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Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

Travel time of each car = 70 mins.

The solution is unstable!

Every car takes the route ACDB.

Travel time of each car = 400/104-0+400/10 = 80 mins.
This solution is stable! (Time for path ACB = 400/10+50 = 90)
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Formally defining a = "Game”

(1) A set of “players” N'={1,...,n}. (person driving a car)

(2) A set of “strategies” S; for each player j € N. (source-destination routes)

3) Each player j selects a strategy 0, € S;.
j J

This defines an “outcome/strategy-profile” 6 = (64,...,0,).
(4) Let S = x;S; be the set of all possible outcomes.

5) Each player 7 has a “cost function” ¢; : S — R. travel-time
j

Player j prefers an outcome 6 over ¢ iff ¢;(0) < ¢;(6").

What is a rational outcome of such a game?



Pure Nash Equilbrium

An outcome of a game is a pure Nash equilibrium iff no player

can reduce her cost by unilaterally switching her strategy.
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Precise Definition

Consider the underlying optimization problem.

Objective at the worst equilibrium outcome
Price of Anarchy (PoA) : ik i q

Optimal objective

Depends on the solution concept.
(PoA for Pure Nash eq., PoA for Mixed Nash eq. etc.)

Will focus on PoA of pure Nash eq.
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The Scheduling Problem

Jobs (DNS request by a client)
Machines

(DNS servers)

Step 1: Assign each job

to a machine.

Step 2: Each machine

processes the jobs assigned

to it according to some

scheduling policy.

66 o6

Goal: Minimize the sum of

completions times of jobs.
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Example of a Scheduling Policy

J1
4 . .

jo  Shortest Job First (SJF) policy.

| S J3

! 9

j3 jl j2
0 9 6 14
<\V\ /

Completion times

Sum of completion times = 2 + 6 + 14 = 22.
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A decentralized environment

Each job selects its own machine.

* The choice depends on (a) the scheduling policies, and

(b) the strategies of the other jobs.

Each machine executes a [ocal scheduling policy.

* It only sees those jobs that come to it.

Each job wants to minimize its own completion time.

* It is a selfish, rational agent.



A tug of war

Selfish jobs System-designer
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Price of Anarchy

The scheduling policies define a game between the jobs.

The strategy of a job is the machine it selects.

A strategy-profile is in Nash equilibrium iff

no job can reduce its completion time by

switching to another machine.

. . Objective at the worst Nash equilibrium
Price of anarchy (PoA) : Optimal objective

Goal: Design the scheduling policies so as to minimize PoA.
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Characterization of Scheduling Polices

A scheduling policy has “fairness” «, iff the delay of any

job j due to any other job j' is at most o X p;.

J1
4
8 jo Shortest Job First (SJF) policy
: has a = 1.
J3
;@
J3 J1 J2

0 9 6 14
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Nice guys finish first!
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The result

If the machines follow (possibly different) scheduling policies
that are a — fair, then the price of anarchy ot the induced

game 1s at most 4. B., Im, Kulkarni, Munagala. ITCS’ 14.

In the talk, we will only show that the Price of Anarchy of

Shortest Job First (SJF) policy is at most 4.
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Optimization version. No selfish jobs.

\ T X{fgﬂ\%\\

Every machine executes Shortest Job First (SJF) POhf?B“a,

AnaYy 9o D

The Algorithm
Only need to find the assignment of the jobs to the machines.

* Consider the jobs in arbitrary order.

x While considering a job 7, assign it to a machine which increases

the overall objective by the least amount.
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Fractional Completion Time

z;;¢+ © Denotes if machine ¢ works on job j at time .

. . . Pijs = 8
J1 J2 J3
0 2 6 14
€ > € >
Zijs,t = 0 Tijgt = 1

2 Tiga) -t

pi7j3

Fractional completion time of j3 =

- 7—|—8—|—9-|-10+%1‘|‘12‘|‘13+14 = 10.5 < Completion time of j3.




Fractional Completion Time

z;5+ : Denotes if machine 7 works on job j at time ¢.

fractional completion time total processing time

\ /

Min. Zj > { S i (t/pig) } + Zj D i { > .. (1/2) -:Uijt}

Why do we need the second term in the LP-objective?
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* Fix any Nash equilibrium 0 = (51, . ,9_;-, e ﬁm)
Here, 9_; denotes the machine chosen by the job j.

* (; +— Completion time of job 7 under 0.

x IV;; < #Unfinished jobs on machine ¢ at time ¢, under 0.




Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt




Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0 v Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.




Dual Objective

C; —t < pij +pij - Nix V jobs j, machines ¢, times t.

CjaNit >0V Za]vt

Zj C; = Total completion time of the jobs = Zit Nig.

I

0 9 6 14



Dual Objective

C; —t < pij +pij - Nix V jobs j, machines ¢, times t.

CjaNit >0V Za]vt

Zj C; = Total completion time of the jobs = Zit Nig.




Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pij +pij - Nix V jobs j, machines ¢, times t.

CjaNit >0V Za]vt

Zj C; = Total completion time of the jobs = Zit Nig.




Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0 v Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.




Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.

0 Dual Objl\-/ Nash. Eq.

2



Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.

'LPopr |

0 Dual Objl\-/ Nash. Eq.

2



Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.

0 Dual Obj.l \LPopT Nash. Eq.



Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.

0 | \LPopr Nash. Eq.

OPT \_/
9 2



Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.

0 | ' LPopr | Nash. Eq.

. \/
4



Dual Objective

Max. > . C; —1/2) ;> Nu
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C; —t < pi; +pij - Niz V jobs j, machines ¢, times ¢.

Define C (i) « Job j’s cgmpletion time if it switches to machine i.
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Dual Constraints

- Pij N
— =9
>
. € l > Cj (Z)
-
: N;+ = No. of jobs alive at time t.
® [ < pij - N;

C](Z) —t:pij—kl

Will show: Cj (Z) — 1t < pij +Dij - N;




Dual Constraints

time

<€ p’LJ >
t < > C;(4)

- [

N;+ = No. of jobs alive at time t.

® [ < pij - N;

Cj(i)—t:pij—klﬁpij—l-p?;j-]\f,,;

Will show: Cj (Z) — 1t < pij +Dij - N;




Conclusion
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Price of Anarchy via Linear Programs

Optimization Problem (Game Theoretic Variant
NP-hardness Strategic interactions
Max. Objective at algorithm’s output / Max. Objective at a Nash Eq.

Optimal objective Optimal objective

Linear programs Combinatorial

lower bounds optimal objective Problem specific



Thank you.
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Smooth Games

Consider a game with Obj(0) = > ..y ¢;(0) at each outcome 6.
Underlying optimization problem is: ming Obj(8).

Such a game is (A, u)-smooth iff for every two outcomes 6, 6*, we have

> ien€i(05,0-;) < A-0bj(0*) +p-0bj(d). A>1,0<pu<1
Theorem: A (A, ;) — smooth game has PoA at most \/(1 — pu).

Proof: Let 6* = optimal outcome, § = any pure Nash eq. Then we have:
Obj(d) = ZjeN c;(0) < ZJEN cj(0%,0-5) < X-Obj(6*) + 1 - Obj(0).
Rearranging the terms, we get: (1 — p) - Obj(f) < X - Obj(6*)
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Smooth Games

Consider a game with Obj(0) = > ..y ¢;(0) at each outcome 6.
Underlying optimization problem is: ming Obj(8).

Such a game is (A, u)-smooth iff for every two outcomes 6, 6*, we have

> ien€i(05,0-;) < A-0bj(0*) +p-0bj(d). A>1,0<pu<1
Theorem: A (A, ;) — smooth game has PoA at most \/(1 — pu).

Proof:

The proof can be extended to all other solution concepts!
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Directed graph G = (V, FE).
Player j selects a path from u; € V tov; € V.
0; denotes the strategy of player j(i.e., it is a u; — v, path).

Under a given outcome 6 = (64,...,0,), the load on an edge e € F
is () ={j € N:e€fb,}: the number of players using the edge.
c;(0) = Zeeej l.(0) : cost function of player j.

Obj(0) = >, ¢;(0).

MaXgis in equilibrium ObJ (9)
ming Obj(0)

Price of Anarchy (PoA) =
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Robust PoA of Selfish Routing

AV

¢(0) = no. of players using the edge e under 6.

cz(é’) = sum of the loads in the path chosen by 1.

> e 5 (07,6_5) < A Obj(6%) + 1- Obj(0).

l \ N\

ZeEE le(e*) ) (le( - 1) <A ZeEEl (‘9*) ZeEE 16(9)2

\ /[

0)
v(y+1) < X224+ p-y?> w— A=5/3,pu=1/3.



Robust PoA of Selfish Routing

Hence, PoA of selfish routing < \/(1 — ) = (5/3)/(1 —1/3) = 5/2.

> ien ¢i(07,0_5) < A-Obj(0*) + n- Obj(0).

l \ N\

Doeer le(0) - (1e(0) + 1)|S A3 cple(07) 1D e g le(0)?
x(y +

1) < AN-a? 4 p-y?> we—> \=5/3,pu=1/3.
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Concepts
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Mixed Nash Equilibrium

Each player j € M has a set of strategies S;.

An element of §; is a “pure strategy” for player j.

A “mixed strategy” m; for player j is a probability distribution over §;.

A profile 7 = (71,...,m,) is a Mixed Nash equilibrium iff no player can

decrease her expected cost by unilaterally switching her strategy.
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Traffic Light

Two pure Nash eq. in this game (one player stops, the other crosses).

— None of them is “fair”.

One mixed Nash equilibrium. Pr[Alice Crosses| = 1/101
Pr[Alice Stops] = 100/101

— Positive chance of a crash.

Utility Matrix Pr[Bob Crosses| = 1/101

: % Cross Stop Pr[Bob Stops| = 100/101
Alice
—100 0
Cross 100 41
+1 0
Sto
2 0 0
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Assume that there is a “mediator” (traffic light) that picks a probability

distribution o over the set of all possible outcomes.

o(0) = Pr[mediator picks the outcome 6.

Correlated equilibrium

Utility Matrix outcome ¢ o (0)
Bob Cross Stop Cross , Cross 0
Alice
Cross , Stop p
Cross —100 0
—100 +1 Stop , Cross 1—»p
+1 0
Stop 0 0 Stop , Stop 0




Traffic Light

Assume that there is a “mediator” (traffic light) that picks a probability
distribution o over the set of all possible outcomes.
o(0) = Pr[mediator picks the outcome 6.

For p =1/2, the solution is “fair”. Correlated equilibrium

Utility Matrix outcome ¢ o (0)
Bob Cross Stop Cross , Cross 0
Alice
Cross , Stop p
Cross —100 0
—100 +1 Stop , Cross 1—»p
+1 0
Stop 0 0 Stop , Stop 0
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Correlated Equilibrium: Definition

Consider a distribution o over the set of possible outcomes S.

A “mediator” draws an outcome 6 = (61,...,6,) from S, and suggests to

each player j that she should play strategy 0.

Player j only knows o and 0;. In a correlated equilibrium, she will follow

the mediator’s suggestion, provided that others do the same.

The distribution o is a correlated equilibrium iff for every player 7 € N,

Eoo|ci(0)]05] < Egmo cj(z,0-5)|0;] for all strategies x,0, € S;.
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Coarse Correlated Equilibrium

Consider a distribution o over the set of all outcomes S.

The distribution o is a coarse correlated eq. iff for every player j € N,

FEoocj(0)] < Epo [cj(x,0—_5)] for all strategies x € S;.

Eoo[c;(0)]6;] < Egmolej(z,0-;6;)) 4mM  Correlated equilibrium

In contrast with correlated eq., here the switching strategy of a player j

does note depend on the suggestion 6, received from the mediator.
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Robust Price of Anarchy

A “robust” PoA bound

applies to all solution

concepts.

All possible outcomes
of the game



Thank You.
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Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

All 400 cars take the route ACDB.

Travel time of each car = 80 mins.

This outcome is a pure Nash eq.



