Price of Anarchy via LP duality

Sayan Bhattacharya (IMSc, Chennai)



Algorithms and Game Theory

Optimization Problem

Input »(Algorithm > Output

Considerations: Computational Efficiency, Approximation Ratio



Algorithms and Game Theory

Optimization Problem

Input »(Algorithm > Output

| Utility /Cost
Rational Agents

Considerations: Computational Efficiency, Approximation Ratio



Algorithms and Game Theory

Input

\

Rational Agents

Output

1 iyt |

¥
ﬁ N?///“—I/

-~

Utility /Cost

Considerations: Computational Efficiency, Approximation Ratio



Algorithms and Game Theory

Input

Output

@ebo

LS Technorati n
Y srrenvm v

.. del.icio.us flickr

10

\\ﬂ) WORDPRESS




Algorithms and Game Theory

Input Output

gorthmic Game Theory B You
®cbo

"“ L, Technorati n

\\ﬂ) WORDPRESS




Example: Selfish Routing

C

400 cars want to go from A to B.



Example: Selfish Routing

C

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

tle) =a-l(e)+b

D latency function at link e.




Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

tle) =a-l(e)+b

latency function at link e.




Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.




Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

200 cars take the red path. 200 cars take the green path.



Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

200 cars take the red path. 200 cars take the green path.

Travel time of a red car = 200/10 + 50 = 70.



Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

200 cars take the red path. 200 cars take the green path.

Travel time of a red car = 200/10 + 50 = 70.
Travel time of a green car = 50 + 200/10 = 70.



Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

Travel time of each car = 70 mins.

200 cars take the red path. 200 cars take the green path.

Travel time of a red car = 200/10 + 50 = 70.
Travel time of a green car = 50 + 200/10 = 70.



Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

Travel time of each car = 70 mins.

200 cars take the red path. 200 cars take the green path.



Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

Travel time of each car = 70 mins.

200 cars take the red path. 200 cars take the green path.

Suppose that a red car switches to the path ACDB.



Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

Travel time of each car = 70 mins.

200 cars take the red path. 200 cars take the green path.

Suppose that a red car switches to the path ACDB.



Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

Travel time of each car = 70 mins.

200 cars take the red path. 200 cars take the green path.
Suppose that a red car switches to the path ACDB.
Then its travel time = 200/10 4+ 0 + 201/10 = 40.1 mins!



Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

Travel time of each car = 70 mins.

The solution is unstable!

200 cars take the red path. 200 cars take the green path.
Suppose that a red car switches to the path ACDB.
Then its travel time = 200/10 4+ 0 + 201/10 = 40.1 mins!



Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

Travel time of each car = 70 mins.

The solution is unstable!




Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

Travel time of each car = 70 mins.

The solution is unstable!

Every car takes the route ACDB.

Travel time of each car = 400/104-0+400/10 = 80 mins.
This solution is stable! (Time for path ACB = 400/10+50 = 90)



Formally defining a "Game”

(1) A set of “players” N'={1,...,n}. (person driving a car)



Formally defining a "Game”

(1) A set of “players” N'={1,...,n}. (person driving a car)

(2) A set of “strategies” S; for each player j € N. (source-destination routes)



Formally defining a "Game”

(1) A set of “players” N'={1,...,n}. (person driving a car)

(2) A set of “strategies” S; for each player j € N. (source-destination routes)

(3) Each player j selects a strategy 6; € S;.



'+ e W 7
Formally defining a = Game
(1) A set of “players” N'={1,...,n}. (person driving a car)
(2) A set of “strategies” S; for each player j € N. (source-destination routes)

3) Each player j selects a strategy 0, € S;.
j J

This defines an “outcome/strategy-profile” 6 = (64,...,0,).



Formally defining a "Game”

(1) A set of “players” N'={1,...,n}. (person driving a car)

(2) A set of “strategies” S; for each player j € N. (source-destination routes)

3) Each player j selects a strategy 0, € S;.
j J

This defines an “outcome/strategy-profile” 6 = (64,...,0,).

(4) Let S = x;S; be the set of all possible outcomes.



Formally defining a = "Game”

(1) A set of “players” N'={1,...,n}. (person driving a car)

(2) A set of “strategies” S; for each player j € N. (source-destination routes)

3) Each player j selects a strategy 0, € S;.
j J

This defines an “outcome/strategy-profile” 6 = (64,...,0,).
(4) Let S = x;S; be the set of all possible outcomes.

5) Each player 7 has a “cost function” ¢; : S — R. travel-time
j



Formally defining a = "Game”

(1) A set of “players” N'={1,...,n}. (person driving a car)

(2) A set of “strategies” S; for each player j € N. (source-destination routes)

(3) Each player j selects a strategy 6; € S;.
This defines an “outcome/strategy-profile” 6 = (64,...,0,).

(4) Let S = x;S; be the set of all possible outcomes.

5) Each player 7 has a “cost function” ¢; : S — R. travel-time
j

Player j prefers an outcome 6 over ¢ iff ¢;(0) < ¢;(6").



Formally defining a = "Game”

(1) A set of “players” N'={1,...,n}. (person driving a car)

(2) A set of “strategies” S; for each player j € N. (source-destination routes)

3) Each player j selects a strategy 0, € S;.
j J

This defines an “outcome/strategy-profile” 6 = (64,...,0,).
(4) Let S = x;S; be the set of all possible outcomes.

5) Each player 7 has a “cost function” ¢; : S — R. travel-time
j

Player j prefers an outcome 6 over ¢ iff ¢;(0) < ¢;(6").

What is a rational outcome of such a game?



Pure Nash Equilbrium

An outcome of a game is a pure Nash equilibrium iff no player

can reduce her cost by unilaterally switching her strategy.



Different "Solution Concepts”

All possible outcomes
of the game



Different "Solution Concepts”

All possible outcomes
of the game



Different "Solution Concepts”

All possible outcomes
of the game



Different "Solution Concepts”

All possible outcomes
of the game



[: Price of Anarchy
(Definition)



The High Level Idea

Input » Algorithm > Output

\

& & Utility /Cost

Rational Agents

How to compare different algorithms for the same problem?



The High Level Idea

Input » Algorithm > Output
52% qi\f,v ) Utility /Cost

Rational Agents

How to compare different algorithms for the same problem?




Precise Definition

Consider the underlying optimization problem.

Objective at the worst equilibri outcome
Price of Anarchy (PoA) : JECLIY worst equilibrium outcom

Optimal objective



Precise Definition

Consider the underlying optimization problem.

Objective at the worst equilibrium outcome

Price of Anarchy (PoA) : Optimal objective

Depends on the solution concept.
(PoA for Pure Nash eq., PoA for Mixed Nash eq. etc.)



Precise Definition

Consider the underlying optimization problem.

Objective at the worst equilibrium outcome
Price of Anarchy (PoA) : ik i q

Optimal objective

Depends on the solution concept.
(PoA for Pure Nash eq., PoA for Mixed Nash eq. etc.)

Will focus on PoA of pure Nash eq.



Past Work

Selfish Routing.
Roughgarden et al. [FOCS 00], Koutsoupias et al. [STACS 99,

Roughgarden [STOC 02, SODA 04, STOC 09], Cole et al. [EC’ 03],

Awerbuch et al. [STOC’ 05], Christodoulou et al. [ESA’ 11] ......

Selfish Scheduling to Minimize Makespan.
Immorlica et al. [WINE 05|, Azar et al. [SODA 09],
Caragiannis [SODA 09], Abed et al. [ESA’ 12].

Selfish Scheduling for Total Completion Time.
Cole et al. [STOC 11].



Two Techniques

PoA of Smooth Games.

Intrinsic Robustness of the Price of Anarchy.

By Tim Roughgarden. STOC’ 09.

PoA via LP/CP duality.

Robust Price of Anarchy Bounds via LP and Fenchel Duality.
Janardhan Kulkarni and Vahab Mirrokni. SODA’ 15.

Coordination Mechanism from (almost) all scheduling policies.
B., Im, Kulkarni, Munagala. ITCS’ 14.



Two Techniques

PoA of Smooth Games.

Intrinsic Robustness of the Price of Anarchy.

By Tim Roughgarden. STOC’ 09.

PoA via LP/CP duality.

Robust Price of Anarchy Bounds via LP and Fenchel Duality.
Janardhan Kulkarni and Vahab Mirrokni. SODA’ 15.

Coordination Mechanism from (almost) all scheduling policies.
B., Im, Kulkarni, Munagala. ITCS’ 14.




II: Price of Anarchy via LP-
duality



Motivation



DNS: Domain Name System

Phone-book of the internet
= DNS servers

www.howstuffworks.c
om
(domain name)

|

70.42.251.42
(IP address)



http://www.howstuffworks.com
http://www.howstuffworks.com

DNS: Domain Name System

Phone-book of the internet 3

“Thats in my cache! It maps fo

— DNS Servers this IF address: 7042251 42"

www.howstuffworks.c
om

“Grieat! Tl cache that
. “Thank= for the fiar a while in case |
(domam name) dﬁIEE;‘HDI i SEL MM e Uests”
great -

Server

“1111 domain nam:m
7?1.1%2.3121.42) — " oy
address & |

How does a client select a DNS server?


http://www.howstuffworks.com
http://www.howstuffworks.com

DNS: Domain Name System

ZFenchmark DM

Domain Name Speed Benchmark

Are your DNS nameservers impeding your Internet experience?

A unigue, comprehensive, accurate & free Windows (and Linux/Wine) utility to determine the exact
performance of local and remote DNS nameservers...

"You can't optimize it until you can measure it”
Now you CAN measure it!

@ Domain Mame Server Benchmark = (=] |
DNS B h k Precision Freeware [ %
eincinimmar by Steve: Gibson .
Introduction MNameservers Tabular Data Conclusions
[ Add/Remove ] ’ Fun Benchmark ]
Sort Fastest First Mame Ohwner Status Response Time Show Uncached

F 2

0. 1. 0. 0O

Remowve 10 dead nameservers

204.1594.234.20C E Remuowve this nameserver
; ; | —
_——
| — ]

Remove slower nameservers

_—
e e - : — .
0. — Copy nameserver's [P

m




The model



The Scheduling Problem

Jobs (DNS request by a client)
Machines

(DNS servers) ®




The Scheduling Problem

Jobs (DNS request by a client)
Machines

(DNS servers) ®
-
-
? pi; : time required by machine ¢ to process job j.
-
- ®
-



The Scheduling Problem

Jobs (DNS request by a client)
Machines

(DNS servers) ®




The Scheduling Problem

Jobs (DNS request by a client)
Machines

(DNS servers) Step 1: Assign each job

to a machine.

66 o6



The Scheduling Problem

Jobs (DNS request by a client)
Machines

(DNS servers)

Step 1: Assign each job

to a machine.

Step 2: Each machine

processes the jobs assigned

to it according to some

scheduling policy.

66 o6



The Scheduling Problem

Jobs (DNS request by a client)
Machines

(DNS servers)

Step 1: Assign each job

to a machine.

Step 2: Each machine

processes the jobs assigned

to it according to some

scheduling policy.

66 o6

Goal: Minimize the sum of

completions times of jobs.




Example of a Scheduling Policy
J1
jo  Shortest Job First (SJF) policy.

J3



Example of a Scheduling Policy

Ji
4
jo  Shortest Job First (SJF) policy.
i J3
2
73 J1 J2
- EEN



Example of a Scheduling Policy

J1
4 . .

jo  Shortest Job First (SJF) policy.

| S J3

! 9

j3 jl j2
0 9 6 14
<\V\ /

Completion times

Sum of completion times = 2 + 6 + 14 = 22.



Past Work: Approximation Algorithms

Total Completion Time on a Single Machine

Smith [Naval Res. 56], Hall et al. [SODA 96],

Phillips et al. [Math. Prog. 98|, Queyranne [Math. Prog. 93], ......

Total Completion Time on Multiple Machines

Chekuri et al. [SODA 97], Afrati et al. [FOCS 99|,

The DESIGN of

APPROXIMATION

Sethuraman et al. [SODA 99], Skutella [JACM 01], ... ot

Jobs Arriving Online
Garg et al. [STOC 06|, Chadhha et al. [STOC 09],
Anand et al. [SODA 12] ......



A decentralized environment

Each job selects its own machine.



A decentralized environment

Each job selects its own machine.

Each machine executes a [ocal scheduling policy.

* It only sees those jobs that come to it.



A decentralized environment

Each job selects its own machine.

Each machine executes a [ocal scheduling policy.

* It only sees those jobs that come to it.

Each job wants to minimize its own completion time.

* It is a selfish, rational agent.



A decentralized environment

Each job selects its own machine.

* The choice depends on (a) the scheduling policies, and

(b) the strategies of the other jobs.

Each machine executes a [ocal scheduling policy.

* It only sees those jobs that come to it.

Each job wants to minimize its own completion time.

* It is a selfish, rational agent.



A tug of war

Selfish jobs System-designer



Price of Anarchy

The scheduling policies define a game between the jobs.

The strategy of a job is the machine it selects.



Price of Anarchy

The scheduling policies define a game between the jobs.

The strategy of a job is the machine it selects.

A strategy-profile is in Nash equilibrium iff

no job can reduce its completion time by

switching to another machine.



Price of Anarchy

The scheduling policies define a game between the jobs.

The strategy of a job is the machine it selects.

A strategy-profile is in Nash equilibrium iff

no job can reduce its completion time by

switching to another machine.

. . Objective at the worst Nash equilibrium
Price of anarchy (PoA) : Optimal objective



Price of Anarchy

The scheduling policies define a game between the jobs.

The strategy of a job is the machine it selects.

A strategy-profile is in Nash equilibrium iff

no job can reduce its completion time by

switching to another machine.

. . Objective at the worst Nash equilibrium
Price of anarchy (PoA) : Optimal objective

Goal: Design the scheduling policies so as to minimize PoA.



Characterization of Scheduling Polices

A scheduling policy has “fairness” «, iff the delay of any

job j due to any other job j' is at most o X p;.




Characterization of Scheduling Polices

A scheduling policy has “fairness” «, iff the delay of any

job j due to any other job j' is at most o X p;.




Characterization of Scheduling Polices

A scheduling policy has “fairness” «, iff the delay of any

job j due to any other job j' is at most o X p;.

J1
4
8 jo Shortest Job First (SJF) policy
: has a = 1.
J3
;@
J3 J1 J2

0 9 6 14



The result

If the machines follow (possibly different) scheduling policies
that are a — fair, then the price of anarchy ot the induced

game 1s at most 4. B., Im, Kulkarni, Munagala. ITCS’ 14.



The result

If the machines follow (possibly different) scheduling policies
that are a — fair, then the price of anarchy ot the induced

game 1s at most 4. B., Im, Kulkarni, Munagala. ITCS’ 14.

Message: Fair policies have small price of anarchy.

Nice guys finish first!



The result

If the machines follow (possibly different) scheduling policies
that are a — fair, then the price of anarchy ot the induced

game 1s at most 4. B., Im, Kulkarni, Munagala. ITCS’ 14.



The result

If the machines follow (possibly different) scheduling policies
that are a — fair, then the price of anarchy ot the induced

game 1s at most 4. B., Im, Kulkarni, Munagala. ITCS’ 14.

In the talk, we will only show that the Price of Anarchy of

Shortest Job First (SJF) policy is at most 4.



The Technique



Price of Anarchy via Dual Fitting

Find a linear program (LP) relaxation for the optimization problem.



Price of Anarchy via Dual Fitting

Find a linear program (LP) relaxation for the optimization problem.

Maximize (Dual) Minimization LP

" LPopr orT

| |
” | |




Price of Anarchy via Dual Fitting

Find a linear program (LP) relaxation for the optimization problem.

Maximize (Dual) Minimization LP

* LPopr orPT °©
| | |
0
| l

IA]ﬂy Nash Eq.




Price of Anarchy via Dual Fitting

Find a linear program (LP) relaxation for the optimization problem.

Maximize (Dual) Minimization LP

* LPopr oPT °©
| | |
0
| l

IA]ﬂy Nash Eq.

Set the dual variables.




Price of Anarchy via Dual Fitting

Find a linear program (LP) relaxation for the optimization problem.

Maximize (Dual) Minimization LP

* LPopr oPT °

: ————
Dual-feasible I l Any Nash Eg.
solution

Set the dual variables.




Price of Anarchy via Dual Fitting

Find a linear program (LP) relaxation for the optimization problem.

Maximize (Dual) Minimization LP

* LPopr oPT °

: ———
Dual-feasible I ‘ Any Nash Eg.
solution

Set the dual variables.




Greedy Algorithm: Anand et al. [SODA’" 12]

Optimization version. No selfish jobs.

Every machine executes Shortest Job First (SJF) policy.



Greedy Algorithm: Anand et al. [SODA’" 12]

Optimization version. No selfish jobs.

Every machine executes Shortest Job First (SJF) policy.

The Algorithm
Only need to find the assignment of the jobs to the machines.



Greedy Algorithm: Anand et al. [SODA’" 12]

Optimization version. No selfish jobs.

Every machine executes Shortest Job First (SJF) policy.

The Algorithm
Only need to find the assignment of the jobs to the machines.

* Consider the jobs in arbitrary order.




Greedy Algorithm: Anand et al. [SODA’" 12]

Optimization version. No selfish jobs.

Every machine executes Shortest Job First (SJF) policy.

The Algorithm
Only need to find the assignment of the jobs to the machines.

* Consider the jobs in arbitrary order.

x While considering a job 7, assign it to a machine which increases

the overall objective by the least amount.




Greedy Algorithm: Anand et al. [SODA’" 12]

Optimization version. No selfish jobs.

\ T X{fgﬂ\%\\

Every machine executes Shortest Job First (SJF) POhf?B“a,

AnaYy 9o D

The Algorithm
Only need to find the assignment of the jobs to the machines.

* Consider the jobs in arbitrary order.

x While considering a job 7, assign it to a machine which increases

the overall objective by the least amount.




A New Take on Price of Anarchy

L
T L
e | e »
[ 08 e
o s
T
| |
\
|
' - k
" 4
= - !
/

=L/

Greedy Algorithm Price of Anarchy

System Designer



A New Take on Price of Anarchy

Greedy Algorithm Price of Anarchy

I minimize the sum
of costs incurred by

System Designer

all of you, greedily.




A New Take on Price of Anarchy

Greedy Algorithm Price of Anarchy

[ minimize the sum
of costs incurred by

System Designer

all of you, greedily.




A New Take on Price of Anarchy

Greedy Algorithm Price of Anarchy

[ minimize the sum
of costs incurred by

System Designer

all of you, greedily.

Jobs



A New Take on Price of Anarchy

Greedy Algorithm Price of Anarchy

[ minimize the sum
of costs incurred by
all of you, greedily.

Q
% Free agents
Greedy (selfish)

Jobs



A New Take on Price of Anarchy

Greedy Algorithm Price of Anarchy

[ minimize the sum
of costs incurred by
all of you, greedily.

Q
% Free agents
Greedy (selfish)

Jobs



Proof sketch



The LP [Anand et al., SODA’ 12]

z;;+ : Denotes if machine ¢+ works on job j at time ¢.



The LP [Anand et al., SODA’ 12]

z;;+ : Denotes if machine ¢+ works on job j at time ¢.

> i > (@ije/pij) > 1 V jobs j. A job is fully processed.



The LP [Anand et al., SODA’ 12]

z;;+ : Denotes if machine ¢+ works on job j at time ¢.

> i > (@ije/pij) > 1 V jobs j. A job is fully processed.

Zj zijt <1 V machines i, times t. A machine finishes at most

one unit of the jobs per
unit time-step.



The LP [Anand et al., SODA’ 12]

z;;+ : Denotes if machine ¢+ works on job j at time ¢.

> i > (@ije/pij) > 1 V jobs j. A job is fully processed.

Y . w;ir <1 V machines 7, times t. A mad_lme ﬁmsbes at most
J J

one unit of the jobs per
unit time-step.

Lijt Z 0V Z,],t



The LP [Anand et al., SODA’ 12]

z;;+ : Denotes if machine ¢+ works on job j at time ¢.

Min. 32, 50 S wie - (/i) + 35 X0 { 00(1/2) - i
> i > (@ije/pij) > 1 V jobs j. A job is fully processed.

> . xiip <1 V machines ¢, times ¢. A mad.lme ﬁmsbes at most
J J

one unit of the jobs per
unit time-step.

Lijt Z 0V Z,],t



The LP [Anand et al., SODA’ 12]

z;;+ : Denotes if machine ¢+ works on job j at time ¢.

fractional completion time total processing time

\ /

Min. 32, 50 { S wie - (/i) + 35 X0 { 200(1/2) - i
> i > (@ije/pij) > 1 V jobs j. A job is fully processed.

> . xiip <1 V machines ¢, times ¢. A mad.lme ﬁmsbes at most
J J

one unit of the jobs per
unit time-step.

Lijt Z 0V Z,],t



Fractional Completion Time

z;;¢+ © Denotes if machine ¢ works on job j at time .

. . . Pijs = 8
J1 J2 J3
0 9 6 14



Fractional Completion Time

z;;¢+ © Denotes if machine ¢ works on job j at time .

. pi7j3 - 8
J1 J2 J3
0 2 6 14
<€ > € >
sz,33,t =0 xZ,]g,t —



Fractional Completion Time

z;;¢+ © Denotes if machine ¢ works on job j at time .

. . . Pijs = 8
J1 J2 J3
0 2 6 14
€ > € >
Zijs,t = 0 Tijgt = 1

2 Tiga) -t

pi7j3

Fractional completion time of j3 =



Fractional Completion Time

z;;¢+ © Denotes if machine ¢ works on job j at time .

. . . Pijs = 8
J1 J2 J3
0 2 6 14
€ > € >
Zijs,t = 0 Tijgt = 1

2 Tiga) -t

pi7j3

Fractional completion time of j3 =

_ 7+8494104114124+13+14
n 8




Fractional Completion Time

z;;¢+ © Denotes if machine ¢ works on job j at time .

. . . Pijs = 8
J1 J2 J3
0 2 6 14
€ > € >
Zijs,t = 0 Tijgt = 1

2 Tiga) -t

pi7j3

Fractional completion time of j3 =

_ 7+8+9+10+11+12413+14 __
E L =10.5




Fractional Completion Time

z;;¢+ © Denotes if machine ¢ works on job j at time .

. . . Pijs = 8
J1 J2 J3
0 2 6 14
€ > € >
Zijs,t = 0 Tijgt = 1

2 Tiga) -t

pi7j3

Fractional completion time of j3 =

- 7—|—8—|—9-|-10+%1‘|‘12‘|‘13+14 = 10.5 < Completion time of j3.




Fractional Completion Time

z;5+ : Denotes if machine 7 works on job j at time ¢.

fractional completion time total processing time

\ /

Min. Zj > { S i (t/pig) } + Zj D i { > .. (1/2) -:Uijt}

Why do we need the second term in the LP-objective?



Fractional Completion Time

z;;¢+ © Denotes if machine ¢ works on job j at time .

machines pi,; = m for every machine 7.




Fractional Completion Time

z;;¢+ © Denotes if machine ¢ works on job j at time .

machines pi,; = m for every machine 7.

Divide the job equally among the machines.

x; ;1 = 1 for every machine .




Fractional Completion Time

z;5+ : Denotes if machine 7 works on job j at time ¢.

machines pi,; = m for every machine 7.

Divide the job equally among the machines.
x; ;1 = 1 for every machine 3.

D it Tijt = m (the job is fully processed)




Fractional Completion Time

z;5+ : Denotes if machine 7 works on job j at time ¢.

machines pi,; = m for every machine 7.

Divide the job equally among the machines.
x; ;1 = 1 for every machine 3.

D it Tijt = m (the job is fully processed)

Zi,t(xi,j,t) -1

Di.j




Fractional Completion Time

z;5+ : Denotes if machine 7 works on job j at time ¢.

machines pi,; = m for every machine 7.

Divide the job equally among the machines.
x; ;1 = 1 for every machine 3.

D it Tijt = m (the job is fully processed)

Zi,t(xi,j,t) -t 221 -1 1

Di,j m




Fractional Completion Time

z;5+ : Denotes if machine 7 works on job j at time ¢.
machines pi,; = m for every machine 7.

Fractional completion time = 1!

Divide the job equally among the machines.
x; ;1 = 1 for every machine 3.

D it Tijt = m (the job is fully processed)

Zi,t(xi,j,t) -t 221 -1 1

Di,j m




LP-relaxation

z;;+ : Denotes if machine ¢+ works on job j at time ¢.

fractional completion time total processing time

\ /

Min. 32, 50 { S wie - (/i) + 35 X0 { 200(1/2) - i
> i > (@ije/pij) > 1 V jobs j. A job is fully processed.

> . xiip <1 V machines ¢, times ¢. A mad.lme ﬁmsbes at most
J J

one unit of the jobs per
unit time-step.

Lijt Z 0V Z,j,t



The LP on a machine with % speed

z;;+ : Denotes if machine ¢+ works on job j at time ¢.

fractional completion time

Min. Zj > { > it - (U/pij) } + Zj i { Dt leijt}

>_i 2t (Tijt/pij) = 1 ¥V jobs j.

Zj Tijt <

1/2

YV machines ¢, times t.

Ty >0 Vi,7,t.

total processing time

A job is fully processed.

A machine finishes at most
one unit of the jobs per
unit time-step.



The LP on a machine with % speed

z;;+ : Denotes if machine ¢+ works on job j at time ¢.

fractional completion time total processing time

\ /

Min, 350 { e - (¢/pig) |+ 50,500 { S wige
> i > (@ije/pij) > 1 V jobs j. A job is fully processed.

<1/2 v b o A machine finishes at most
Zj Tije < 1/ machines 2, tmes t. o 11it of the jobs per
unit time-step.

Ty >0 Vi,7,t.



The LP on a machine with % speed

z;;+ : Denotes if machine ¢+ works on job j at time ¢.

fractional completion time total processing time

\ 7

Min. Zj > { >+ Tije - (t/Dij) } + Zj D

1s fully processed.

>_i 2t (Tijt/pij) = 1 ¥V jobs j.

<1/2 v b - A machine finishes at most
Zj Tije < 1/ machines 2, tmes t. o 11it of the jobs per
unit time-step.

Ty >0 Vi,7,t.



The dual LP

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt




Setting the dual variables

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt




Setting the dual variables

Max. > . C; —1/2) ;> Nu

C; —t < pij +pij - Nix V jobs j, machines ¢, times t.

CjaNit >0V Za]vt

* Fix any Nash equilibrium 0 = (51, . ,9_;-, e ﬁm)
Here, 9_; denotes the machine chosen by the job j.

* (; +— Completion time of job 7 under 0.

x IV;; < #Unfinished jobs on machine ¢ at time ¢, under 0.




Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt




Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0 v Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.




Dual Objective

C; —t < pij +pij - Nix V jobs j, machines ¢, times t.

CjaNit >0V Za]vt

Zj C; = Total completion time of the jobs = Zit Nig.

I

0 9 6 14



Dual Objective

C; —t < pij +pij - Nix V jobs j, machines ¢, times t.

CjaNit >0V Za]vt

Zj C; = Total completion time of the jobs = Zit Nig.




Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pij +pij - Nix V jobs j, machines ¢, times t.

CjaNit >0V Za]vt

Zj C; = Total completion time of the jobs = Zit Nig.




Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0 v Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.




Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.

0 Dual Objl\-/ Nash. Eq.

2



Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.

'LPopr |

0 Dual Objl\-/ Nash. Eq.

2



Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.

0 Dual Obj.l \LPopT Nash. Eq.



Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.

0 | \LPopr Nash. Eq.

OPT \_/
9 2



Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pi; +pi; - Nit V jobs j, machines ¢, times .

CjaNit >0V Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.

0 | ' LPopr | Nash. Eq.

. \/
4



Dual Objective

Max. > . C; —1/2) ;> Nu

C; —t < pij +pij - Nix V jobs j, machines ¢, times t.

CjaNit >0V Za]vt

Zj C'; = Total completion time of the jobs =) .. Ny.
Feasibility of Dual soln. s Price of Anarchy < 4
| | |

0 | 'LPopr  _! Nash. Eq.

. \/
4



Dual Constraints

C; —t < pi; +pij - Niz V jobs j, machines ¢, times ¢.




Dual Constraints

C; —t < pi; +pij - Niz V jobs j, machines ¢, times ¢.

Define C (i) < Job j’s completion time if it switches to machine i.

C; < (1) Nash equilibrium condition



Dual Constraints

C; —t < pi; +pij - Niz V jobs j, machines ¢, times ¢.

Define C (i) < Job j’s completion time if it switches to machine i.

C; < (1) Nash equilibrium condition

C; —t < C;(i) —t




Dual Constraints

C; —t < pi; +pij - Niz V jobs j, machines ¢, times ¢.

Define C (i) < Job j’s completion time if it switches to machine i.

C; < (1) Nash equilibrium condition

C,—t<Cj(r)—t
Will show: Ci(i) =t <pij +pij - N;




Dual Constraints

C; —t < pi; +pij - Niz V jobs j, machines ¢, times ¢.

Define C (i) « Job j’s cgmpletion time if it switches to machine i.

Nash equilibyium condition

C,—t<Cj(r)—t
Will show: Ci(i) =t <pij +pij - N;




Dual Constraints

__ M
C; (i) y

Will show: Cj (Z) — 1 < pij +Dij - N;




Dual Constraints

__ g
C; (i) y

Will show: Cj (Z) — 1 < pij +Dij - N;




Dual Constraints

Will show:

Ci(i) =t < pij +pij - N




Dual Constraints

. €

Will show:

Ci(i) =t < pij +pij - N




Dual Constraints

- Pij N
I .
>
t l > C;(2)
-
) }Nit = No. of jobs alive at time ¢t.
-

Will show: Cj (Z) — 1t < pij +Dij - N;




Dual Constraints

- Pij N
I =9
>
. € l > Cj (Z)
-
: N;+ = No. of jobs alive at time t.
® [ < pij - N;

Will show: Cj (Z) — 1t < pij +Dij - N;




Dual Constraints

- Pij N
— =9
>
. € l > Cj (Z)
-
: N;+ = No. of jobs alive at time t.
® [ < pij - N;

C](Z) —t:pij—kl

Will show: Cj (Z) — 1t < pij +Dij - N;




Dual Constraints

time

<€ p’LJ >
t < > C;(4)

- [

N;+ = No. of jobs alive at time t.

® [ < pij - N;

Cj(i)—t:pij—klﬁpij—l-p?;j-]\f,,;

Will show: Cj (Z) — 1t < pij +Dij - N;




Conclusion



Price of Anarchy via Linear Programs

[H:H

Optimization Problem (Game Theoretic Variant
NP-hardness Strategic interactions
Max. Objective at algorithm’s output Max. Objective at a Nash Eq.

Optimal objective Optimal objective



Price of Anarchy via Linear Programs

Optimization Problem (Game Theoretic Variant
NP-hardness Strategic interactions
Max. Objective at algorithm’s output Max. Objective at a Nash Eq.

Optimal objective Optimal objective

Linear programs Combinatorial

lower bounds optimal objective Problem specific



Price of Anarchy via Linear Programs

Optimization Problem (Game Theoretic Variant
NP-hardness Strategic interactions
Max. Objective at algorithm’s output / Max. Objective at a Nash Eq.

Optimal objective Optimal objective

Linear programs Combinatorial

lower bounds optimal objective Problem specific



Thank you.



[II: Price of Anarchy of
Smooth Games



Smooth Games

Consider a game with Obj(0) = > ..y ¢;(0) at each outcome 6.
Underlying optimization problem is: ming Obj(8).



Smooth Games

Consider a game with Obj(0) = > ..y ¢;(0) at each outcome 6.
Underlying optimization problem is: ming Obj(#).

Such a game is (A, u)-smooth iff for every two outcomes 6, 6*, we have

> en € (07,0-5) < X-Obj(6*) + - Obj(8). A >1,0< <1



Smooth Games

Consider a game with Obj(0) = > ..y ¢;(0) at each outcome 6.
Underlying optimization problem is: ming Obj(8).

Such a game is (A, u)-smooth iff for every two outcomes 6, 6*, we have

> en € (07,0-5) < X-Obj(6*) + - Obj(8). A >1,0< <1

Theorem: A (A, ;) — smooth game has PoA at most \/(1 — pu).



Smooth Games

Consider a game with Obj(0) = > ..y ¢;(0) at each outcome 6.
Underlying optimization problem is: ming Obj(8).

Such a game is (A, u)-smooth iff for every two outcomes 6, 6*, we have
ZjeN cj(07,0-5) < A-Obj(0*) +p-0Obj#). A=1,0<pu<1

Theorem: A (A, ;) — smooth game has PoA at most \/(1 — pu).

Proof: Let 6* = optimal outcome, § = any pure Nash eq. Then we have:



Smooth Games

Consider a game with Obj(0) = > ..y ¢;(0) at each outcome 6.
Underlying optimization problem is: ming Obj(8).

Such a game is (A, u)-smooth iff for every two outcomes 6, 6*, we have
ZjGN cj(07,0-5) < A-Obj(0*) +p-0Obj#). A=1,0<pu<1
Theorem: A (A, ;) — smooth game has PoA at most \/(1 — pu).

Proof: Let 6* = optimal outcome, § = any pure Nash eq. Then we have:

Obj(0) = 2_;en ¢;(0)



Smooth Games

Consider a game with Obj(0) = > ..y ¢;(0) at each outcome 6.
Underlying optimization problem is: ming Obj(8).

Such a game is (A, u)-smooth iff for every two outcomes 6, 6*, we have
ZjGN cj(07,0-5) < A-Obj(0*) +p-0Obj#). A=1,0<pu<1
Theorem: A (A, ;) — smooth game has PoA at most \/(1 — pu).

Proof: Let 6* = optimal outcome, § = any pure Nash eq. Then we have:

Obj(0) = > en¢i(0) <> ienci(b5,0-5)



Smooth Games

Consider a game with Obj(0) = > ..y ¢;(0) at each outcome 6.
Underlying optimization problem is: ming Obj(8).

Such a game is (A, u)-smooth iff for every two outcomes 6, 6*, we have
ZjGN cj(07,0-5) < A-Obj(0*) +p-0Obj#). A=1,0<pu<1
Theorem: A (A, ;) — smooth game has PoA at most \/(1 — pu).

Proof: Let 6* = optimal outcome, § = any pure Nash eq. Then we have:

Obj(@) i ZjeN Cj(e) < ZjeN Cj(ejv Q—j) < A- Obj(@*) + Obj(e)'



Smooth Games

Consider a game with Obj(0) = > ..y ¢;(0) at each outcome 6.
Underlying optimization problem is: ming Obj(8).

Such a game is (A, u)-smooth iff for every two outcomes 6, 6*, we have
ZjGN cj(07,0-5) < A-Obj(0*) +p-0Obj#). A=1,0<pu<1
Theorem: A (A, ;) — smooth game has PoA at most \/(1 — pu).

Proof: Let 6* = optimal outcome, § = any pure Nash eq. Then we have:
Obj(0) = Y en ¢5(0) < e ¢5(67,6_5) < X~ Obj(6) + 11 Obj(6).

Rearranging the terms, we get: (1 — u) - Obj(0) < X\ - Obj(6*)



Smooth Games

Consider a game with Obj(0) = > ..y ¢;(0) at each outcome 6.
Underlying optimization problem is: ming Obj(8).

Such a game is (A, u)-smooth iff for every two outcomes 6, 6*, we have

> ien€i(05,0-;) < A-0bj(0*) +p-0bj(d). A>1,0<pu<1
Theorem: A (A, ;) — smooth game has PoA at most \/(1 — pu).

Proof: Let 6* = optimal outcome, § = any pure Nash eq. Then we have:
Obj(d) = ZjeN c;(0) < ZJEN cj(0%,0-5) < X-Obj(6*) + 1 - Obj(0).
Rearranging the terms, we get: (1 — p) - Obj(f) < X - Obj(6*)

Obj(6) A
— Obj(6*) 1o




Smooth Games

Consider a game with Obj(0) = > ..y ¢;(0) at each outcome 6.
Underlying optimization problem is: ming Obj(8).

Such a game is (A, u)-smooth iff for every two outcomes 6, 6*, we have

> ien€i(05,0-;) < A-0bj(0*) +p-0bj(d). A>1,0<pu<1
Theorem: A (A, ;) — smooth game has PoA at most \/(1 — pu).

Proof:

The proof can be extended to all other solution concepts!



Example: Selfish Routing

Directed graph G = (V, FE).
Player j selects a path from u; € V tov; € V.
0; denotes the strategy of player j(i.e., it is a u; — v, path).




Example: Selfish Routing

Directed graph G = (V, FE).
Player j selects a path from u; € V tov; € V.
0; denotes the strategy of player j(i.e., it is a u; — v, path).

Under a given outcome 6 = (64,...,0,), the load on an edge e € F
is () ={j € N:e€fb,}: the number of players using the edge.
c;(0) = Zeeej l.(0) : cost function of player j.




Example: Selfish Routing

Directed graph G = (V, FE).
Player j selects a path from u; € V tov; € V.
0; denotes the strategy of player j(i.e., it is a u; — v, path).

Under a given outcome 6 = (64,...,0,), the load on an edge e € F
is () ={j € N:e€fb,}: the number of players using the edge.
c;(0) = Zeeej l.(0) : cost function of player j.

Obj(0) = >, ¢;(0).




Example: Selfish Routing

Directed graph G = (V, FE).
Player j selects a path from u; € V tov; € V.
0; denotes the strategy of player j(i.e., it is a u; — v, path).

Under a given outcome 6 = (64,...,0,), the load on an edge e € F
is () ={j € N:e€fb,}: the number of players using the edge.
c;(0) = Zeeej l.(0) : cost function of player j.

Obj(0) = >, ¢;(0).

MaXgis in equilibrium ObJ (9)
ming Obj(0)

Price of Anarchy (PoA) =




Robust PoA of Selfish Routing

UXWU




Robust PoA of Selfish Routing

UXWU




Robust PoA of Selfish Routing

S

¢(0) = no. of players using the edge e under 6.

cz(é’) = sum of the loads in the path chosen by 1.




Robust PoA of Selfish Routing

RV

¢(0) = no. of players using the edge e under 6.

ci(é’) = sum of the loads in the path chosen by 1.

> ien 6i(07,6-5) < X Obj(6*) + - Obj(6).



Robust PoA of Selfish Routing

AV

¢(0) = no. of players using the edge e under 6.

cz(é’) = sum of the loads in the path chosen by 1.

> e 5 (07,6_5) < A Obj(6%) + 1- Obj(0).

Deerle(0) - (1(0) +1) A3 cple(0*) 4+ -2 cp le(0)?



Robust PoA of Selfish Routing

AV

¢(0) = no. of players using the edge e under 6.

cz(é’) = sum of the loads in the path chosen by 1.

> ien 6i(07,6-5) < X Obj(6*) + - Obj(6).

N\

l

2 eer le(07) - (le(0) + 1)

\

| ZeEE le(e*)Q

+ -

ZGEE le (0)2




Robust PoA of Selfish Routing

AV

¢(0) = no. of players using the edge e under 6.

cz(é’) = sum of the loads in the path chosen by 1.

> ien 6i(07,6-5) < X Obj(6*) + - Obj(6).

l \ N\

Deerle(@) - (1(0) + 1)< XX cple(09)

ZGEE le (0)2

/[

r(y+1) < A-2? 4 p-y?




Robust PoA of Selfish Routing

AV

¢(0) = no. of players using the edge e under 6.

cz(é’) = sum of the loads in the path chosen by 1.

> e 5 (07,6_5) < A Obj(6%) + 1- Obj(0).

l \ N\

ZeEE le(e*) ) (le( - 1) <A ZeEEl (‘9*) ZeEE 16(9)2

\ /[

0)
v(y+1) < X224+ p-y?> w— A=5/3,pu=1/3.



Robust PoA of Selfish Routing

Hence, PoA of selfish routing < \/(1 — ) = (5/3)/(1 —1/3) = 5/2.

> ien ¢i(07,0_5) < A-Obj(0*) + n- Obj(0).

l \ N\

Doeer le(0) - (1e(0) + 1)|S A3 cple(07) 1D e g le(0)?
x(y +

1) < AN-a? 4 p-y?> we—> \=5/3,pu=1/3.




IV: Review of Basic Solution
Concepts



Different "Solution Concepts”

All possible outcomes
of the game



Different "Solution Concepts”

All possible outcomes
of the game



Mixed Nash Equilibrium



Mixed Nash Equilibrium

Each player j € M has a set of strategies S;.



Mixed Nash Equilibrium

Each player j € M has a set of strategies S;.

An element of §; is a “pure strategy” for player j.



Mixed Nash Equilibrium

Each player j € M has a set of strategies S;.

An element of §; is a “pure strategy” for player j.

A “mixed strategy” m; for player j is a probability distribution over §;.



Mixed Nash Equilibrium

Each player j € M has a set of strategies S;.

An element of §; is a “pure strategy” for player j.

A “mixed strategy” m; for player j is a probability distribution over §;.

A profile 7 = (71,...,m,) is a Mixed Nash equilibrium iff no player can

decrease her expected cost by unilaterally switching her strategy.



Different "Solution Concepts”

All possible outcomes
of the game



Different "Solution Concepts”

All possible outcomes
of the game



Correlated Equilibrium



Traffic Light



Traffic Light

Two player, driving different cars, arrive at an intersection at the same time.



Traffic Light

Two player, driving different cars, arrive at an intersection at the same time.

Utility Matrix

Bob Cross Stop
Alice

Cross

Stop




Traffic Light

Two player, driving different cars, arrive at an intersection at the same time.

Utility for crossing safely: +1.

Utility Matrix

Bob Cross Stop
Alice

Cross

Stop




Traffic Light

Two player, driving different cars, arrive at an intersection at the same time.

Utility for crossing safely: +1.
Utility for stopping: O.

Utility Matrix

Bob Cross Stop
Alice

Cross

Stop




Traffic Light

Two player, driving different cars, arrive at an intersection at the same time.

Utility for crossing safely: +1.
Utility for stopping: O.

Utility Matrix

Bob Cross Stop
Alice

Cross 4

+1
Stop




Traffic Light

Two player, driving different cars, arrive at an intersection at the same time.

Utility for crossing safely: +1.
Utility for stopping: O.

Utility Matrix

Bob Cross Stop
Alice
0
Cross 4
+1 0
Sto
E 0 0




Traffic Light

Two player, driving different cars, arrive at an intersection at the same time.

Utility for crossing safely: +1.
Utility for stopping: O.

Utility for being involved in a crash: -100.

Utility Matrix

Bob Cross Stop
Alice
0
Cross 1
+1 0
Sto
E 0 0




Traffic Light

Two player, driving different cars, arrive at an intersection at the same time.

Utility for crossing safely: +1.
Utility for stopping: O.

Utility for being involved in a crash: -100.

Utility Matrix

Bob Cross Stop
Alice
—100 0
Cross 100 1
+1 0
Sto
E 0 0




Traffic Light

Utility Matrix

Bob Cross Stop
Alice
—100 0
Cross 100 1
| = - _|_1 T 0
Sto
3 0 0




Traffic Light

Utility Matrix

Bob Cross Stop
Alice
—100
Cross 100 11
—S 1
to
3 0 0




Traffic Light

Utility Matrix

Bob Cross Stop
Alice
—100
Cross 100 11
—S 1
to
3 0 0




Traffic Light

Two pure Nash eq. in this game (one player stops, the other crosses).

— None of them is “fair”.

One mixed Nash equilibrium. Pr[Alice Crosses| = 1/101
Pr[Alice Stops] = 100/101

Utility Matrix Pr[Bob Crosses] = 1/101

: % Cross Stop Pr[Bob Stops| = 100/101
Alice
—100 0
Cross 100 41
+1 0
Sto
2 0 0




Traffic Light

Two pure Nash eq. in this game (one player stops, the other crosses).

— None of them is “fair”.

One mixed Nash equilibrium. Pr[Alice Crosses| = 1/101
Pr[Alice Stops] = 100/101

— Positive chance of a crash.

Utility Matrix Pr[Bob Crosses| = 1/101

: % Cross Stop Pr[Bob Stops| = 100/101
Alice
—100 0
Cross 100 41
+1 0
Sto
2 0 0




Traffic Light

Utility Matrix

Bob Cross Stop
Alice
—100 0
Cross 100 1
| = - _|_1 T 0
Sto
3 0 0




Traffic Light

Assume that there is a “mediator” (traffic light) that picks a probability

distribution o over the set of all possible outcomes.

Utility Matrix

Bob Cross Stop
Alice
—100 0
Cross 100 1
+1 0
Sto
p 0 0




Traffic Light

Assume that there is a “mediator” (traffic light) that picks a probability

distribution o over the set of all possible outcomes.

o(0) = Pr[mediator picks the outcome 6.

Utility Matrix

Bob Cross Stop
Alice
—100 0
Cross 100 1
+1 0
Sto
p 0 0




Traffic Light

Assume that there is a “mediator” (traffic light) that picks a probability

distribution o over the set of all possible outcomes.

o(0) = Pr[mediator picks the outcome 6.

Utility Matrix outcome ¢ o (0)
Bob Cross Stop Cross , Cross
Alice

Cross , Stop

Cross —100 0
—100 +1 Stop , Cross

St +1 0

o)
p 0 0 Stop , Stop




Traffic Light

Assume that there is a “mediator” (traffic light) that picks a probability

distribution o over the set of all possible outcomes.

o(0) = Pr[mediator picks the outcome 6.

Utility Matrix outcome ¢ o (0)
Bob Cross Stop Cross , Cross 0
Alice
Cross , Stop
Cross —100 0
—100 +1 Stop , Cross
+1 0
Stop 0 0 Stop , Stop 0




Traffic Light

Assume that there is a “mediator” (traffic light) that picks a probability

distribution o over the set of all possible outcomes.

o(0) = Pr[mediator picks the outcome 6.

Utility Matrix outcome ¢ o (0)
Bob Cross Stop Cross , Cross 0
Alice
Cross , Stop p
Cross —100
—100 +1 Stop , Cross 1—»p
+1
Stop 0 Stop , Stop 0




Traffic Light

Assume that there is a “mediator” (traffic light) that picks a probability

distribution o over the set of all possible outcomes.

o(0) = Pr[mediator picks the outcome 6.

Correlated equilibrium

Utility Matrix outcome ¢ o (0)
Bob Cross Stop Cross , Cross 0
Alice
Cross , Stop p
Cross —100 0
—100 +1 Stop , Cross 1—»p
+1 0
Stop 0 0 Stop , Stop 0




Traffic Light

Assume that there is a “mediator” (traffic light) that picks a probability
distribution o over the set of all possible outcomes.
o(0) = Pr[mediator picks the outcome 6.

For p =1/2, the solution is “fair”. Correlated equilibrium

Utility Matrix outcome ¢ o (0)
Bob Cross Stop Cross , Cross 0
Alice
Cross , Stop p
Cross —100 0
—100 +1 Stop , Cross 1—»p
+1 0
Stop 0 0 Stop , Stop 0




Correlated Equilibrium: Definition



Correlated Equilibrium: Definition

Consider a distribution o over the set of possible outcomes S.



Correlated Equilibrium: Definition

Consider a distribution o over the set of possible outcomes S.

A “mediator” draws an outcome 6 = (61,...,6,) from S, and suggests to

each player j that she should play strategy 0.



Correlated Equilibrium: Definition

Consider a distribution o over the set of possible outcomes S.

A “mediator” draws an outcome 6 = (61,...,6,) from S, and suggests to

each player j that she should play strategy 0.

Player j only knows o and 0;. In a correlated equilibrium, she will follow

the mediator’s suggestion, provided that others do the same.



Correlated Equilibrium: Definition

Consider a distribution o over the set of possible outcomes S.

A “mediator” draws an outcome 6 = (61,...,6,) from S, and suggests to

each player j that she should play strategy 0.

Player j only knows o and 0;. In a correlated equilibrium, she will follow

the mediator’s suggestion, provided that others do the same.

The distribution o is a correlated equilibrium iff for every player 7 € N,

Eoo|ci(0)]05] < Egmo cj(z,0-5)|0;] for all strategies x,0, € S;.



Different "Solution Concepts”

All possible outcomes
of the game



Different "Solution Concepts”

All possible outcomes
of the game



Coarse Correlated
Equilibrium



Coarse Correlated Equilibrium

Consider a distribution o over the set of all outcomes S.



Coarse Correlated Equilibrium

Consider a distribution o over the set of all outcomes S.

The distribution o is a coarse correlated eq. iff for every player j € N,

FEoocj(0)] < Epo [cj(x,0—_5)] for all strategies x € S;.



Coarse Correlated Equilibrium

Consider a distribution o over the set of all outcomes S.

The distribution o is a coarse correlated eq. iff for every player j € N,

FEoocj(0)] < Epo [cj(x,0—_5)] for all strategies x € S;.

Eoolcj(0)10;] < Eguolcj(z,0-;16;)] 4mM  Correlated equilibrium



Coarse Correlated Equilibrium

Consider a distribution o over the set of all outcomes S.

The distribution o is a coarse correlated eq. iff for every player j € N,

FEoocj(0)] < Epo [cj(x,0—_5)] for all strategies x € S;.

Eoo[c;(0)]6;] < Egmolej(z,0-;6;)) 4mM  Correlated equilibrium

In contrast with correlated eq., here the switching strategy of a player j

does note depend on the suggestion 6, received from the mediator.



Different "Solution Concepts”

All possible outcomes
of the game



Robust Price of Anarchy

A “robust” PoA bound

applies to all solution

concepts.

All possible outcomes
of the game



Thank You.



Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.




Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

All 400 cars take the route ACDB.

Travel time of each car = 80 mins.




Example: Selfish Routing

t = time to traverse a link (mins)
[ = mno. of cars taking the link

400 cars want to go from A to B.

All 400 cars take the route ACDB.

Travel time of each car = 80 mins.

This outcome is a pure Nash eq.



