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G = (V,E) is a finite, simple and undirected graph; V is set
of vertices and E is set of edges.
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Graph Coloring

G = (V,E) is a finite, simple and undirected graph; V is set
of vertices and E is set of edges.

A finite set C denotes the set of colours available to each
node.

A proper colouring of the graph G is a function c: V — C
such that for every edge (i,j) € E, c(i) # c(j).

If the number of colours used in the proper colouring ¢ of the
graph is k, then it is called proper-k-colouring.

The minimum possible value of k such that there is a
proper-k-colouring is called the chromatic number of the
graph
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Graph Coloring

How do you find minimal colouring?
An important problem in computer science
Hard optimization problem

Applications in diverse fields
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Social Game or Local Interaction Game

Let N ={1,2,---,n} be the set of agents.

Agents are embedded in a network, whose adjacency matrix is
given by G.

Any two partners (neighbours to each other) will play a
symmetric bilateral game.

The utility of agent i agains an agent j, in a bilateral game, is
given by 7(s;, s;).

A crucial assumption is that every player chooses the same
action in all bilateral games.



Social Game or Local Interaction Game

» Utility of an agent / in the social game is given by

i(siys-i) E gim(si,sj)-
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Social Game or Local Interaction Game

» Utility of an agent / in the social game is given by

5n5— § 8ijT 5:75_1

> A profile s is a Nash equilibrium if it satisfies

Vi, VS,{, 7T,'(S,',S,,') > 77;(5,{,5,,').



Social Game or Local Interaction Game

» The study of social interactions is a very active field.

33



Social Game or Local Interaction Game

» The study of social interactions is a very active field.

» The literature focussed mainly on positive interactions, when
agents have an incentive to conform with what others do.

6/33



Social Game or Local Interaction Game

» The study of social interactions is a very active field.

» The literature focussed mainly on positive interactions, when
agents have an incentive to conform with what others do.

» In other words, the underlying bilateral game is a coordination
game.

6/33



v

v

v

v

Social Game or Local Interaction Game

The study of social interactions is a very active field.

The literature focussed mainly on positive interactions, when
agents have an incentive to conform with what others do.

In other words, the underlying bilateral game is a coordination
game.

Bramoullé is the first work to study the negative interactions.

6

33



Social Game or Local Interaction Game

The study of social interactions is a very active field.

The literature focussed mainly on positive interactions, when
agents have an incentive to conform with what others do.

In other words, the underlying bilateral game is a coordination
game.

Bramoullé is the first work to study the negative interactions.

Many applications involving negative interactions.

6

33



Social Game or Local Interaction Game

The study of social interactions is a very active field.

The literature focussed mainly on positive interactions, when
agents have an incentive to conform with what others do.

In other words, the underlying bilateral game is a coordination
game.

Bramoullé is the first work to study the negative interactions.
Many applications involving negative interactions.

Negative interactions are modelled using anti-coordination
games.

6
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Anti-Coordination Games

Anti-Coordination games represent two types of situation:

» when differentiation yields mutual gains; e.g., ((1) é) The

production of positive output requires that partners adopt
different strategies;

» when there is a kind of predation of one strategy on the other;
e.g., Hawk-Dove game and Chicken game.
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Bramoullé's Model

» Each agent has two choices A and B.

> The bilateral game is anti-coordination game. It means that
the pure strategy equilibria are (A, B) and (B, A).

» This is equivalent to saying

(B, A) > m(A, A);, m(AB) > n(B, B)



Bramoullé's Model

» The bilateral game has a unique mixed equilibrium in which
the probability of playing A is
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» The bilateral game has a unique mixed equilibrium in which
the probability of playing A is
_ 7T(AvB)_T‘-(B?B)
PA = Z(A, B) — n(B, B) + n(B, A) — (A, A)

» A profile s is a Nash equilibrium of the social game if it
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VI', VS,{, 7T,'(S,', S,,') Z 71’,'(5,{7 S,,').

33



Bramoullé's Model

Theorem
A profile s is a Nash equilibrium if and only if for every agent i,

nia < pani = sj = A and nia < panj = sj = B.

Here n; refers to the number of neighbours of i; n; a refers to the
number of neighbours of i playing A.
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Bramoullé's Model

Every local interaction game admits a potential function
(Blume(1993) and Young(1998).

In our case, the potential function is given by negative of the
frustration function

#(s,ma, B, 8) = TANBB + TBNBB

Here ma = w(A, B) — w(B, B); ng = n(B, A) — (A, A); naa
is the number of links between A players.

Many results from Potential games can be applied.
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Bramoullé's Model

» Bramoullé studies the properties of frustration function and its
connection with the welfare of the social game.
» Specific topic of our concern is the characterisation of
bipartite graphs.
Theorem
A graph is bipartite if and only if there exists s, wa, wg such that
¢(577TA77Tng) =0.
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Graph Coloring: Game Theoretic View

Consider the graph and assume that each node is a player.
Each player interacts with each neighbors randomly.

Players goal is to chose a colour which is different from his
opponent in these random interaction.

The utility to the player is the expected payoff he receives in
these random interactions.
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Graph Coloring: Game Theoretic View

» The the utility of player i is given by
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> Here 7(s;, 5j) = L5z

» A profile s is a Nash equilibrium if it satisfies
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Problem with Bramoullé’s Model

Consider the network with 8 agents and the two configurations.

Both the configurations are Nash equilibrium. Note that the graph
is bipartite (see the second configuration). However, the first
configurations is not a proper colouring. Thus the Bramoullé's
model does not capture the anti-coordination in a stict sense.
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» Kearns, Suri and Montfort (2006) studied experimentally from
a behavioural point of view.
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Game Theoretic View: Recent Studies

Kearns, Suri and Montfort (2006) studied experimentally from
a behavioural point of view.

Several theoretical results followed after this work.

The results assume that the number of colours available are
two more than chromatic number.

Mainly these works analyse the greedy algorithm. Each time,
an agent picks a colour not used by the neighbours.

It is proved that this greedy algorithm convergences to a
proper colouring. The probability of convergence is not 1.

The model is essentially same as the model by by Bramoullé.
Also, Bramoullé's model assumes only two choices for the
agents.

16
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Our Model

» The utility function is given by

D R P Z Ig,—s, (1)

JEN; k. jeN;

Term1 Term?2

||
K =2
, (2

where
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Our Model

» The first term in the payoff counts the number of neighbours
having the same colour and hence represents the penalty for
choosing a colour that is same as the colour of a node in the
neighbourhood.
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» The first term in the payoff counts the number of neighbours
having the same colour and hence represents the penalty for
choosing a colour that is same as the colour of a node in the
neighbourhood.

» The second term counts the number of neighbours having
same colour and thus represents the benefit of having
minimum number of colours in the neighbourhood.
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Our Model and Results
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considering unilateral deviations, only Term 1 matters.
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Our Model and Results

Term 2 is independent of the colour of player 7/, and hence
unilateral deviation by player i will not effect this term. When
considering unilateral deviations, only Term 1 matters.

Term 1 represents the number of neighbours having the same
colour as the player i with a negative sign.

Thus Term 1 will be higher if no neighbour of player i has
same colour as the player /.

In other words, proper colouring will always be a Nash
equilibrium.

In fact, we have the following result: A pure strategy is a
Nash equilibrium if and only if it is proper colouring.
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Our Model and Results

» We can also prove: A Pareto equilibrium is always a minimal
colouring.
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Our Model and Results

» Given a proper colouring, for a player i and her
neighbourhood N(i), define the neighbourhood conflict
count (NCC) of player i as the number of pairs of agents
belonging to N(i) that have different colours.
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Our Model and Results

» Given a proper colouring, for a player i and her
neighbourhood N(i), define the neighbourhood conflict
count (NCC) of player i as the number of pairs of agents
belonging to N(i) that have different colours.

» Each such pair of agents in the neighbourhood of i whose
colours are different, is termed as a neighbourhood conflict
of player .

» Pareto equilibria correspond to minal “neighborhood
conflicting” profiles.
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Our Model and Results

» Pareto equilibria need not be unique.
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Question

How do we obtain minimal colouring?
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Difficulties

The game has too many Nash equilibrium.
The game is not Potential.

Note that our game is not a local interaction game (in the
sense of Blume). It should be understood as a game with
networked agents.

To get the minimal colouring, we consider a modification of
the game.
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Modified Game

» The payoff function is defined by

» This requires a 2-hop neighbourhood information.
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Modified Game: Main Result

Theorem
Every Nash equilibrium is a Pareto and hence it is minimal.
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Best Response Dynamics

The modified game can be analysed using best response
dynamics.

Any improvement by a player gives a strict increment in the
payoff.

This increment is lower bounded by a positive constant.
The payoffs of the game are bounded.

Hence the best response dynamics gives minimal colouring.
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A Simple Learning Scheme

Consider a repeated interaction.
At each round of interaction, pick an agen i uniformly.
The agent i will pick a neighbour j uniformly.

The agent i will ask j about his neighbours’ colours.

He picks the colour which is picked by most of j's neighbours.
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A Simple Learning Scheme: Convergence

There is an irreducible Markov chain in the back ground.
Each best response improvement iterate will happen.
So, the algorithm converges.

In fact, the algorithm will reach the steady state in finite time
with probability 1.
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Some Remarks

Our model can be studied for any number of colours (can be
less than the chromatic number), in which case it captures the
model of Bramoullé.

The learning scheme works irrespective of the number of
colours.

We can handle general anti-coordination games.

There is no clear definition for anti-coordination games with
many players. Graph colouring is one way of defining
anti-coordination game.

The idea of the modified game can help in studying socially
optimal equilibrium in general games.
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Questions, Comments?
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