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Graph Coloring

I G = (V ,E ) is a finite, simple and undirected graph; V is set
of vertices and E is set of edges.

I A finite set C denotes the set of colours available to each
node.

I A proper colouring of the graph G is a function c : V → C
such that for every edge (i , j) ∈ E , c(i) 6= c(j).

I If the number of colours used in the proper colouring c of the
graph is k , then it is called proper-k-colouring.

I The minimum possible value of k such that there is a
proper-k-colouring is called the chromatic number of the
graph
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Graph Coloring

I How do you find minimal colouring?

I An important problem in computer science

I Hard optimization problem

I Applications in diverse fields
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Social Game or Local Interaction Game

I Let N = {1, 2, · · · , n} be the set of agents.

I Agents are embedded in a network, whose adjacency matrix is
given by G .

I Any two partners (neighbours to each other) will play a
symmetric bilateral game.

I The utility of agent i agains an agent j , in a bilateral game, is
given by π(si , sj).

I A crucial assumption is that every player chooses the same
action in all bilateral games.
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Social Game or Local Interaction Game

I Utility of an agent i in the social game is given by

πi (si , s−i ) =
n∑

j=1

gijπ(si , sj).

I A profile s is a Nash equilibrium if it satisfies

∀i , ∀s ′i , πi (si , s−i ) ≥ πi (s ′i , s−i ).
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Social Game or Local Interaction Game

I The study of social interactions is a very active field.

I The literature focussed mainly on positive interactions, when
agents have an incentive to conform with what others do.

I In other words, the underlying bilateral game is a coordination
game.

I Bramoullé is the first work to study the negative interactions.

I Many applications involving negative interactions.

I Negative interactions are modelled using anti-coordination
games.
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Anti-Coordination Games

Anti-Coordination games represent two types of situation:

I when differentiation yields mutual gains; e.g.,

(
0 1
1 0

)
. The

production of positive output requires that partners adopt
different strategies;

I when there is a kind of predation of one strategy on the other;
e.g., Hawk-Dove game and Chicken game.
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Bramoullé’s Model

I Each agent has two choices A and B.

I The bilateral game is anti-coordination game. It means that
the pure strategy equilibria are (A,B) and (B,A).

I This is equivalent to saying

π(B,A) > π(A,A); π(AB) > π(B,B)
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Bramoullé’s Model

I The bilateral game has a unique mixed equilibrium in which
the probability of playing A is

pA =
π(A,B)− π(B,B)

π(A,B)− π(B,B) + π(B,A)− π(A,A)

I A profile s is a Nash equilibrium of the social game if it
satisfies

∀i , ∀s ′i , πi (si , s−i ) ≥ πi (s ′i , s−i ).
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Bramoullé’s Model

Theorem
A profile s is a Nash equilibrium if and only if for every agent i ,

ni ,A < pAni =⇒ si = A and ni ,A < pAni =⇒ si = B.

Here ni refers to the number of neighbours of i ; ni ,A refers to the
number of neighbours of i playing A.
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Bramoullé’s Model

I Every local interaction game admits a potential function
(Blume(1993) and Young(1998).

I In our case, the potential function is given by negative of the
frustration function

φ(s, πA, πB , g) = πAnBB + πBnBB

I Here πA = π(A,B)− π(B,B); πB = π(B,A)− π(A,A); nAA
is the number of links between A players.

I Many results from Potential games can be applied.
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Bramoullé’s Model

I Bramoullé studies the properties of frustration function and its
connection with the welfare of the social game.

I Specific topic of our concern is the characterisation of
bipartite graphs.

Theorem
A graph is bipartite if and only if there exists s, πA, πB such that
φ(s, πA, πB , g) = 0.
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Graph Coloring: Game Theoretic View

I Consider the graph and assume that each node is a player.

I Each player interacts with each neighbors randomly.

I Players goal is to chose a colour which is different from his
opponent in these random interaction.

I The utility to the player is the expected payoff he receives in
these random interactions.
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Problem with Bramoullé’s Model

Consider the network with 8 agents and the two configurations.

1 73

2

4

8

6

5

1 73

2

4

8

6

5

Both the configurations are Nash equilibrium. Note that the graph
is bipartite (see the second configuration). However, the first
configurations is not a proper colouring. Thus the Bramoullé’s
model does not capture the anti-coordination in a stict sense.

15 / 33



Problem with Bramoullé’s Model
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model does not capture the anti-coordination in a stict sense.

15 / 33



Game Theoretic View: Recent Studies

I Kearns, Suri and Montfort (2006) studied experimentally from
a behavioural point of view.

I Several theoretical results followed after this work.

I The results assume that the number of colours available are
two more than chromatic number.

I Mainly these works analyse the greedy algorithm. Each time,
an agent picks a colour not used by the neighbours.

I It is proved that this greedy algorithm convergences to a
proper colouring. The probability of convergence is not 1.

I The model is essentially same as the model by by Bramoullé.
Also, Bramoullé’s model assumes only two choices for the
agents.
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Also, Bramoullé’s model assumes only two choices for the
agents.

16 / 33



Game Theoretic View: Recent Studies

I Kearns, Suri and Montfort (2006) studied experimentally from
a behavioural point of view.

I Several theoretical results followed after this work.

I The results assume that the number of colours available are
two more than chromatic number.

I Mainly these works analyse the greedy algorithm. Each time,
an agent picks a colour not used by the neighbours.

I It is proved that this greedy algorithm convergences to a
proper colouring. The probability of convergence is not 1.

I The model is essentially same as the model by by Bramoullé.
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Also, Bramoullé’s model assumes only two choices for the
agents.

16 / 33



Our Model

I The utility function is given by

πi (s) = −
∑
j∈Ni

1si=sj︸ ︷︷ ︸
Term1

+
1

Ki

∑
k,j∈Ni

1sk=sj︸ ︷︷ ︸
Term2

, (1)

where

Ki = 2

(
|Ni |

2

)
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Our Model

I The first term in the payoff counts the number of neighbours
having the same colour and hence represents the penalty for
choosing a colour that is same as the colour of a node in the
neighbourhood.

I The second term counts the number of neighbours having
same colour and thus represents the benefit of having
minimum number of colours in the neighbourhood.
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Our Model and Results

I Term 2 is independent of the colour of player i , and hence
unilateral deviation by player i will not effect this term. When
considering unilateral deviations, only Term 1 matters.

I Term 1 represents the number of neighbours having the same
colour as the player i with a negative sign.

I Thus Term 1 will be higher if no neighbour of player i has
same colour as the player i .

I In other words, proper colouring will always be a Nash
equilibrium.

I In fact, we have the following result: A pure strategy is a
Nash equilibrium if and only if it is proper colouring.
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Our Model and Results

I We can also prove: A Pareto equilibrium is always a minimal
colouring.

I The converse is not true.
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Our Model and Results

I Given a proper colouring, for a player i and her
neighbourhood N(i), define the neighbourhood conflict
count (NCC) of player i as the number of pairs of agents
belonging to N(i) that have different colours.

I Each such pair of agents in the neighbourhood of i whose
colours are different, is termed as a neighbourhood conflict
of player i .

I Pareto equilibria correspond to minal “neighborhood
conflicting” profiles.
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Our Model and Results

I Pareto equilibria need not be unique.
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Question

How do we obtain minimal colouring?

23 / 33



Difficulties

I The game has too many Nash equilibrium.

I The game is not Potential.

I Note that our game is not a local interaction game (in the
sense of Blume). It should be understood as a game with
networked agents.

I To get the minimal colouring, we consider a modification of
the game.
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Modified Game

I The payoff function is defined by

v i (a) = ui (a) +
1

|N(i)|
∑

j∈N(i)

uj(a).

I This requires a 2-hop neighbourhood information.
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Modified Game: Main Result

Theorem
Every Nash equilibrium is a Pareto and hence it is minimal.
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Best Response Dynamics

I The modified game can be analysed using best response
dynamics.

I Any improvement by a player gives a strict increment in the
payoff.

I This increment is lower bounded by a positive constant.

I The payoffs of the game are bounded.

I Hence the best response dynamics gives minimal colouring.
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A Simple Learning Scheme

I Consider a repeated interaction.

I At each round of interaction, pick an agen i uniformly.

I The agent i will pick a neighbour j uniformly.

I The agent i will ask j about his neighbours’ colours.

I He picks the colour which is picked by most of j ’s neighbours.

28 / 33



A Simple Learning Scheme

I Consider a repeated interaction.

I At each round of interaction, pick an agen i uniformly.

I The agent i will pick a neighbour j uniformly.

I The agent i will ask j about his neighbours’ colours.

I He picks the colour which is picked by most of j ’s neighbours.

28 / 33



A Simple Learning Scheme

I Consider a repeated interaction.

I At each round of interaction, pick an agen i uniformly.

I The agent i will pick a neighbour j uniformly.

I The agent i will ask j about his neighbours’ colours.

I He picks the colour which is picked by most of j ’s neighbours.

28 / 33



A Simple Learning Scheme

I Consider a repeated interaction.

I At each round of interaction, pick an agen i uniformly.

I The agent i will pick a neighbour j uniformly.

I The agent i will ask j about his neighbours’ colours.

I He picks the colour which is picked by most of j ’s neighbours.

28 / 33



A Simple Learning Scheme

I Consider a repeated interaction.

I At each round of interaction, pick an agen i uniformly.

I The agent i will pick a neighbour j uniformly.

I The agent i will ask j about his neighbours’ colours.

I He picks the colour which is picked by most of j ’s neighbours.

28 / 33



A Simple Learning Scheme: Convergence

I There is an irreducible Markov chain in the back ground.

I Each best response improvement iterate will happen.

I So, the algorithm converges.

I In fact, the algorithm will reach the steady state in finite time
with probability 1.
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Some Remarks

I Our model can be studied for any number of colours (can be
less than the chromatic number), in which case it captures the
model of Bramoullé.

I The learning scheme works irrespective of the number of
colours.

I We can handle general anti-coordination games.

I There is no clear definition for anti-coordination games with
many players. Graph colouring is one way of defining
anti-coordination game.

I The idea of the modified game can help in studying socially
optimal equilibrium in general games.
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I The learning scheme works irrespective of the number of
colours.

I We can handle general anti-coordination games.

I There is no clear definition for anti-coordination games with
many players. Graph colouring is one way of defining
anti-coordination game.

I The idea of the modified game can help in studying socially
optimal equilibrium in general games.

30 / 33



Some Remarks

I Our model can be studied for any number of colours (can be
less than the chromatic number), in which case it captures the
model of Bramoullé.
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Questions, Comments?
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Thank You
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