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Prisoners’ Dilemma

6 ~ U{-2,—1,0,1,2}

cooperate defect

§ 140 0 * no information: (D,D) is NE

S| -1+ 540 * reveals 6:

3 (C,C)isNEIfO =1 (w.p.2/5)
S -5+60 -4

“'_g) 0 Y (D,D) is NE o.w. (w.p. 3/5)

[example modified from Dughmi ‘14]



Prisoners’ Dilemma

6 ~ U{-2,—1,0,1,2}

cooperate defect

() . .

C 140 0 * Hif8 = 0, L otherwise

Q. .

§ -1+6 -5+6 H: (C,C) is NE (w.p. 3/5)
5 540 4 L: (D,D) is NE (w.p. 2/5)
‘o

s 0 * (C,C) is NE w.p. 3/5!

[example modified from Dughmi ‘14]



Bayesian Game

e pavyoffs are uncertain T
pay % @ Principal knows 6,

* depend on state of nature 6 . .
chooses Signhaling Scheme:

States — Signals

0, O ® - ¥ (possibly randomized)
W.p. /11 AM -2, -1, 0, 1, 2
(A prior, known) N W
eg., 6~ U{-2,-1,012) L H



e payoffs are uncertain

* depend on state of nature 6

01

W.p. A

(A prior, known)

e.g., 6 ~U{=2,-1,0,1,2)

Om

Am

Bayesian Game

e scheme 1: same signal forall 6

- reveals nothing beyond prior

- called no revelation

 scheme 2: diff signal for each 6

- reveals @

- called full revelation



running time poly(# states, size of game)

/

Problem: What isijcomputational complexity
ofjoptimal sighaling scheme?

N

(e.g., maximize social welfare, player 1’s payoff, etc.)




Problem: What is computational complexity
of optimal signaling scheme?

for 2-person zero-sum games

(goal: maximize row-player’s payoff)




Problem: What is computational complexity
of optimal signaling scheme?

for 2-person zero-sum games

(goal: maximize row-player’s payoff)

since * NE (essentially) unique,
 well-understood,

* poly-time computable



Approximation

A signaling scheme for instance I is e-approximate
if R’s payoffis > OPT(I) — €

Algorithm A is e-approximate if on any instance I,
it computes an e-approximate signaling scheme.

Algorithm A is an FPTAS if, given € > 0,

computes e-approximate signalling scheme

in time poly(é).



Previous Work for 0-Sum Games

 Design problem first studied by Dughmi

 Obtaining an FPTAS is as hard as
recovering a planted clique in a random graph [Dughmi ‘14]




Previous Work for 0-Sum Games

 Design problem first studied by Dughmi

 Obtaining an FPTAS is as hard as
recovering a planted clique in a random graph [Dughmi ‘14]

* Given € > 0, e-approximate signalling scheme can be computed in
time poly(n'°8™/ Ez) [CCDEHT ‘14]




Previous Work for 0-Sum Games

Independently,
* Obtaining an FPTAS is NP-hard

* Foraconstant e > 0,
computing poly-time e-approximate signalling scheme
is as hard as constructing sub-exponential time algo for SAT

[Rubinstein ‘15]




Results for 2-player 0-sum games

ResultI: NP-hard to obtain an FPTAS

\

4 algorithm that givene > 0,
computes e-approximate signalling scheme

_ in time poly(i).

_/




Results for 2-player 0-sum games

Result ll: Foraconstante > 0,

computing e-approximate signalling scheme
is as hard as recovering a planted clique in a random graph.

 why not NP-hard?

SO NP-hardne\siwould give a

nO(log n)

QPT

d|quasi-polynomial time|algorithm for this [CCDEHT ‘15]

algo for an NP-hard problem



Results for 2-player 0-sum games

Result Il:  For a constant € > 0,
computing e-approximate signalling scheme
is as hard as recovering a planted clique in a random graph.

 why not NP-hard?

* planted-cligue hardness:

- mvertices, each edge exists w.p. %




Results for 2-player 0-sum games

Result Il:  For a constant € > 0,
computing e-approximate signalling scheme
is as hard as recovering a planted clique in a random graph.

 why not NP-hard?

* planted-cligue hardness:

- mvertices, each edge exists w.p. %

- select k random vertices, create k-clique

Problem: find planted clique




This Talk

Theorem: NP-hard to compute optimal signalling scheme

* reduction from Balanced Complete Bipartite Subgraph (BCBS)
problem...

* but to the dual separation problem




This Talk

Theorem: NP-hard to compute optimal signalling scheme

Step 1: Signaling is at least as hard as threshold signaling,
the separation problem for the dual

Step 2: Threshold signaling problem is NP-hard

via reduction from BCBS




Posteriors
W.p. Aq A5 Ay—1 Ay prior

R1 R2 RM-1 RM R’s payoffs for
states of nature

1 2 1 1 1 . | h
> Signaling scneme

01 o)) Og_1 Og
01 01 01 01 :
H1 Ho Hp-1 Mg posterior

E[R|oy] = H{'R*+u'R*+ ..+ p, RM




Posteriors
W.p. Aq A5 Ay—1 Ay prior

c1 C2 cM-1 cM C’s payoffs for
states of nature

1 2 1 1 1 . | h
> Signaling scneme

01 o)) Og_1 Og
01 01 01 01 :
H1 Ho Hp-1 Mg posterior

E[Cloy] = H'CM+puy*C?+ o4 pyiCM




An Example

W.p. : . prior
p1 2 R’s payoffs for
states of nature
1\ 32 !
Prlo;] =1/6+2/3  Prlo,] =1/6+0
01 02 = /6 =1/6
1/5 4/5 1 0 posterior

T

Pr|o;] X|Pr|0,|0,] |+ Pr|o,] X|Pr|6;|0,]|= Pr[6,]




Posterior Distributions

W.p. : . prior
p1 2 R’s payoffs for
states of nature
1\ 2 !
PI‘[O‘1]=1/6+2/3 Pr[02]=1/6+0
01 02 = /6 =1/6
/ \ * each signal o gives a posterior
1/5 4/5 1 0 distr over states of nature
e posteriors form convex
decomposition of the prior




W.p. : . prior
R! R?
1\ 7 '
Pr[al] = 5/6 O-]_ 0-2
1/5 4/5| |1

Prlo,] =1/6

Posterior Distributions

(0,1) (1/5,4/5) posterior | o;

(1/3,2/3) prior

(1,0) posterior | oy

N

(1,0)

prior = Pr[o,] X posterior | 07
+ Pr|o,] X posterior | o,




W.p. : . prior
R! R?
1\ 2 '
Prloy] =5/6 04 P
1/5 4/5| |1

Prlo,] =1/6

Posterior Distributions

We shift focus and try to find
posteriors rather than signals.

Conditions:

* each posterior is distribution
over states of nature

e posteriors form convex
decomposition of prior




Computing Optimal Posteriors

W.p. : . prior
R1 R2 0,1) us, weight
(1/3,2/3) prior A
1\ = 1 K1, weight o,
~\ # U, Weight a,,
Prloy] =5/6 0y o, Prlo,] =1/6 (1,0)
/ \ max Zu @, X R’s payoff with posterior u

1/5 4/5 1 0

Oy, Pt 0y, Py + ozt =4

aﬂ1 +aﬂ2 +aﬂ3+m =1, aHZO




Computing Optimal Posteriors

W.p. : . prior
R1 R2 0,1) us, weight
(1/3,2/3) prior A
1\ = 1 K1, weight o,
=\ 2 Uz, Weight o,
Prloy] =5/6 0y o, Prlo,] =1/6 (1,0)

/ \ max X, a, X val(u)

1/5 4/5 1 0

|l
o

Ay, M1 + Ay, U2 + Ay, U3 + -

aﬂ1 +aﬂ2 +aﬂ3+m =1, aHZO




A Linear Program for Signaling

e thisisalinear program

(implied by previous constraint)

A, set of all distributions over states

(note: infinite set, hence infinite variables)



Dual Linear Program for Signaling

max Z o, val(u) e thisisalinear program
HEAM  consider the dual linear program:
>t Z G = A min w7 2
HEANM
wlp = val(u) forallu € Ay
a,=0

A, set of all distributions over states



The Separation Problem

min w! A Theorem: Solving an LP is as hard as
finding a violated constraint,
whu = val(u) forallu € Ay given variable values

S (optimization = separation)
A: prior distribution over states

Ay set of all distributions over states

Thus, solving dual LP
val(u): R’s payoff with posterior u

givenw, 3? u:wlu < val(u)




Threshold Signaling Problem

min w! A Thus, solving dual LP

wl u > val(u) forallu € Ay,

givenw, 3? u:wlyu < val(n)

A: prior distribution over states

Ay set of all distributions over states A simpler problem:

val(u): R’s payoff with posterior u givenc €ER, 3?7 u:c < val(u)

This is the Threshold Signaling Problem




Threshold Signaling Problem

min w! A Thus, solving dual LP

wl u > val(u) forallu € Ay,

givenw, 3? u:wlyu < val(n)

A: prior distribution over states

Ay set of all distributions over states A simpler problem:

val(u): R’s payoff with posterior u givenc €ER, 3?7 u:c < val(u)

Theorem: Signaling is atleastashardas givenc € R, 3? u:c < val(u)




Threshold Signaling Problem

Theorem: Signaling isatleastashardas givenc € R, 3? u:c < val(u)

u: distribution over states, val(u): R’s payoff with posterior u

Proof: (1) strong LP duality,
(2) optimization = separation
but need to consider infinite-dimensionality, etc.

(details skipped)



Threshold Signaling Problem

Theorem: Signaling isatleastashardas givenc € R, 3? u:c < val(u)

u: distribution over states, val(u): R’s payoff with posterior u

Step 1: Signaling is at least as hard as threshold signaling

Step 2: Threshold signaling problem is NP-hard

Balanced Complete Network

reduce Bipartite Subgraph (BCBS) to threshold signaling in Security Games




Balanced Complete Bipartite Subgraph Problem




Balanced Complete Bipartite Subgraph Problem

Given bipartite graph ¢ = (LU R,E), integer 7,

does it contain K. ., complete bipartite graph of size r?




Balanced Complete Bipartite Subgraph Problem

Given bipartite graph ¢ = (LU R,E), integer 7,

does it contain K. ., complete bipartite graph of size r?

Theorem: BCBS is NP-complete [GJ 79]

Kz,z: no K3’3




Network Security Games




Network Security Games

Given G = (V,E),

I/ = states of nature
= strategies of R

= strategies of C

R’s payoff: +1 if R adjacent to 6
-1ifC=Ror(C =26

(R must defend 6 from ()



Network Security Games

v
b Given G = (V,E),
V' = states of nature
R, C = strategies of R
=~ = strategies of C
R’s payoff: +1 if R adjacent to 6
-1ifC =Ror(C =20
R’s payoff=1-1=0 (R must defend 6 from ()



Network Security Games

C
6
b Given G = (V,E),
I/ = states of nature
R = strategies of R
= = strategies of C
R’s payoff: +1 if R adjacent to 6
-1ifC=Ror(C =26
R’s payoff =1



Network Security Games

0 R,C
b v Given G = (V,E),
I/ = states of nature
= strategies of R
= strategies of C
R’s payoff: +1 if R adjacent to 6
-1ifC=Ror(C =26
R’s payoff = -1



states of nature
strategies of R

strategies of C

Network Security Games
e.g., if G = K6'

6 picked uniformly from vertices

Case I: Signaling scheme reveals 6

* player C picks 0 as strategy
* Player R’s payoffis 0

Case ll: Signaling scheme reveals nothing

* R picks uniformly from vertices
* Player R’s payoffis=1—1/3
Thus, cliques are good for R




Network Security Games

Theorem: Threshold signaling in Network Security Games is NP-hard
(reduction from BCBS)

does G contain K, ,.?

yes, iff

c=1—1/r% 3?2 u:c < val(p)
(in same graph)




Network Security Games

Lemma: G contains K, . iff there exists u with val(u) > ¢, ¢ =1 —1/r?

(will only sketch one implication)
Say G contains K, ,.

U R
Choose:
u uniform distr over one side of K, ,.
1/2 R uniform distr over other side
1/2
Then R’s payoffis>1—1/r,
1/2 e 1/2

irrespective of C’s strategy i

BCBS NSG




Network Security Games

Lemma: G contains K, . iff there exists p with val(u) > ¢, c=1 —1/r

+

Theorem: NP-hard to determine if G contains K. ;.

- Lemma: Threshold Signaling is NP-hard




Network Security Games

Lemma: Threshold Sighaling is NP-hard

+

Theorem: Signaling is at least as hard as Threshold Signaling

- Theorem: Signaling in 2-player 0-sum games is NP-hard




Results for 2-player 0-sum games

ResultI: NP-hard to obtain an FPTAS

Result Il: Foraconstant e > 0,
computing e-approximate signalling scheme
is as hard as recovering a planted clique in a random graph.

In paper: Signaling in network congestion games




Open Questions

Question |:  For signaling in 2-player 0-sum games,
e-approximate signalling scheme for some constant € > 0?

Question |I:  For signaling in 2-player games,
e-approximate signalling scheme for approximate equilibria,

for some constant € > 07?

Question Ill: What if you could give different signals to different players?

(asymmetric signaling)



Thank You!




Results for 2-player 0-sum games

Result ll: Foraconstante > 0,

computing e-approximate signalling scheme
is as hard as recovering a planted clique in a random graph.

 why not NP-hard?

SO NP-hardne\siwould give a

nO(log n)

QPT

d|quasi-polynomial time|algorithm for this [CDDT ‘15]

algo for an NP-hard problem



This Talk

Partl: NP-hard to obtain a fully polynomial-time approximation scheme:

for every € > 0, compute e-approximate signalling scheme

in time poly(i).

Will show:




Dual Linear Program for Signaling

max Z o, val(u) e thisisalinear program
HEAM  consider the dual linear program:
>t Z ay = A min w! A
HEANM
wlu = val(u) forallu € Ay
a,=0

A, set of all distributions over states



Results for 2-player 0-sum games

ResultI:  NP-hard to compute optimal signaling scheme

NP-hard to obtain a fully polynomial-time approximation scheme:

an algorithm that given € > 0,
computes e-approximate signalling scheme

in time polye).




Results for 2-player 0-sum games

ResultI:  NP-hard to compute optimal signaling scheme

For game with m strategies, states of nature,
NP-hard to compute 1/m?® - approximate signalling scheme

NP-hard to obtain a FPTAS

an algorithm that given € > 0,
computes e-approximate signalling scheme

in time polye).



This Talk

Part |: For game with m strategies, states of nature,
NP-hard to compute 1/m?® - approximate signalling scheme

Part Il: For game with m strategies, states of nature,
computing 1/log?(m)-approximate signalling scheme
is as hard as planted-clique recovery

[Dughmi ‘14]




