Anti-Coordination Games and Graph Colouring

K.S. Mallikarjuna Rao
(Joint work with Arko Chatterjee)

Industrial Engineering \& Operations Research
Indian Institute of Technology Bombay

Workshop on Game Theory and Mechanism Design
IISc Bengaluru
15th January, 2016

Graph Coloring

- $G=(V, E)$ is a finite, simple and undirected graph; V is set of vertices and E is set of edges.

Graph Coloring

- $G=(V, E)$ is a finite, simple and undirected graph; V is set of vertices and E is set of edges.
- A finite set C denotes the set of colours available to each node.

Graph Coloring

- $G=(V, E)$ is a finite, simple and undirected graph; V is set of vertices and E is set of edges.
- A finite set C denotes the set of colours available to each node.
- A proper colouring of the graph G is a function $c: V \rightarrow C$ such that for every edge $(i, j) \in E, c(i) \neq c(j)$.

Graph Coloring

- $G=(V, E)$ is a finite, simple and undirected graph; V is set of vertices and E is set of edges.
- A finite set C denotes the set of colours available to each node.
- A proper colouring of the graph G is a function $c: V \rightarrow C$ such that for every edge $(i, j) \in E, c(i) \neq c(j)$.
- If the number of colours used in the proper colouring c of the graph is k, then it is called proper- k-colouring.

Graph Coloring

- $G=(V, E)$ is a finite, simple and undirected graph; V is set of vertices and E is set of edges.
- A finite set C denotes the set of colours available to each node.
- A proper colouring of the graph G is a function $c: V \rightarrow C$ such that for every edge $(i, j) \in E, c(i) \neq c(j)$.
- If the number of colours used in the proper colouring c of the graph is k, then it is called proper- k-colouring.
- The minimum possible value of k such that there is a proper-k-colouring is called the chromatic number of the graph

Graph Coloring

- How do you find minimal colouring?

Graph Coloring

- How do you find minimal colouring?
- An important problem in computer science

Graph Coloring

- How do you find minimal colouring?
- An important problem in computer science
- Hard optimization problem

Graph Coloring

- How do you find minimal colouring?
- An important problem in computer science
- Hard optimization problem
- Applications in diverse fields

Social Game or Local Interaction Game

- Let $N=\{1,2, \cdots, n\}$ be the set of agents.

Social Game or Local Interaction Game

- Let $N=\{1,2, \cdots, n\}$ be the set of agents.
- Agents are embedded in a network, whose adjacency matrix is given by G.

Social Game or Local Interaction Game

- Let $N=\{1,2, \cdots, n\}$ be the set of agents.
- Agents are embedded in a network, whose adjacency matrix is given by G.
- Any two partners (neighbours to each other) will play a symmetric bilateral game.

Social Game or Local Interaction Game

- Let $N=\{1,2, \cdots, n\}$ be the set of agents.
- Agents are embedded in a network, whose adjacency matrix is given by G.
- Any two partners (neighbours to each other) will play a symmetric bilateral game.
- The utility of agent i agains an agent j, in a bilateral game, is given by $\pi\left(s_{i}, s_{j}\right)$.

Social Game or Local Interaction Game

- Let $N=\{1,2, \cdots, n\}$ be the set of agents.
- Agents are embedded in a network, whose adjacency matrix is given by G.
- Any two partners (neighbours to each other) will play a symmetric bilateral game.
- The utility of agent i agains an agent j, in a bilateral game, is given by $\pi\left(s_{i}, s_{j}\right)$.
- A crucial assumption is that every player chooses the same action in all bilateral games.

Social Game or Local Interaction Game

- Utility of an agent i in the social game is given by

$$
\pi_{i}\left(s_{i}, s_{-i}\right)=\sum_{j=1}^{n} g_{i j} \pi\left(s_{i}, s_{j}\right)
$$

Social Game or Local Interaction Game

- Utility of an agent i in the social game is given by

$$
\pi_{i}\left(s_{i}, s_{-i}\right)=\sum_{j=1}^{n} g_{i j} \pi\left(s_{i}, s_{j}\right)
$$

- A profile s is a Nash equilibrium if it satisfies

$$
\forall i, \forall s_{i}^{\prime}, \quad \pi_{i}\left(s_{i}, s_{-i}\right) \geq \pi_{i}\left(s_{i}^{\prime}, s_{-i}\right) .
$$

Social Game or Local Interaction Game

- The study of social interactions is a very active field.

Social Game or Local Interaction Game

- The study of social interactions is a very active field.
- The literature focussed mainly on positive interactions, when agents have an incentive to conform with what others do.

Social Game or Local Interaction Game

- The study of social interactions is a very active field.
- The literature focussed mainly on positive interactions, when agents have an incentive to conform with what others do.
- In other words, the underlying bilateral game is a coordination game.

Social Game or Local Interaction Game

- The study of social interactions is a very active field.
- The literature focussed mainly on positive interactions, when agents have an incentive to conform with what others do.
- In other words, the underlying bilateral game is a coordination game.
- Bramoullé is the first work to study the negative interactions.

Social Game or Local Interaction Game

- The study of social interactions is a very active field.
- The literature focussed mainly on positive interactions, when agents have an incentive to conform with what others do.
- In other words, the underlying bilateral game is a coordination game.
- Bramoullé is the first work to study the negative interactions.
- Many applications involving negative interactions.

Social Game or Local Interaction Game

- The study of social interactions is a very active field.
- The literature focussed mainly on positive interactions, when agents have an incentive to conform with what others do.
- In other words, the underlying bilateral game is a coordination game.
- Bramoullé is the first work to study the negative interactions.
- Many applications involving negative interactions.
- Negative interactions are modelled using anti-coordination games.

Anti-Coordination Games

Anti-Coordination games represent two types of situation:

- when differentiation yields mutual gains; e.g., $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. The production of positive output requires that partners adopt different strategies;

Anti-Coordination Games

Anti-Coordination games represent two types of situation:

- when differentiation yields mutual gains; e.g., $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. The production of positive output requires that partners adopt different strategies;
- when there is a kind of predation of one strategy on the other; e.g., Hawk-Dove game and Chicken game.

Bramoullé's Model

- Each agent has two choices A and B.

Bramoullé's Model

- Each agent has two choices A and B.
- The bilateral game is anti-coordination game. It means that the pure strategy equilibria are (A, B) and (B, A).

Bramoullé's Model

- Each agent has two choices A and B.
- The bilateral game is anti-coordination game. It means that the pure strategy equilibria are (A, B) and (B, A).
- This is equivalent to saying

$$
\pi(B, A)>\pi(A, A) ; \pi(A B)>\pi(B, B)
$$

Bramoullé's Model

- The bilateral game has a unique mixed equilibrium in which the probability of playing A is

$$
p_{A}=\frac{\pi(A, B)-\pi(B, B)}{\pi(A, B)-\pi(B, B)+\pi(B, A)-\pi(A, A)}
$$

Bramoullé's Model

- The bilateral game has a unique mixed equilibrium in which the probability of playing A is

$$
p_{A}=\frac{\pi(A, B)-\pi(B, B)}{\pi(A, B)-\pi(B, B)+\pi(B, A)-\pi(A, A)}
$$

- A profile s is a Nash equilibrium of the social game if it satisfies

$$
\forall i, \forall s_{i}^{\prime}, \quad \pi_{i}\left(s_{i}, s_{-i}\right) \geq \pi_{i}\left(s_{i}^{\prime}, s_{-i}\right)
$$

Bramoullé's Model

Theorem
A profile s is a Nash equilibrium if and only if for every agent i,

$$
n_{i, A}<p_{A} n_{i} \Longrightarrow s_{i}=A \text { and } n_{i, A}<p_{A} n_{i} \Longrightarrow s_{i}=B .
$$

Here n_{i} refers to the number of neighbours of $i ; n_{i, A}$ refers to the number of neighbours of i playing A.

Bramoullé's Model

- Every local interaction game admits a potential function (Blume(1993) and Young(1998).

Bramoullé's Model

- Every local interaction game admits a potential function (Blume(1993) and Young(1998).
- In our case, the potential function is given by negative of the frustration function

$$
\phi\left(s, \pi_{A}, \pi_{B}, g\right)=\pi_{A} n_{B B}+\pi_{B} n_{B B}
$$

Bramoullé's Model

- Every local interaction game admits a potential function (Blume(1993) and Young(1998).
- In our case, the potential function is given by negative of the frustration function

$$
\phi\left(s, \pi_{A}, \pi_{B}, g\right)=\pi_{A} n_{B B}+\pi_{B} n_{B B}
$$

- Here $\pi_{A}=\pi(A, B)-\pi(B, B) ; \pi_{B}=\pi(B, A)-\pi(A, A) ; n_{A A}$ is the number of links between A players.

Bramoullé's Model

- Every local interaction game admits a potential function (Blume(1993) and Young(1998).
- In our case, the potential function is given by negative of the frustration function

$$
\phi\left(s, \pi_{A}, \pi_{B}, g\right)=\pi_{A} n_{B B}+\pi_{B} n_{B B}
$$

- Here $\pi_{A}=\pi(A, B)-\pi(B, B) ; \pi_{B}=\pi(B, A)-\pi(A, A) ; n_{A A}$ is the number of links between A players.
- Many results from Potential games can be applied.

Bramoullé's Model

- Bramoullé studies the properties of frustration function and its connection with the welfare of the social game.

Bramoullé's Model

- Bramoullé studies the properties of frustration function and its connection with the welfare of the social game.
- Specific topic of our concern is the characterisation of bipartite graphs.

Bramoullé's Model

- Bramoullé studies the properties of frustration function and its connection with the welfare of the social game.
- Specific topic of our concern is the characterisation of bipartite graphs.

Theorem
A graph is bipartite if and only if there exists s, π_{A}, π_{B} such that $\phi\left(s, \pi_{A}, \pi_{B}, g\right)=0$.

Graph Coloring: Game Theoretic View

- Consider the graph and assume that each node is a player.

Graph Coloring: Game Theoretic View

- Consider the graph and assume that each node is a player.
- Each player interacts with each neighbors randomly.

Graph Coloring: Game Theoretic View

- Consider the graph and assume that each node is a player.
- Each player interacts with each neighbors randomly.
- Players goal is to chose a colour which is different from his opponent in these random interaction.

Graph Coloring: Game Theoretic View

- Consider the graph and assume that each node is a player.
- Each player interacts with each neighbors randomly.
- Players goal is to chose a colour which is different from his opponent in these random interaction.
- The utility to the player is the expected payoff he receives in these random interactions.

Graph Coloring: Game Theoretic View

- The the utility of player i is given by

$$
\pi_{i}\left(s_{i}, s_{-i}\right)=\sum_{j=1}^{n} g_{i j} \pi\left(s_{i}, s_{j}\right)
$$

Graph Coloring: Game Theoretic View

- The the utility of player i is given by

$$
\pi_{i}\left(s_{i}, s_{-i}\right)=\sum_{j=1}^{n} g_{i j} \pi\left(s_{i}, s_{j}\right)
$$

- Here $\pi\left(s_{i}, s_{j}\right)=\mathbb{1}_{s_{i} \neq s_{j}}$

Graph Coloring: Game Theoretic View

- The the utility of player i is given by

$$
\pi_{i}\left(s_{i}, s_{-i}\right)=\sum_{j=1}^{n} g_{i j} \pi\left(s_{i}, s_{j}\right)
$$

- Here $\pi\left(s_{i}, s_{j}\right)=\mathbb{1}_{s_{i} \neq s_{j}}$
- A profile s is a Nash equilibrium if it satisfies

$$
\forall i, \forall s_{i}^{\prime}, \quad \pi_{i}\left(s_{i}, s_{-i}\right) \geq \pi_{i}\left(s_{i}^{\prime}, s_{-i}\right) .
$$

Problem with Bramoullé's Model

Consider the network with 8 agents and the two configurations.

Problem with Bramoullé's Model

Consider the network with 8 agents and the two configurations.

Both the configurations are Nash equilibrium. Note that the graph is bipartite (see the second configuration). However, the first configurations is not a proper colouring. Thus the Bramoullé's model does not capture the anti-coordination in a stict sense.

Game Theoretic View: Recent Studies

- Kearns, Suri and Montfort (2006) studied experimentally from a behavioural point of view.

Game Theoretic View: Recent Studies

- Kearns, Suri and Montfort (2006) studied experimentally from a behavioural point of view.
- Several theoretical results followed after this work.

Game Theoretic View: Recent Studies

- Kearns, Suri and Montfort (2006) studied experimentally from a behavioural point of view.
- Several theoretical results followed after this work.
- The results assume that the number of colours available are two more than chromatic number.

Game Theoretic View: Recent Studies

- Kearns, Suri and Montfort (2006) studied experimentally from a behavioural point of view.
- Several theoretical results followed after this work.
- The results assume that the number of colours available are two more than chromatic number.
- Mainly these works analyse the greedy algorithm. Each time, an agent picks a colour not used by the neighbours.

Game Theoretic View: Recent Studies

- Kearns, Suri and Montfort (2006) studied experimentally from a behavioural point of view.
- Several theoretical results followed after this work.
- The results assume that the number of colours available are two more than chromatic number.
- Mainly these works analyse the greedy algorithm. Each time, an agent picks a colour not used by the neighbours.
- It is proved that this greedy algorithm convergences to a proper colouring. The probability of convergence is not 1 .

Game Theoretic View: Recent Studies

- Kearns, Suri and Montfort (2006) studied experimentally from a behavioural point of view.
- Several theoretical results followed after this work.
- The results assume that the number of colours available are two more than chromatic number.
- Mainly these works analyse the greedy algorithm. Each time, an agent picks a colour not used by the neighbours.
- It is proved that this greedy algorithm convergences to a proper colouring. The probability of convergence is not 1 .
- The model is essentially same as the model by by Bramoullé. Also, Bramoullé's model assumes only two choices for the agents.

Our Model

- The utility function is given by

$$
\begin{equation*}
\pi_{i}(s)=\underbrace{-\sum_{j \in N_{i}} \mathbb{1}_{s_{i}=s_{j}}}_{\text {Term1 }}+\underbrace{\frac{1}{K_{i}} \sum_{k, j \in N_{i}} \mathbb{1}_{s_{k}=s_{j}}}_{\text {Term2 }} \tag{1}
\end{equation*}
$$

where

$$
K_{i}=2\binom{\left|N_{i}\right|}{2}
$$

Our Model

- The first term in the payoff counts the number of neighbours having the same colour and hence represents the penalty for choosing a colour that is same as the colour of a node in the neighbourhood.

Our Model

- The first term in the payoff counts the number of neighbours having the same colour and hence represents the penalty for choosing a colour that is same as the colour of a node in the neighbourhood.
- The second term counts the number of neighbours having same colour and thus represents the benefit of having minimum number of colours in the neighbourhood.

Our Model and Results

- Term 2 is independent of the colour of player i, and hence unilateral deviation by player i will not effect this term. When considering unilateral deviations, only Term 1 matters.

Our Model and Results

- Term 2 is independent of the colour of player i, and hence unilateral deviation by player i will not effect this term. When considering unilateral deviations, only Term 1 matters.
- Term 1 represents the number of neighbours having the same colour as the player i with a negative sign.

Our Model and Results

- Term 2 is independent of the colour of player i, and hence unilateral deviation by player i will not effect this term. When considering unilateral deviations, only Term 1 matters.
- Term 1 represents the number of neighbours having the same colour as the player i with a negative sign.
- Thus Term 1 will be higher if no neighbour of player i has same colour as the player i.

Our Model and Results

- Term 2 is independent of the colour of player i, and hence unilateral deviation by player i will not effect this term. When considering unilateral deviations, only Term 1 matters.
- Term 1 represents the number of neighbours having the same colour as the player i with a negative sign.
- Thus Term 1 will be higher if no neighbour of player i has same colour as the player i.
- In other words, proper colouring will always be a Nash equilibrium.

Our Model and Results

- Term 2 is independent of the colour of player i, and hence unilateral deviation by player i will not effect this term. When considering unilateral deviations, only Term 1 matters.
- Term 1 represents the number of neighbours having the same colour as the player i with a negative sign.
- Thus Term 1 will be higher if no neighbour of player i has same colour as the player i.
- In other words, proper colouring will always be a Nash equilibrium.
- In fact, we have the following result: A pure strategy is a Nash equilibrium if and only if it is proper colouring.

Our Model and Results

- We can also prove: A Pareto equilibrium is always a minimal colouring.

Our Model and Results

- We can also prove: A Pareto equilibrium is always a minimal colouring.
- The converse is not true.

Our Model and Results

- We can also prove: A Pareto equilibrium is always a minimal colouring.
- The converse is not true.

Our Model and Results

- We can also prove: A Pareto equilibrium is always a minimal colouring.
- The converse is not true.

Our Model and Results

- Given a proper colouring, for a player i and her neighbourhood $N(i)$, define the neighbourhood conflict count (NCC) of player i as the number of pairs of agents belonging to $N(i)$ that have different colours.

Our Model and Results

- Given a proper colouring, for a player i and her neighbourhood $N(i)$, define the neighbourhood conflict count (NCC) of player i as the number of pairs of agents belonging to $N(i)$ that have different colours.
- Each such pair of agents in the neighbourhood of i whose colours are different, is termed as a neighbourhood conflict of player i.

Our Model and Results

- Given a proper colouring, for a player i and her neighbourhood $N(i)$, define the neighbourhood conflict count (NCC) of player i as the number of pairs of agents belonging to $N(i)$ that have different colours.
- Each such pair of agents in the neighbourhood of i whose colours are different, is termed as a neighbourhood conflict of player i.
- Pareto equilibria correspond to minal "neighborhood conflicting" profiles.

Our Model and Results

- Pareto equilibria need not be unique.

Question

How do we obtain minimal colouring?

Difficulties

- The game has too many Nash equilibrium.

Difficulties

- The game has too many Nash equilibrium.
- The game is not Potential.

Difficulties

- The game has too many Nash equilibrium.
- The game is not Potential.
- Note that our game is not a local interaction game (in the sense of Blume). It should be understood as a game with networked agents.

Difficulties

- The game has too many Nash equilibrium.
- The game is not Potential.
- Note that our game is not a local interaction game (in the sense of Blume). It should be understood as a game with networked agents.
- To get the minimal colouring, we consider a modification of the game.

Modified Game

- The payoff function is defined by

$$
v^{i}(a)=u^{i}(a)+\frac{1}{|N(i)|} \sum_{j \in N(i)} u^{j}(a) .
$$

Modified Game

- The payoff function is defined by

$$
v^{i}(a)=u^{i}(a)+\frac{1}{|N(i)|} \sum_{j \in N(i)} u^{j}(a) .
$$

- This requires a 2-hop neighbourhood information.

Modified Game: Main Result

Theorem
Every Nash equilibrium is a Pareto and hence it is minimal.

Best Response Dynamics

- The modified game can be analysed using best response dynamics.

Best Response Dynamics

- The modified game can be analysed using best response dynamics.
- Any improvement by a player gives a strict increment in the payoff.

Best Response Dynamics

- The modified game can be analysed using best response dynamics.
- Any improvement by a player gives a strict increment in the payoff.
- This increment is lower bounded by a positive constant.

Best Response Dynamics

- The modified game can be analysed using best response dynamics.
- Any improvement by a player gives a strict increment in the payoff.
- This increment is lower bounded by a positive constant.
- The payoffs of the game are bounded.

Best Response Dynamics

- The modified game can be analysed using best response dynamics.
- Any improvement by a player gives a strict increment in the payoff.
- This increment is lower bounded by a positive constant.
- The payoffs of the game are bounded.
- Hence the best response dynamics gives minimal colouring.

A Simple Learning Scheme

- Consider a repeated interaction.

A Simple Learning Scheme

- Consider a repeated interaction.
- At each round of interaction, pick an agen i uniformly.

A Simple Learning Scheme

- Consider a repeated interaction.
- At each round of interaction, pick an agen i uniformly.
- The agent i will pick a neighbour j uniformly.

A Simple Learning Scheme

- Consider a repeated interaction.
- At each round of interaction, pick an agen i uniformly.
- The agent i will pick a neighbour j uniformly.
- The agent i will ask j about his neighbours' colours.

A Simple Learning Scheme

- Consider a repeated interaction.
- At each round of interaction, pick an agen i uniformly.
- The agent i will pick a neighbour j uniformly.
- The agent i will ask j about his neighbours' colours.
- He picks the colour which is picked by most of j 's neighbours.

A Simple Learning Scheme: Convergence

- There is an irreducible Markov chain in the back ground.

A Simple Learning Scheme: Convergence

- There is an irreducible Markov chain in the back ground.
- Each best response improvement iterate will happen.

A Simple Learning Scheme: Convergence

- There is an irreducible Markov chain in the back ground.
- Each best response improvement iterate will happen.
- So, the algorithm converges.

A Simple Learning Scheme: Convergence

- There is an irreducible Markov chain in the back ground.
- Each best response improvement iterate will happen.
- So, the algorithm converges.
- In fact, the algorithm will reach the steady state in finite time with probability 1.

Some Remarks

- Our model can be studied for any number of colours (can be less than the chromatic number), in which case it captures the model of Bramoullé.

Some Remarks

- Our model can be studied for any number of colours (can be less than the chromatic number), in which case it captures the model of Bramoullé.
- The learning scheme works irrespective of the number of colours.

Some Remarks

- Our model can be studied for any number of colours (can be less than the chromatic number), in which case it captures the model of Bramoullé.
- The learning scheme works irrespective of the number of colours.
- We can handle general anti-coordination games.

Some Remarks

- Our model can be studied for any number of colours (can be less than the chromatic number), in which case it captures the model of Bramoullé.
- The learning scheme works irrespective of the number of colours.
- We can handle general anti-coordination games.
- There is no clear definition for anti-coordination games with many players. Graph colouring is one way of defining anti-coordination game.

Some Remarks

- Our model can be studied for any number of colours (can be less than the chromatic number), in which case it captures the model of Bramoullé.
- The learning scheme works irrespective of the number of colours.
- We can handle general anti-coordination games.
- There is no clear definition for anti-coordination games with many players. Graph colouring is one way of defining anti-coordination game.
- The idea of the modified game can help in studying socially optimal equilibrium in general games.

Some References

- Blume, The statistical mechanics of strategic interaction, Games and Economic Behavior, 1993.

Some References

- Blume, The statistical mechanics of strategic interaction, Games and Economic Behavior, 1993.
- Bramoullé, Anti-coordination and social interactions, Games and Economic Behavior, 2007.

Some References

- Blume, The statistical mechanics of strategic interaction, Games and Economic Behavior, 1993.
- Bramoullé, Anti-coordination and social interactions, Games and Economic Behavior, 2007.
- Kearns, Suri and Montfort, An experimental study of the colouring problem on human subject networks, Science, 2006.

Some References

- Blume, The statistical mechanics of strategic interaction, Games and Economic Behavior, 1993.
- Bramoullé, Anti-coordination and social interactions, Games and Economic Behavior, 2007.
- Kearns, Suri and Montfort, An experimental study of the colouring problem on human subject networks, Science, 2006.
- Young, Individual Strategy and Social Structure, Princeton University Press, 1998.

Questions, Comments?

Thank You

