^{\theta r_1(x, u, v)} \sum_{y \in X} e^{V_1^* (\theta, y)} Q(y | x, u, v) \xi(du) \nu^*(x) (dv) \right] \\
= \int_U \int_V e^{\theta r_1(x, u, v)} \sum_{y \in X} e^{V_1^* (\theta, y)} Q(y | x, u, v) \mu^*(x) (du) \nu^*(x) (dv)\n\end{cases}
$$

and

$$
\begin{cases}\n e^{\theta \lambda_2^* + V_2^* (\theta, x)} = \inf_{\chi \in \mathcal{P}(V)} \Big[\int_U \int_V e^{\theta r_2(x, u, v)} \sum_{y \in X} e^{V_2^* (\theta, y)} Q(y | x, u, v) \mu^*(x) (du) \chi(dv) \Big] \\
= \int_U \int_V e^{\theta r_2(x, u, v)} \sum_{y \in X} e^{V_2(\theta, y)} Q(y | x, u, v) \mu^*(x) (du) \nu^*(x) (dv).\n\end{cases}
$$

Moreover, $(\mu^*, \nu^*) \in S_1 \times S_2$ *is a Nash equilibrium and* $(\lambda_1^*, \lambda_2^*)$ *corresponding Nash Values.*

KOD KOD KED KED E VAN

Zero-Sum Case

• The usual zero sum game mean

$$
r_1(x, u, v) + r_2(x, u, v) = 0
$$

Thus

$$
r_1(x, u, v) = -r_2(x, u, v) := r(x, u, v)
$$

- In this case player 1 is risk-averse whereas player 2 is risk-seeking. This case again leads to coupled dynamic programming equations as in the non-zero sum case
- Suppose player 1 minimizes

$$
\limsup_{T\to\infty}\frac{1}{\theta T}\ln E_x^{\mu,\nu}\left[e^{\theta\sum_{t=0}^{T-1}r(X_t,U_t,V_t)}\right],
$$

over his strategies and player 2 tries to maximize the same.

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Zero-Sum Case

Then one gets a value of this game and saddle point strategies via the following Shapley equations:

$$
\begin{cases}\ne^{\theta\lambda + V(\theta,x)} = \inf_{\xi \in \mathcal{P}(U)} \sup_{\chi \in \mathcal{P}(V)} \Big[\int_{U} \int_{V} e^{\theta r(x,u,v)} \sum_{y \in X} e^{V(\theta,y)} Q(y|x,u,v) \xi(du) \chi(dv) \Big] \\
= \sup_{\chi \in \mathcal{P}(V)} \inf_{\xi \in \mathcal{P}(U)} \Big[\int_{U} \int_{V} e^{\theta r(x,u,v)} \sum_{y \in X} e^{V(\theta,y)} Q(y|x,u,v) \xi(du) \chi(dv) \Big]\n\end{cases}
$$

- **If the above equation has a suitable solution (** λ **,** $V(\theta, x)$ **) then** λ **is the** value of the game for the average cost.
- Furthermore if $(\mu^*, \nu^*) \in S_1 \times S_2$ be such that

Zero-Sum Case

Furthermore if $(\mu^*, \nu^*) \in \mathcal{S}_1 \times \mathcal{S}_2$ be such that

$$
\begin{cases}\n\inf_{\xi \in \mathcal{P}(U)} \sup_{x \in \mathcal{P}(V)} \Big[\int_{U} \int_{V} e^{\theta r(x, u, v)} \sum_{y \in X} e^{V(\theta, y)} Q(y | x, u, v) \xi(du) \chi(dv) \Big] \\
= \sup_{x \in \mathcal{P}(V)} \Big[\int_{U} \int_{V} e^{\theta r(x, u, v)} \sum_{y \in X} e^{V(\theta, y)} Q(y | x, u, v) \mu^{*}(x) (du) \chi(dv) \Big]\n\end{cases}
$$

and

$$
\begin{cases}\n\sup_{x \in \mathcal{P}(V)} \inf_{\xi \in \mathcal{P}(U)} \left[\int_{U} \int_{V} e^{\theta r(x, u, v)} \sum_{y \in X} e^{V(\theta, y)} Q(y | x, u, v) \xi(du) \chi(dv) \right] \\
= \inf_{\xi \in \mathcal{P}(U)} \left[\int_{U} \int_{V} e^{\theta r(x, u, v)} \sum_{y \in X} e^{V(\theta, y)} Q(y | x, u, v) \xi(du) \nu^{*}(x) (dv) \right]\n\end{cases}
$$

then (μ^*, ν^*) is a pair of saddle point strategies.

KID KARA KE KAEK LE YOKO

KOD KOD KED KED E VAN

References

- **¹** Basu, A., Ghosh, M. K., Zero-sum risk-sensitive stochastic games on a countable state space, *Stochastic Process. Appl.* 124(1), 961-983, 2014.
- **²** Basu, A., Ghosh, M. K., Nonzero-sum risk-sensitive stochastic games on a countable state space, Submitted.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

THANK YOU