
Leader-follower and coupled-constraint games

Ankur A. Kulkarni

Systems and Control Engineering
Indian Institute of Technology Bombay

1 / 37



Notation

N = {1,⋯,N} set of players.

Player chooses action xi; x ≜ (x1,⋯, xN) and x−i ≜ (x1,⋯, xi−1, xi+1, xN)

Loss function ϕi(x) which each player seeks to minimize

Suppose player i ∈ N = {1,⋯,N} solves

minimize
xi

ϕi(xi;x
−i)

subject to xi ∈ Xi,

where Xi is a closed and convex set in Rmi .

X ≜ ∏
i∈N

Xi.

For each i ∈ N , ϕi(⋅, x
−i) is assumed to be convex for each x−i.

Nash equilibrium: x∗ ∈X such that

x∗i ∈ arg min
xi∈Xi

ϕi(xi, x
∗,−i

)
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Game (classical)

Pla
ye

r 2

Player 1
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Best response and Kakutani’s fixed point theorem

Best response
Ri(x

−i
) = arg min

xi∈Xi

ϕi(xi;x
−i
)

R(x) = ∏
i∈N
Ri(x

−i
)

R maps X to subsets of X

x∗ = (x∗1,⋯, x
∗
N) is a Nash equilibrium if and only if

x∗ ∈R(x∗),

i.e., if x∗ ∈ Fix(R).

Theorem (Kakutani)

Let X ⊆Rn and let T ∶X → 2X . If

X is convex and compact

T is convex-valued

T has closed graph (i.e., {(x, y)∣y ∈ T (x), x ∈X} is closed) (equivalently, T is
upper semi-continuous)

then Fix(T ) ≠ ∅.
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Coupled constraints

In the classical setting, actions available to a player are not constrained by the
actions of other players

Generalizing this: suppose we have a set C ⊆Rm =R∑mi so that players are
constrained to choose their actions such that

(x1,⋯, xN) ∈ C.

In other words the rectangular set X ⊆Rm is now replaced by a general set C.
Examples: board games, capacity constraints, physical laws, etc

Nash equilibrium: x∗ = (x∗1,⋯, x
∗
N) such that x∗i solves

Ai(x
∗,−i) minimize

xi

ϕi(xi;x
∗,−i)

subject to (xi, x
∗,−i) ∈ C.

Actions available to a player are now a function of the actions of other players

Notice that C does not depend on i; thus it is a common binding constraint for
all players
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Shared-constraint game

Pla
ye

r 2

Player 1
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Challenges

Meaningfulness: how does one make sense of a simultaneous move game with
coupled constraints?

Existence: What happens to Kakutani’s fixed point theorem?

Best response:
Ri(x

−i
) = arg min

xi∈Ki(x−i)
ϕi(x;x−i)

where Ki(x
−i) ≜ {xi∣(xi, x

−i) ∈ C}.

Kakutani requires Ri to be upper semi-continuous, for which continuity of Ki is
as good as necessary

Unfortunately this does not hold in general

Definitions of upper and lower semicontinuity

Upper: If xn → x and yn ∈ T (xn) such that yn → y then y ∈ T (x).

Lower: If xn → x and y ∈ T (x) then there exists yn ∈ T (xn) for all n such that
yn → y.

Continuity: Upper + Lower
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Rosen’s argument

Define
Ψ(y, x) = ∑

i∈N
ϕi(yi;x

−i
)

Notice that for the classical game,

R(x) = arg min
y∈X

Ψ(y, x)

Hence x∗ ∈R(x∗) if and only if x∗ ∈ arg miny∈X Ψ(y, x∗)

What about the game with a coupled shared constraint?

Rosen shows that one direction is true with X replaced by C!

If x∗ ∈ arg min
y∈C

Ψ(y, x∗) Ô⇒ x∗ ∈R(x∗).

Thus it suffices to look for a fixed point of the new map Υ ∶ C→ 2C where

Υ(x) = arg min
y∈C

Ψ(y, x).

Observe that the constraints in the minimization do not depend on x. Hence
Kakutani can be applied directly with the same assumptions as before.
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More about Rosen’s argument (1965) [Rosen, 1965]

Nash equilibrium

A strategy tuple x ≡ (x1, x2,⋯, xN) where xi ∈ SOL(Ai(x
−i)) for all i ∈ N .

⇕ ⇑ �
x ∈R(x) x ∈ Υ(x)

R(x) ∶= arg inf
u∈K(x)

∑
i∈N

ϕi(ui, x
−i
) Υ(x) ∶= arg inf

u∈C∑i∈N
ϕi(ui, x

−i
)

x ∈R(x): intractable, x ∈ Υ(x): tractable

Rosen shows that Fix(Υ) ⊆ Fix(R). What more can we say about Fix(Υ)?
Rosen calls these the normalized Nash equilibria. We will see more about them
soon.

What about the reverse inclusion? Is that ever true?

And what about the cases where Kakutani does not apply due to breakdown of
other assumptions:

Compactness of C
Convex-valuedness of Φ
Convexity of C

We will address this as well..
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VIs, QVIs

Let F (x) = (∇1ϕ1(x) ⋯ ∇NϕN(x)) .

A NE solves the quasi-variational inequality (QVI)

Find x ∈K(x) s.t. F (x)T (y − x) ≥ 0 ∀y ∈K(x). (QVI(K,F ))

A related variational inequality (VI) is the following

Find x ∈ C s.t. F (x)T (y − x) ≥ 0 ∀y ∈ C. (VI(C, F ))

x ∈R(x) ⇐⇒ x ∈ SOL(QVI(K,F )) x ∈ Υ(x) ⇐⇒ x ∈ SOL(VI(C, F )).

SOL(VI(C, F )) ⊆ SOL(QVI(K,F )) was rediscovered later by Facchinei et al. in
2007 [Facchinei et al., 2007]. Solutions of VI(C, F ) were called “variational
equilibria”
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VIs, QVIs

Variational inequality
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Structure of K

12 / 37



QVI

Quasi-variational inequality
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Two kinds of equilibria: KKT conditions

Ai(x
−i) minimize

xi

ϕi(xi;x
−i)

subject to
c(xi;x

−i) ≥ 0, ∶ λi

xi ≥ 0.

Shared constraint game with C = {x ∣ c(x) ≥ 0, x ≥ 0}

NE

0 ≤ xi ⊥ ∇iϕi(x) − λ
T
i ∇ic(x) ≥ 0

0 ≤ λi ⊥ c(x) ≥ 0, ∀ i ∈ N .

VE(NNE)

0 ≤ xi ⊥ ∇iϕi(x) − λ
T∇ic(x) ≥ 0

0 ≤ λ ⊥ c(x) ≥ 0, ∀ i ∈ N .

(for u, v ∈Rn, 0 ≤ u ⊥ v ≥ 0 ≡ u, v ≥ 0 and ujvj = 0, j = 1,⋯, n)
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Noncompact C
There is a more general principle at play
Solutions of VI(C, F ) and QVI(K,F ) are related in a more intimate manner

When C is not compact, solutions to QVI(K,F ) need not exist. However for a large
class of problems, the following is true [Kulkarni and Shanbhag, 2012a]:

If any Nash equilibrium exists, then a solution to VI(C, F ) also exists. i.e.,

SOL(QVI(K,F )) ≠ ∅ ⇐⇒ SOL(VI(C, F )) ≠ ∅.

In such a situation solutions of VI(C, F ) are called a refinement of the Nash
equilibrium

Definition (Refinement)

A refinement of the set of equilibria of a game is a subset satisfying a certain rule
where this rule has the property that any game with a nonempty set of equilibria
also possesses an equilibrium satisfying this rule.

Refined equilibria have some additional properties that make them more
attractive. Provide a way of selecting one or few of the many equilibria a game
may have. Refinements of Nash equilibria in matrix games: trembling hand
perfect equilibria [Selten, 1975], proper equilibria [Myerson, 1978] etc (see
[Başar and Olsder, 1999]). 15 / 37



More about the refinement

Such games often have a manifold of NE – can we select a subclass from these
with additional properties?

The Lagrange multipliers can be interpreted as the “price” charged on a player
by an administrator.

The equilibrium with non-shared multipliers is an equilibrium resulting from
“discriminatory prices”

But often the situation modeled makes it unrealistic for the administrator to be
able to distinguish between various users

The VE is really the “right” equilibrium.

But ⋯ does a VE always exist? Can an administrator charge a uniform price
across all users to enforce equilibrium?

If the VE is a refinement of the GNE, then an equilibrium with discriminatory
prices exists, if and only if one with uniform prices also exists.
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Main results

F̃
nat

K = natural map of QVI(K,F ).

F̃nat
K (x) = 0 ⇐⇒ x ∈ SOL(QVI(K,F )) ⇐⇒ x is a GNE

Fnat
C = natural map of VI(C, F ).

Fnat
C (x) = 0 ⇐⇒ x ∈ SOL(VI(C, F )) ⇐⇒ x is a VE

deg(f,Ω, p) ∶ Brouwer degree of f w.r.t. p over Ω

well defined if p ∉ f(∂Ω)

deg(f,Ω, p) ≠ 0 Ô⇒ ∃ x ∈ Ω s.t. f(x) = p (note: converse is false)

Theorem

Let Ω be an open bounded set such that Ω ⊆ dom(K). If 0 ∉ F̃nat
K (∂Ω), then there is a

homotopy H(t, x) such that 0 ∉H([0,1], ∂Ω) and H(1, ⋅) = F̃nat
K and H(0, ⋅) = Fnat

C .
Furthermore,

deg(F̃nat
K ,Ω,0) = deg(Fnat

C ,Ω,0).

Thus if SOL(QVI(K,F )) ≠ ∅ Ô⇒ deg(F̃nat
K ,Ω,0) ≠ 0 then

SOL(QVI(K,F )) ≠ ∅ Ô⇒ SOL(VI(C, F )) ≠ ∅.
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Main results

The result says that F̃nat
K and Fnat

C can be transformed smoothly without losing
certain properties

They are equivalent upto their Brouwer degree

These conditions are also necessary if one assumes F to be monotone

There are analogous and more powerful results in the ‘primal-dual’ x − λ space

More in [Kulkarni and Shanbhag, 2012a], [Kulkarni and Shanbhag, 2009],
[Kulkarni and Shanbhag, 2012b].

18 / 37



Beyond convexity

Rosen’s argument, i.e., Fix(Υ) ⊆ Fix(R) works even when C is not convex

First order equilibria: If C is not convex but given via algebraic constraints,
the above results apply for “first order equilibria” or Nash stationary points –
i.e., those points at which KKT conditions for the game hold.

More general fixed point theorems:

Eilenberg-Montgomery FPT

If X is a compact acyclic absolute neighbourhood retract and T ∶X → 2X takes
acyclic values, then Fix(T) ≠ ∅.

Theory of retracts [Borsuk, 1967], [Hu, 1965]

Example: X is contractible and and T is contractible-valued.

Another argument without fixed point theory: more on this later

19 / 37



Beyond shared constraints

Suppose there exist Ci, i ∈ N such that player i solves

minimize
xi

ϕi(xi;x
∗,−i)

subject to (xi, x
∗,−i) ∈ Ci.

Arrow-Debreu [Arrow and Debreu, 1954] abstract economy.

Today also called generalized Nash game

Rosen’s argument does not work

It seems continuity of Ki(x
−i) = {xi∣(xi, x

−i) ∈ Ci} is required

However, there are interesting work-arounds. More later...
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Generalized Nash game

Player 1

Pla
ye

r 2
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Multi-leader multi-follower games

Setting

Set of players categorized as “leaders” and “followers”

Followers take decisions with the knowledge of the decisions of the leaders

Amongst themselves, followers play a noncooperative game*

Leaders choose their decisions while anticapting the response of the followers to
these decisions

Amongst themselves, leaders play a noncooperative game

Applications

Power markets with sequential clearings
1. Firms broadcast their decisions
2. Spot market clears taking the firms’ decisions for granted.
0. Firms decide what decisions to broadcast based on the Nash equilibrium in
the spot market and are themselves in Nash equilibrium

Multiple competing servers; followers decide which service to choose.

* not really needed; follower behavior could be obtained from any other logic, so long
as it is “common” to all leaders.
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Leader’s problem

N = {1,⋯,N} = set of leaders, objectives ϕi and strategies xi

x = (x1,⋯, xN), x−i = (x1,⋯, xi−1, xi+1,⋯, xN)

yi = follower equilibrium conjectured by leader i

y = (y1,⋯, yN), y−i = (y1,⋯, yi−1, yi+1,⋯, yN)

S(x) = set of follower equilibria when leaders play x. So yi ∈ S(x) for all i ∈ N .

Leader-follower game

Technically, the action of the ith leader is only xi. But the choice of xi depends
on yi; consequently yi also must be interpreted as an action

Optimistic formulation

Li(x
−i
) minimize

xi,yi
ϕi(xi, yi;x

−i
)

subject to
xi ∈ Xi,
yi ∈ S(x).

Equilibrium: (x, y) such that (xi, yi) ∈ SOL(Li(x
−i)) for all i ∈ N .
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Challenges

Existence

Even simple games do not admit equilibria. E.g., [Pang and Fukushima, 2005]: 2
leaders, 1 follower. X1 =X2 = [0,1]

Leaders: ϕ1(x1, y1) =
1
2
x1 + y1, ϕ2(x2, y2) = −

1
2
x2 − y2

Follower: ȳ = arg min
ȳ≥0

{ȳ(−1 + x1 + x2) +
1
2
ȳ2

} = max{0,1 − x1 − x2}

Computation

Inordinately hard to compute the equilibrium. No convergent schemes.
... although the multi-leader-follower problem is a sensible mathematical model
with a well-defined solution concept, its high level of complexity and technical
hardship make it a computationally intractable
problem. [Pang and Fukushima, 2005]

Meaningfulness/Usefulness

Later ...
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New approach

Standard approach

Li(x
−i
) minimize

xi,yi
ϕi(xi, yi;x

−i
)

subject to
xi ∈ Xi,
yi = S(x).

Explicit substitution of yi leading to tedious calculations.

New approach

Conceptual issue [Kulkarni and Shanbhag, IEEE CDC 2013]

Mathematical structure [Kulkarni and Shanbhag, Set Valued and Variational
Analysis, 2014]

Clean result on existence of equilibria [Kulkarni and Shanbhag, IEEE TAC
2014]

New approach to general dynamic games [Abraham and Kulkarni, under
review with IEEE TAC]
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Properties

Nonconvexity of constraints

Ki(x
−i
) = {(xi, yi) ∣yi ∈ S(xi;x

−i
)}

is typically nonconvex for each x−i.

Coupled constraint game

Pla
ye

r 2

Player 1

Pla
ye

r 2

Player 1
Player 1

Pla
ye

r 2

Reaction map not upper semicontinuous

Ri(x
−i
) = SOL(Li(x

−i
)) = arg min

yi∈S(xi,x
−i)
ϕi(xi, yi;x

−i
).
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Meaningfulness?

[Kulkarni and Shanbhag, 2013]

Meaningfulness/usefulness

When S(⋅) is multivalued, at equilibrium leaders may disagree on their
conjectures about the follower equilbirum. i.e., yi ≠ yj for some i, j.

If the yi, yj represent a physical value, one is lead to ask if such an equilibrium is
even meaningful/useful (e.g., electricity markets)

We can attempt to resolve this as follows.

Ex-post consistency

Suppose we ask for an equilibrium such that yi = yj for all i, j ∈ N i.e.,

(xi, yi) ∈ SOL(Li(x
−i
)) ∀i ∈ N and yi = yj ∀i, j ∈ N .

Problem with this...

Over determined system

Equilibria in the standard sense rarely exist

Too strong...
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An alternative: ex-ante consistency

Consistency of conjectures

Impose consistency as part of the decision problem of each leader

New game:

Lcc
i (x

−i, y−i) minimize
xi,yi

ϕi(xi, yi;x
−i
)

subject to
xi ∈ Xi,
yi ∈ S(x),
yi = yj , ∀i, j.

Consequences

Consistency: of conjectures at equilibrium holds trivially (even when S(⋅) is
multivalued)

Retaining original equilibria: If S(⋅) is single-valued, equilibria of original game
are equilibria of the new game

Existence: Equilibria exist under milder conditions; in particular new version of
Pang and Fukushima example admits an equilibrium.

Computation: Much easier to compute; natural schemes converge
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Existence

Theorem

If S(⋅) is single-valued, every equilibrium of the original game is an equilibrium
of the new game.

The constraints of the new game,

Ωi(x
−i, y−i) = {(xi, yi) ∣ yi ∈ S(x), yi = yj∀j ∈ N}

form a shared constraint. i.e., ∃ a set F such that for all i ∈ N ,

(ui, vi) ∈ Ωi(x
−i, y−i) ⇐⇒ (ui, x

−i, vi, y
−i
) ∈ F .

F = {(x, y) ∣ xi ∈Xi, yi ∈ S(x)∀i ∈ N , yi = yj∀i, j ∈ N}.

The constraints of the original game do not have this structure.

Theorem

Suppose the objectives of the leaders {ϕi}i∈N admit a potential function π. Then any
minimizer of

min
(x,y)∈F

π(x, y)

is an equilibrium of the new game. Thus if π is continuous and F is compact, the
new game admits an equilibrium.
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The Pang and Fukushima example, revisited

Lcc
1 (x2, y2) minimize

x1,y1
ϕ1(x1, y1) =

1
2
x1 + y1

subject to
x1 ∈ [0,1], y1 = max{0,1 − x1 − x2},
y1 = y2.

Lcc
2 (x1, y1) minimize

x2,y2
ϕ2(x2, y2) = −

1
2
x2 − y2

subject to
x2 ∈ [0,1], y2 = max{0,1 − x1 − x2},
y1 = y2.

Potential game with π = ϕ1 + ϕ2

F = {(x, y)∣x ∈ [0,1]2, y1 = y2 = max(0,1 − x1 − x2)}

arg min
(x,y)∈F

π = arg min
(x,y)∈F

1
2
x1 + y1 −

1
2
x2 − y2 = ((0,1), (0,0)),

Easy to check that ((0,1), (0,0)) is an equilibrium.

30 / 37



What happened?

Ex-post v/s ex-ante consistency of conjectures

With ex-ante consistency, conjectures are consistent not just at equilibrium

Equivalently, stability is sought only against those deviations in conjectures that
themselves consistent

Food for thought...

Not only have we solved meaningfulness, we have also to some extent solved
existence

Consistency provides meaningfulness, but prima facie there is no reason to think
it will also facilitate existence of equilibria

Does consistency of conjectures rid the problem of some inherent pathology?
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Shared constraints

[Kulkarni and Shanbhag, 2014b]

Leaders sharing all equilibrium constraints E ae

Require that all conjectures about follower equilibria be seen by all players

Lae
i (x−i, y−i) minimize

xi,yi
ϕi(xi, yi;x

−i)

subject to
xi ∈ Xi,
yj ∈ S(x) j = 1,⋯,N.

Shared constraint game with constraint F = {(x, y) ∣ x ∈X,yi ∈ S(x) i = 1,⋯,N}.

Theorem

Every equilibrium of the conventional formulation is an equilibrium of E ae.

If the game is a potential game, every minimizer of the potential function is an
equilibrium of E ae.

32 / 37



Existence of equilibria

[Kulkarni and Shanbhag, 2014a]

Definition (Quasi-potential game)

(i) For i = 1,⋯,N , there exist functions φ1(x),⋯, φN(x) and a function h(x, yi) such
that each player i’s objective ϕi(⋅) is given as ϕi(xi, yi;x

−i) ≡ φi(x) + h(x, yi).

(ii) There exists a function π(⋅) such that for all i = 1,⋯,N , and for all x ∈X and
x′i ∈Xi, we have φi(xi;x

−i) − φi(x
′
i;x

−i) = π(xi;x−i) − π(x′i;x
−i).

Theorem

Consider a quasi-potential multi-leader multi-follower game. If (x,w) is a global
minimizer of Pquasi, then (x, y), where yi = w for all i ∈ N , is a global equilibrium of
the game.

Pquasi minimize
x,w

π(x) + h(x,w)

subject to (x,w) ∈ Fquasi

F
quasi

≜ {(x,w) ∈R
n

∣ xi ∈Xi, i = 1,⋯,N,w ∈ S(x)} .

Indeed, there exists an equilibrium with consistent conjectures.
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The Pang and Fukushima example, revisited

L1(x2)minimize
x1,y1

ϕ1(x1, y1) =
1
2
x1 + y1

− y1

subject to
x1 ∈ [0,1]
y1 = max{0,1 − x1 − x2}

L2(x1)minimize
x2,y2

ϕ2(x2, y2) = −
1
2
x2 − y2

subject to
x2 ∈ [0,1]
y2 = max{0,1 − x1 − x2},

Quasi-otential game with π(x1, x2) =
1
2
(x1 + x2) and h(x,w) = −w

F
quasi

= {(x,w)∣x ∈ [0,1]2,w = max(0,1 − x1 − x2)}

arg min
(x,w)∈Fquasi

π(x) + h(x;w) = (0,0,1),

Easy to check that (x1, x2, y1, y2) = (0,0,1,1) is an equilibrium.
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Discrete Time Dynamic Game (open loop information structure)

Player Set, N = {1,2, ...,N}

Stage Set, K = {1,2, ...,K}

State Space, Xk , k ∈ K

Control Space, U i
k, i ∈ N , k ∈ K/{K}. U−i

k ≜∏j∈N ,j≠iU
j
k - Control space of

adversaries

State Equation
xk+1 = fk(xk, u

1
k, u

2
k, ..., u

N
k )

Cost Functional of player i ∈ N J i ∶ (U1
1 × ... ×U

N
1 ) × (Xi

2 ×X
−i
2 ×U1

2 × ... ×U
N
2 ) ×

... × (Xi
K−1 ×X

−i
K−1 ×U

1
K−1 × ... ×U

N
K−1) × (Xi

K ×X−i
K )Ð→ R

Pi(u
−i) minimize

ui
J i(ui, u−i, x)

subject to
xk+1 = fk(xk, u

i
k, u

−i
k ) ∀ k ∈ K,

ui
k ∈ U i

k ∀ k ∈ K.

Standard approach: substitute state equation into cost. Tractable only for
LQ games.

New approach: Leave state equation as a constraint and consider xk as a
decision variable
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State Conjecture formulation

[Abraham and Kulkarni, 2015]

Let xik denote player i’s conjecture about the state.

Pi(u
−i, x−i) minimize

ui,xi
J i(ui, xi;u−i, x−i)

subject to
xik+1 = fk(x

i
k, u

i
k, u

−i
k ) ∀ k ∈ K,

ui
k ∈ U i

k ∀ k ∈ K,

Theorem

If the game has a quasi-potential structure, then any minimizer of the
quasi-potential function over a suitably defined set is an equilibrium

Certain classes of LQ games admit quasi-potential functions

Implications

Clean existence result, generalizes the theory beyond LQ games
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Consistency of state conjectures

Pi(u
−i, x−i) minimize

ui,xi
J i(ui, xi;u−i, x−i)

subject to

xik+1 = fk(x
i
k, u

i
k, u

−i
k ) ∀ k ∈ K,

ui
k ∈ U i

k ∀ k ∈ K,

xik = xjk ∀j ∈ N , k ∈ K.

Theorem

The above game is a shared constraint game

If the game admits a potential function and spaces X,U are compact and
functions fk are continuous, the game admits an equilibrium

Any equilibrium of the original game is an equilibrium of the new game

More can be said – e.g., ε-equilibrium. See more
in [Abraham and Kulkarni, 2015]
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