The Hardness of Signaling in Bayesian Games

Umang BhaskarTIFRYu ChengUSCYoung Kun KoPrincetonChaitanya SwamyU Waterloo

Prisoners' Dilemma

Prisoners' Dilemma

$$\theta \sim U\{-2, -1, 0, 1, 2\}$$

- no information: (D,D) is NE
- reveals θ :

(C,C) is NE if $\theta \ge 1$ (w.p. 2/5) (D,D) is NE o.w. (w.p. 3/5)

[example modified from Dughmi '14]

Prisoners' Dilemma

$$\theta \sim U\{-2, -1, 0, 1, 2\}$$

- **H** if $\theta \ge 0$, **L** otherwise
 - **H**: (C,C) is NE (w.p. 3/5)
 - L: (D,D) is NE (w.p. 2/5)

(C,C) is NE w.p. 3/5!

[example modified from Dughmi '14]

Bayesian Game

- payoffs are uncertain
- depend on state of nature θ

Principal knows θ ,

chooses Signaling Scheme:

States \rightarrow Signals $\Theta \rightarrow \Sigma$ (possibly randomized)

Bayesian Game

- payoffs are uncertain
- depend on state of nature θ

- scheme 1: same signal for all θ
 - reveals nothing beyond prior
 - called no revelation
- scheme 2: diff signal for each θ
 - reveals heta
 - called full revelation

Problem: What is computational complexity of *optimal* signaling scheme?

for 2-person zero-sum games(goal: maximize row-player's payoff)

Problem: What is computational complexity of *optimal* signaling scheme?

- for 2-person zero-sum games(goal: maximize row-player's payoff)
- since NE (essentially) unique,
 - well-understood,
 - poly-time computable

Approximation

A signaling scheme for instance I is ϵ -approximate if **R**'s payoff is $\geq OPT(I) - \epsilon$

Algorithm A is ϵ -approximate if on any instance I, it computes an ϵ -approximate signaling scheme.

Algorithm A is an **FPTAS** if, given $\epsilon > 0$, computes ϵ -approximate signalling scheme in time poly $\left(\frac{1}{\epsilon}\right)$.

Previous Work for 0-Sum Games

- Design problem first studied by Dughmi
- Obtaining an FPTAS is as hard as recovering a planted clique in a random graph [Dughmi '14]

Previous Work for 0-Sum Games

- Design problem first studied by Dughmi
- Obtaining an FPTAS is as hard as recovering a planted clique in a random graph [Dughmi '14]
- Given $\epsilon > 0$, ϵ -approximate signalling scheme can be computed in time $poly(n^{\log n/\epsilon^2})$ [CCDEHT '14]

Previous Work for 0-Sum Games

Independently,

- Obtaining an FPTAS is NP-hard
- For a constant ε > 0, computing poly-time ε-approximate signalling scheme is as hard as constructing sub-exponential time algo for SAT

[Rubinstein '15]

Result I: NP-hard to obtain an FPTAS

algorithm that given $\epsilon > 0$, computes ϵ -approximate signalling scheme in time poly $\left(\frac{1}{\epsilon}\right)$.

Result II: For a constant $\epsilon > 0$, computing ϵ -approximate signalling scheme is as hard as recovering a planted clique in a random graph.

• why not NP-hard?

 \exists quasi-polynomial time algorithm for this[CCDEHT '15]so NP-hardness would give a QPT algo for an NP-hard problem $n^{O(\log n)}$

Result II: For a constant $\epsilon > 0$, computing ϵ -approximate signalling scheme is as hard as recovering a planted clique in a random graph.

- why not NP-hard?
- planted-clique hardness:
 - n vertices, each edge exists w.p. $\frac{1}{2}$

Result II: For a constant $\epsilon > 0$, computing ϵ -approximate signalling scheme is as hard as recovering a planted clique in a random graph.

- why not NP-hard?
- planted-clique hardness:
 - n vertices, each edge exists w.p. $\frac{1}{2}$
 - select k random vertices, create k-clique

Problem: find planted clique

This Talk

Theorem: NP-hard to compute optimal signalling scheme

- reduction from Balanced Complete Bipartite Subgraph (BCBS) problem...
- but to the dual separation problem

This Talk

Theorem: NP-hard to compute optimal signalling scheme

- Step 1: Signaling is at least as hard as threshold signaling, the separation problem for the dual
- Step 2: Threshold signaling problem is NP-hard via reduction from BCBS

Posterior Distributions

R's payoffs for states of nature

- $Pr[\sigma_1] = 1/6 + 2/3 \qquad Pr[\sigma_2] = 1/6 + 0 \\ = 5/6 \qquad = 1/6$
 - each signal σ gives a posterior distr over states of nature
 - posteriors form convex decomposition of the prior

Posterior Distributions

We shift focus and try to find **posteriors** rather than signals.

Conditions:

- each posterior is distribution over states of nature
- posteriors form convex decomposition of prior

A Linear Program for Signaling

$$\max \sum_{\mu \in \Delta_{M}} \alpha_{\mu} \operatorname{val}(\mu) \qquad \text{ this is a linear program}$$

s.t.
$$\sum_{\mu \in \Delta_{M}} \alpha_{\mu} \ \mu = \lambda$$
$$\sum_{\mu \in \Delta_{M}} \alpha_{\mu} = 1, \ \alpha_{\mu} \ge 0 \qquad \text{(implied by previous constraint)}$$

 Δ_M : set of **all** distributions over states

(note: infinite set, hence infinite variables)

Dual Linear Program for Signaling

- this is a linear program
- consider the dual linear program:

$$\min \ w^T \lambda$$
$$w^T \mu \ge \operatorname{val}(\mu) \quad \text{for all } \mu \in \Delta_M$$

 Δ_M : set of **all** distributions over states

The Separation Problem

min $w^T \lambda$

 $w^T \mu \geq \operatorname{val}(\mu)$ for all $\mu \in \Delta_M$

 λ : prior distribution over states

 Δ_M : set of **all** distributions over states

val(μ): *R*'s payoff with posterior μ

Theorem: Solving an LP is as hard as finding a violated constraint, given variable values

(optimization \equiv separation)

```
Thus, solving dual LP

\equiv
given w, \exists? \mu : w^T \mu < val(\mu)
```

min $w^T \lambda$

 $w^T \mu \geq \operatorname{val}(\mu)$ for all $\mu \in \Delta_M$

- λ : prior distribution over states
- Δ_M : set of **all** distributions over states
- val(μ): *R*'s payoff with posterior μ

Thus, solving dual LP \equiv given w, \exists ? μ : $w^T \mu$ < val(μ)

A simpler problem:

given $c \in \mathbb{R}$, $\exists ? \mu : c < val(\mu)$

This is the Threshold Signaling Problem

min $w^T \lambda$

 $w^T \mu \geq \operatorname{val}(\mu)$ for all $\mu \in \Delta_M$

 λ : prior distribution over states

 Δ_M : set of **all** distributions over states

val(μ): *R*'s payoff with posterior μ

Thus, solving dual LP \equiv given w, \exists ? μ : $w^T \mu$ < val(μ)

A simpler problem:

given $c \in \mathbb{R}$, $\exists ? \mu : c < val(\mu)$

Theorem: **Signaling** is at least as hard as given $c \in \mathbb{R}$, $\exists ? \mu : c < val(\mu)$

Theorem: **Signaling** is at least as hard as given $c \in \mathbb{R}$, $\exists ? \mu : c < val(\mu)$

 μ : distribution over states, val (μ) : *R*'s payoff with posterior μ

Proof: (1) strong LP duality,

(2) optimization \equiv separation

but need to consider infinite-dimensionality, etc.

(details skipped)

Theorem: **Signaling** is at least as hard as given $c \in \mathbb{R}$, $\exists ? \mu : c < val(\mu)$

 μ : distribution over states, val (μ) : *R*'s payoff with posterior μ

Step 1: Signaling is at least as hard as threshold signaling

Step 2: Threshold signaling problem is NP-hard

reduce

Balanced Complete Bipartite Subgraph (BCBS)

to threshold signaling in

Balanced Complete Bipartite Subgraph Problem

Balanced Complete Bipartite Subgraph Problem

Given bipartite graph $G = (L \cup R, E)$, integer r,

does it contain $K_{r,r}$, complete bipartite graph of size r?

Balanced Complete Bipartite Subgraph Problem

 $K_{2,2}$, no $K_{3,3}$

Given bipartite graph $G = (L \cup R, E)$, integer r, does it contain $K_{r,r}$, complete bipartite graph of size r?

Theorem: BCBS is NP-complete [GJ '79]

Given G = (V, E),

- V = states of nature
 - = strategies of R
 - = strategies of *C*

R's payoff: +1 if **R** adjacent to θ - 1 if **C** = **R** or **C** = θ

(*R* must defend θ from *C*)

R's payoff = 1 - 1 = 0

Given
$$G = (V, E)$$
,

- V = states of nature
 - = strategies of R
 - = strategies of C

R's payoff: +1 if **R** adjacent to θ - 1 if **C** = **R** or **C** = θ

(*R* must defend θ from *C*)

Given
$$G = (V, E)$$
,

- V = states of nature
 - = strategies of R
 - = strategies of *C*

R's payoff: +1 if **R** adjacent to θ - 1 if **C** = **R** or **C** = θ

R's payoff = 1

R, *C* θ

Network Security Games

Given
$$G = (V, E)$$
,

- V = states of nature
 - = strategies of R
 - = strategies of *C*

R's payoff: +1 if **R** adjacent to θ - 1 if **C** = **R** or **C** = θ

R's payoff = -1

- V = states of nature
 - = strategies of R
 - = strategies of *C*

e.g., if $G = K_6$,

 $\boldsymbol{\theta}$ picked uniformly from vertices

Case I: Signaling scheme reveals θ

- player C picks θ as strategy
- Player *R*'s payoff is 0

Case II: Signaling scheme reveals nothing

- *R* picks uniformly from vertices
- Player *R*'s payoff is $\geq 1 1/3$

Thus, cliques are good for R

Theorem: Threshold signaling in Network Security Games is NP-hard (reduction from BCBS)

Lemma: G contains $K_{r,r}$ iff there exists μ with $val(\mu) > c$, $c = 1 - 1/r^2$

(will only sketch one implication)

Say G contains $K_{r,r}$

Choose:

 μ uniform distr over one side of $K_{r,r}$ *R* uniform distr over other side

Then **R**'s payoff is $\geq 1 - 1/r$, irrespective of **C**'s strategy

Lemma: G contains $K_{r,r}$ iff there exists μ with $val(\mu) > c$, c = 1 - 1/r

Theorem: NP-hard to determine if G contains $K_{r,r}$

Lemma: Threshold Signaling is NP-hard

Lemma: Threshold Signaling is NP-hard

Theorem: Signaling is at least as hard as Threshold Signaling

Theorem: Signaling in 2-player 0-sum games is NP-hard

Result I: NP-hard to obtain an FPTAS

Result II: For a constant $\epsilon > 0$, computing ϵ -approximate signalling scheme is as hard as recovering a planted clique in a random graph.

In paper: Signaling in **network congestion games**

Open Questions

Question I: For signaling in 2-player 0-sum games, ϵ -approximate signalling scheme for some constant $\epsilon > 0$?

Question II: For signaling in 2-player games, ϵ -approximate signalling scheme for approximate equilibria, for some constant $\epsilon > 0$?

Question III: What if you could give different signals to different players? (asymmetric signaling)

Thank You!

Result II: For a constant $\epsilon > 0$, computing ϵ -approximate signalling scheme is as hard as recovering a planted clique in a random graph.

• why not NP-hard?

 \exists quasi-polynomial time algorithm for this[CDDT '15]so NP-hardness would give a QPT algo for an NP-hard problem $n^{O(\log n)}$

This Talk

Part I: NP-hard to obtain a *fully polynomial-time approximation scheme*:

for every $\epsilon > 0$, compute ϵ -approximate signalling scheme in time $poly(\frac{1}{\epsilon})$.

Will show:

Dual Linear Program for Signaling

$$\max \sum_{\mu \in \Delta_M} \alpha_{\mu} \operatorname{val}(\mu)$$

• this is a linear program

• consider the dual linear program:

s.t. $\sum_{\mu \in \Delta_M} \alpha_\mu \ \mu = \lambda$ $\alpha_\mu \ge 0$

 $\min \ w^T \ \lambda$ $w^T \ \mu \ge \operatorname{val}(\mu) \quad \text{for all } \mu \in \Delta_M$

 Δ_M : set of **all** distributions over states

Result I: NP-hard to compute **optimal** signaling scheme

NP-hard to obtain a **fully polynomial-time approximation scheme**:

an algorithm that given $\epsilon > 0$, computes ϵ -approximate signalling scheme in time poly $\left(\frac{1}{\epsilon}\right)$.

Result I: NP-hard to compute **optimal** signaling scheme

For game with m strategies, states of nature, NP-hard to compute $1/m^8$ - approximate signalling scheme

NP-hard to obtain a FPTAS

an algorithm that given $\epsilon > 0$, computes ϵ -approximate signalling scheme in time poly $\left(\frac{1}{\epsilon}\right)$.

This Talk

- Part I: For game with m strategies, states of nature, NP-hard to compute $1/m^8$ - approximate signalling scheme
- Part II: For game with m strategies, states of nature, computing $1/\log^2(m)$ -approximate signalling scheme is as hard as planted-clique recovery

[Dughmi '14]