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Data Labeling: Not a Child's Play

Requester /Learner
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Data Labeling: Not a Child's Play

Data . x x True
Annotators 1 2 m Label
Ay +1 ? -1 ?
A, -1 +1 -1 ?
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) How to aggregate the labels ?

Labeling Tasks

)Who should annotate what?

) How much to pay for? |

Crowdworkers / Annotators
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Prior Work
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Binary Labeling: A Mental Model

y :=True Label of x
y' := Label of x given by annotator i
=Prob(y' #y)

Task Allocation
Mechanism

Aggregation
Rule

Requester /Learner

Labeling Tasks

Annotators:

Payment
Mechanism

@ Multiple noisy human annotators

Noise Rate

[e]

[e]

Crowdworkers

@ Noise could be due to human error, lack of expertise, or even intentional

@ Expertise level of an annotator can be expressed by its noise rate

@ Each annotator needs to be paid

Learner:

@ Goal is to obtain good quality labels at minimum cost
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Binary Labeling: Problem Setup
Finite Concept Class C
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Payment Mechanism
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Noisy Labeled Data

T
Crowdworkers
@ annotation plan m := (my, my,....,my)

@ error rate of h:= PrP(c;Ah)
@ c-bad hypothesis := PrP(c;Ah) > ¢
@ PAC Bound := Pr"(PrP(c;Ah) > ¢) < §
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Binary Labeling: Problem Setup

Finite Concept Class C

Requester /Learner m
Ta:sk Allocation {xd xh, e xk ) 5
(o]
(Random Sampler D) ©

Classifier h

Al tion Rul — — i
sgregetionte (k). (. 98). . (b, i)} } g

Noisy Labeled Data

Payment Mechanism

T
Crowdworkers

@ annotation plan m := (my, mo,...., my)
@ error rate of h:= PrP(c;Ah)

@ c-bad hypothesis := PrP(c;Ah) > ¢

@ PAC Bound := Pr"(PrP(c;Ah) > ¢) < §

Goal: Design an (1) Aggregation Rule and an (2) Annotation Plan to ensure PAC bound for
the learned classifier h at (3) Minimum Cost.

[1] L.G. Valiant, “A Theory of Learnable”, Communications of the ACM, 27:1134-1142, 1984,
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(1) Aggregation Rule: Minimum Disagreement Algorithm

Input: Labeled examples from n annotators.
Output: A hypothesis h* € ¢
Algorithm:
Q Let {(xj’,yj’) i=1,2,...,n j=1,...,m;} be the labeled
examples.

@ Ouput a hypothesis h* that minimally disagrees with the
given labels (use any tie breaking rule). That is,

h*EargmanZI(h 7éyj)

i=1 j=1

Properties of the MDA
@ Does not require the knowledge of annotators’ noise rates n; (Analysis would require !!)

@ Does not require the knowledge of sampling distribution D
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(2) Annotation Plan for MDA [Complete Info. Setting]
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(2) Annotation Plan for MDA [Complete Info. Setting]

| Learner’s Problem: “Which annotation plan would guarantee me (¢,4) PAC bound?” |

Assumption: Learner precisely knows the noise rate 7); of every annotator i
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(2) Annotation Plan for MDA [Complete Info. Setting]

| Learner’s Problem: “Which annotation plan would guarantee me (¢,4) PAC bound?” |

Assumption: Learner precisely knows the noise rate 7); of every annotator i
Theorem (Feasible Annotation Plan for MDA)
The MDA will satisfy PAC bound if the annotation plan m = (m17 mo, ..., m,,) satisfies:

log(N/5) < Z mip (1) (1)

where concept class is finite, i.e. N = |€| < co and Vi =1,2,...,n, we have
@ 0<n <1/3
@ (n) = —log[l—e(1—exp(3L1))].

D. Garg, S. Bhattacharya, S. Sundararajan, S. Shevade, “Mechanism Design for Cost Optimal PAC Learning in the
Presence of Strategic Noisy Annotators”, Uncertainty in Artificial Intelligence (UAI), 275-285, 2012.
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Proof Sketch

Probability of an e-bad hypothesis h having lower empirical error than c;

[

Annotator i; i=12---,n;

delivers a

)

random and independent sample (X, y)

h(x) =y h(x) =y h(x) =y h(x) =y
c(X)#y () =y c(X)#y
Leaf ‘A’ Leaf ‘B’

Leaf 'C’

Dinesh Garg (IBM Research)

Leaf ‘D’
Pr(m-ma)[[ () < Le(cr)] = Pr{# samples under leaf A > # samples under leaf B}
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(3) Cost of Annotation

Assumptions:

@ Each annotator i incurs a cost of c¢(7;) for labeling one data point
@ The cost function c(-) is the same for all the annotators
@ ¢(-) is bounded, continuously differentiable, and strictly decreasing function

@ Function c(-) is a common knowledge

C(n; .. .
(n') @ A more competitive annotator /i means low 7;
@ He can earn more by selling his services (time)
@ It means his internal cost of annotation is high
\
0.0 1/3 12

n —
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(1-2-3) Putting It All Together [Complete Info Setting]

Learner’s Problem:

@ Learner is using MDA as an aggregation rule to learn a binary classifier

@ Learner precisely knows the cost (equivalently, noise rates 7;) of each annotator i
@ Learner wants to ensure PAC learning with parameters (e, )
o

Learner wants to minimize the cost of a feasible annotation plan
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(1-2-3) Putting It All Together [Complete Info Setting]

Learner’s Problem:
@ Learner is using MDA as an aggregation rule to learn a binary classifier
@ Learner precisely knows the cost (equivalently, noise rates 7;) of each annotator i
@ Learner wants to ensure PAC learning with parameters (e, )
@ Learner wants to minimize the cost of a feasible annotation plan

Relaxed Primal Problem

n

Minimize Z c(ni)m;

my,mp,...mp .
i=1

subject to  log(N/68) < Z¢(ni)mi

i=1
0 S mj Vi

Dinesh Garg (IBM Research) Learning from a Strategic Crowd January 14, 2016 13 /35



(1-2-3) Putting It All Together [Complete Info Setting]

Learner's Problem:

Learner is using MDA as an aggregation rule to learn a binary classifier

Learner precisely knows the cost (equivalently, noise rates 7;) of each annotator |

Learner wants to ensure PAC learning with parameters (e, d)

Learner wants to minimize the cost of a feasible annotation plan

Relaxed Primal Problem

n

Relaxed Dual Problem

Minimize c(ni)m; N
MLM25:Mn ; Maximize Alog (—)
X 0

n

subject to  log(N/¢§) < Zw(n;)m,- subject to A< c(ni) Vi
i=1 P(mi)

0< mVi 0< A
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(1-2-3) Putting It All Together [Complete Info Setting]

Learner’s Problem:

@ Learner is using MDA as an aggregation rule to learn a binary classifier

@ Learner precisely knows the cost (equivalently, noise rates 7;) of each annotator i
@ Learner wants to ensure PAC learning with parameters (e, )
o

Learner wants to minimize the cost of a feasible annotation plan

Relaxed Primal Problem

Relaxed Dual Problem
n

Minimize Z c(ni)m; N
R —) Maximize Alog (—)
X 0
n
subject to  log(N/¢§) < Zw(n;)m,- subject to A< c(ni) Vi
i=1 ¥(ni)
0< mVi 0< A

Definition (Near Optimal Allocation Rule - NOAR)

Let i* be the annotator having minimum value for cost-per-quality given by c(n;)/1(n;). The
learner should buy [log(N/§)/¢(ni=)] number of examples from such an annotator.
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(1-2-3) Putting It All Together [Complete Info Setting]

Theorem

Let COST be the total cost of purchase incurred by the Near Optimal Allocation Rule.
Let OPT be the optimal value of the ILP. Then,

OPT < COST < OPT (1 + i)

mo

where my = log (115)

Proof:

COST

c(ni=)[log(N/6) /¥ (ni-)]
log(N/8)c(ni=) /¢ (mi=) + c(ni)
OPT + c(ni+)

OPT + moc(n,-* )/mo

OPT + OPT /mo

VAN VAN VAN VAN
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Back to Binary Labeling Problem: Incomplete Info Setting
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Back to Binary Labeling Problem: Incomplete Info Setting

Let us Face the Reality

> Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

> Learner can not compute the PAC annotation plan because 1/(7;) is required
for this: log(N/6) < >°7, w(ni)mi
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Back to Binary Labeling Problem: Incomplete Info Setting

Let us Face the Reality

> Learner does not know the cost (equivalently, noise rate) of any annotator

So What?
> Learner can not compute the PAC annotation plan because 1/(7;) is required
for this: log(N/6) < >°7, w(ni)mi

Options Available with Learner
» Estimation
- Overestimation = Excess examples procured by NOAR = Higher COST
- Underestimation = Pr(e-bad hypothesis gets picked by NOAR) > §
» Elicitation
- Invite annotators to report (bid) their costs (equivalently, noise rates)
- Setup an auction to decide the work (contract) size and payment for annotators

- Challenge: If annotators misreport noise rates, we are back to square one!!

| Goal: Design a Truthful & Cost Optimal Auction for PAC Learning via MDA.
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Prior Work

Goal: Encourage putting more efforts ?

Each agent reports his
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Goal: Encourage agents
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[Singer-Mittal-11],

Budget Constraint+ No Bidding+ MAB:
[Tran-Thanh-Stein-Rogers-Jennings-12],
[(Badanidiyuru-Kleinberg-Singer-12]
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Auction Framework for Incomplete Info Setting

@ Bids
> Annotator i bids b; (could be different than his true cost ¢;)

» Bids are translated into equivalent noise rates: f; = ¢~ *(b;) € I; = [0,1/3]
> letl=hxb...xl,

> The bid vector is given by § = (1, fj2,...,Mn) € |

P E—
00 hom 13 12
n—
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Auction Framework for Incomplete Info Setting

@ Task Allocation Mechanism a(-)
> Learner uses an allocation rule a: / — Nj to award the contracts

@ Payment Mechanism p(-)
> Learner uses a payment rule p : | — R" to pay the annotators

@ Mechanism M

> A pair of allocation and payment mechanisms is called mechanism
M = (a,p)

@ Utilities
> Annotator i accumulates following utility when bid vector is 7
ui(f;ni) = pi(f) — ai(A)c(n:)

» To compute this utility, annotator / must know the bids of others
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Common Prior Assumption and Expected Utility

Assumptions (IPV Model):

@ Noise rate 7; gets assigned via an independent random draw from interval [0, 1/3]
@ ¢;(:) and ®;(-) denote the corresponding prior density and CDF respectively

@ The joint prior (¢(-) = [17_; ¢i(+)) is a common knowledge

@ Expected Allocation Rule «;(+)

a,-(ﬁ,-)z/ _af(ﬁf,ﬁ_f)¢-;(ﬁ-f)df;_f

—i

@ Expected Payment Rule mi(-)

mi(h) = /IlPi(ﬁnﬁ—iM—i(ﬁ—i)dﬁ—i

@ Expected Utility Uj(+)
Ui(ii; mi) = mi(1i) — ai(dji)e(mi)

Dinesh Garg (IBM Research) Learning from a Strategic Crowd January 14, 2016
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Optimal Auction Design for Incomplete Info Setting

Minimize
a(-),p(+)

. r1/3
M(a,p) = Zi:l/o mi(t)@i(ti)dti (Procurement Cost)

Subject to  log(N/d) < Z ai(ni,n—i)¥(ni) Y(ni,n-i) € I (PAC Constraint)

(a, p) satisfies BIC (BIC Constraint)
mi(ni) > ai(ni)e(ni) Vi € 1;,Vi (IR Constraint)

A Mechanism is said to be

@ Bayesian Incentive Compatible (BIC) if for every annotator i, U;(-) is maximized
when 7 = n;, i.e., Ui(ni;mi) > Ui(fi; mi) Vi € 1.

@ Individually Rational (IR) if no annotator loses (in expected sense) anything by
reporting true noise rates, i.e., mi(n;) — ai(ni)c(ni) >0V n; € I.
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BIC Characterization: Myerson’s Theorem

An allocation rule a is said to be Non-decreasing in Expectation (NDE) if

we have a;(n;) > ai(7;i) Yni > 7

Theorem (Myerson 1981)

Mechanism M = (a, p) is a BIC mechanism iff
@ Allocation rule a(-) is NDE, and
@ Expected payment rule satisfies:

Ui(mi)

Ui(0) — /O’h' ai(t)c' (t)dt;

= (1)

ai(m)e(m) + Ui(0) — / " () (6)dt

v

[1] R. B. Myerson. Optimal Auction Design. Math. Operations Res., 6(1):58 -73, Feb. 1981.
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Back to Optimal Auction Design

R 1/3
Minimize M(a,p) = / mi(ti)oi(t:)dt; (Procurement Cost
imimize  N(a,p) =37 [ m(e)oi(e)ae )

Subject to  log(N/§) < Z ai(ni, n—i)¥(ni) Y(ni,n-i) € I (PAC Constraint)
() is non-decreasing (BIC Constraint 1)
n;
wi(ni) = ai(ni)e(ni) + Ui(0) — / ai(ti)c'(t)dt; (BIC Constraint 2)
0

mi(ni) > ei(ni)e(ni) Vi € 1;,Vi (IR Constraint)
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Back to Optimal Auction Design

R 1/3
Minimize M(a,p) = / mi(ti)oi(t:)dt; (Procurement Cost
imimize  N(a,p) =37 [ m(e)oi(e)ae )

Subject to  log(N/§) < Z ai(ni, n—i)¥(ni) Y(ni,n-i) € I (PAC Constraint)
() is non-decreasing (BIC Constraint 1)
n;
wi(ni) = ai(ni)e(ni) + Ui(0) — / ai(ti)c'(t)dt; (BIC Constraint 2)
0

mi(ni) > ei(ni)e(ni) Vi € 1;,Vi (IR Constraint)

Insights:
@ If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff U;(0) > 0
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Back to Optimal Auction Design

R 1/3
Minimize M(a,p) = / mi(ti)oi(t:)dt; (Procurement Cost
imimize  N(a,p) =37 [ m(e)oi(e)ae )

Subject to  log(N/§) < Z ai(ni, n—i)¥(ni) Y(ni,n-i) € I (PAC Constraint)
() is non-decreasing (BIC Constraint 1)
ni
mi(ni) = ai(ni)e(ni) + Ui(0) — / ai(t)c'(t:)dt; (BIC Constraint 2)
0

mi(ni) > ei(ni)e(ni) Vi € 1;,Vi (IR Constraint)

Insights:
@ If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff U;(0) > 0

@ Because our goal is to minimize the objective function, we must have U;(0) =0
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Back to Optimal Auction Design

L3
Minimize  MM(a, p) = Z 1/ mi(ti)¢i(ti)dt; (Procurement Cost)
=*Jo

a(-),p()
Subject to  log(N/§) < Z ai(ni, n—i)¥(ni) Y(ni,n-i) € I (PAC Constraint)
() is non-decreasing (BIC Constraint 1)
ni
mi(ni) = ai(ni)e(ni) + Ui(0) — / ai(ti)c'(t)dt; (BIC Constraint 2)
0

mi(ni) > ei(ni)e(ni) Vi € 1;,Vi (IR Constraint)

Insights:
@ If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff U;(0) > 0

@ Because our goal is to minimize the objective function, we must have U;(0) =0
@ Using (BIC Constraint 2), objective becomes [(a, p) = [, < vi(xi a,(x)) o(x)dx
i=1

@ vi(ni) == c(ni) — 1(—;&7["(_7)7;)(_./(77’,) is virtual cost function (Note vi(n;) > c(ni))

Dinesh Garg (IBM Research) Learning from a Strategic Crowd January 14, 2016 22 /35



Reduced Problem

Overall Problem

Minimi)ze M(a,p) = /,(Z:;l v,-(x;)a;(x)) ¢(x)dx (Procurement Cost)

a(+),p(-
Subject to  log(N/§) < Z ai(ni,n—i)Y(ni) Y(ni,n-i) € I (PAC Constraint)

aj(+) is non-decreasing (BIC Constraint 1)

Insights:
@ Keep aside (BIC Constraint 1) for the moment
@ It suffices to solve following problem for every possible profile n

Instance Specific ILP

Minimize Z vi(ni)ai(n)(Procurement Cost for profile 7)

a1(n)s---,an(n) Py

Subject to  log(N/§) < Z<w(n,~)a,~(n) V(ni,n-i) € I (PAC Constraint)
3,‘(77) € Ng Vi

Dinesh Garg (IBM Research) Learning from a Strategic Crowd January 14, 2016

23 /35



Solution Via Instance Specific ILP

@ Instance specific ILP is similar to Primal Problem in complete info setting (replace
c(ni) with vi(ni))

@ Instance specific ILP can be relaxed and solved approximately just like NOAR

Definition (Minimum Allocation Rule)

Let /* be the annotator having minimum value for cost-per-quality given by vi(n;) /¢ (7).
The learner should buy [log(/N/d)/w(ni=)] number of examples from such an annotator.

v

Theorem

Let COST be the total cost of purchase incurred by the Minimum Allocation Rule. Let
OPT be the optimal procurement cost. Then,

OPT < COST < OPT + c(ni-) < OPT(1 + 1/mo)

where mo = log[1 — €] !
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What About (BIC Constraint 1) ?

| Regularity Condition: v;(-)/4(+) is a non-increasing function.

If Regularity Condition is satisfied, then under the minimum allocation rule

@ As 7; increases, the annotator i remains the winner if he/she is already the winner
(with an increased contract size) or becomes the winner

@ The allocation rule satisfies ND property (hence, NDE)

@ The payment of annotator i is given by

i
1) = almn)e(n) — [ aitn-)e (6)ds
0
@ Winning annotator gets positive payment and others get zero payment
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Near Optimal Auction Mechanism for PAC Learning

Under regularity condition of v;(-)/() being a non-increasing function of 7;
. [log(N/8)/w(n)] i ) < J, )i
ai(n) /
0 : otherwise
log(N/9) -‘ c(qi . for winner
oy = 1[G cat) |
0 : otherwise
inf 4 Vi) i)
qi(n-i) = inf {nf | % < Vj#i
V(i) ~ ()
= smallest bid value sufficient to win the contract for annotator i
Theorem

Suppose Regularity Condition holds. Then, above mechanism is an approximate optimal
mechanism satisfying BIC, IR, and PAC constraints. The approximation guarantee of
this mechanism is given by ALG < OPT + v=(n;<) < OPT(1 + 1/mo).
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Conclusions

Analyzed the PAC learning model for noisy data from multiple annotators

Analyzed complete and incomplete information scenarios

Essentially, we identify the annotator whose (cost/quality) ratio is the least

Surprisingly, greedily buying all the examples from such an annotator is near
optimal
Future Extensions
@ What if the cost function ¢(-) is not a common knowledge?
@ What if the cost function c(-) is different for different annotators?
@ Annotators having a capacity constraint and/or learner having a budget constraint
@ Work with general hypothesis class (e.g. linear models of classification)

@ Other learning tasks - multiclass/multilabel classification, regression

@ What about sequentially deciding the tasks assignments?
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Aspects of Crowdsorcing Systems

p
- Fixed/Vary over
Qualities Domain/Time
Availability Sleeping /Awake
Annotators Strategic in
- Reporting
- Strategic/Non Labels/Bid/Both
Strategic
L Strategic in
Annotator Lead/ Exerting Efforts
Task Assignment Learner Lead/
Random
[ Minimize Cost,
Goals Maximize Quality,
Hybrid
Learner
Budget Finite/Unbounded
s
Labeling Blnary/MqucIass/
Regression
Nature of Task ~
Prediction
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Aspects of Crowdsorcing Systems

P —

) One Shot/
- Inductive Sequential ’
Aggregation
Rule one shot/
) ne Sho
Transductive Sequential ’
Inaccessible
Oracle Instantaneous

Accessibility (By Paying)

Time Shifted
(No Extra Cost)

Posted Price
Payment )
Mechanism

Auction Based
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Proof Sketch

Events

@ Ei(h,my,...,m,): The empirical error of a given hypothesis h € € is no
more than the empirical error of the true hypothesis c;, i.e. Lo(h) < Lo(ct).

@ Ey(h,my,...,m,): The empirical error of a given hypothesis h € € is the
minimum across all hypotheses in the class €, i.e. Le(h) < Le(W) VW € €.

@ Es(h,my,...,m,): MDA outputs a given hypothesis h.

@ E4(e,my,...,m,): MDA outputs an e-bad hypothesis.
Observations

@ Es(h,my,...,m,) C Ex(h,my,...,m,) C Es(h,my,...,m,)

(mla“"mn) _ max (ml)'“vmn)
e Pr [Es(e)] < (N —1) x [ he@. his ebad Pr [E1(h)]
@ If annotation plan (my, ..., m,) satisfies the following condition, then MDA
will satisfy PAC bound.
maXx (m1,ye..,mp)
PR COIEET @
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Proof Sketch

Probability of an e-bad hypothesis h having lower empirical error than c;

[

Annotator i; i=12---,n;

delivers a

)

random and independent sample (X, y)

h(x) =y h(x) =y h(x) =y h(x) =y
c(X)#y () =y c(X)#y
Leaf ‘A’ Leaf ‘B’

Leaf 'C’

Dinesh Garg (IBM Research)

Leaf ‘D’
Pr(m-ma)[[ () < Le(cr)] = Pr{# samples under leaf A > # samples under leaf B}
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Special Case: Single Annotator
When n =0
@ Easy to show that sample complexity mg satisfies mg < log(N/§)/ log[l — €] !
@ The range of n; in previous theorem can be extended to include n; = 0 by having
(0) = log[L — ] 1
When n=1/3
@ Angluin and Laird proposed following bound for single annotator, for 0 < n < 1/2
() = log [1— ¢ (1~ exp (~(1 = 21,)2/2))] !

@ The range of n; in previous theorem can be extended to include 7; = 1/3 by having
¥(1/3) = log[L — (1 — exp(~1/18))] !

10°
— Philip Laird's Bound [N 1000000
—Proposed Bound | epsilon=0.01
-=-Noise Rate=1/3 | delta=0.01

Upper Bound on Sample Complexity

005 01 015 02 025 03 035 04 045 05
Noise Rate (n)

[1] Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning, 2(4):343-370, 1988.
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /0 ai(ti)d [e(t)]

ni
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

ni

a;(m)

(0,0) c(1/3) c(0)
c(n) —
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

o,(113)

I

a;(n)

o (0)

ni

(0.0
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

ni
a,(1/3)
a;(n)
2;(0)
0,0 c(1/3) c(0)

c(n) —

Dinesh Garg (IBM Research) Learning from a Strategic Crowd January 14, 2016 35 /35



Understanding Myerson’s Theorem

0
mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d
ni
0
=mi(ni) = ai(ni)c(ni) + mi(0) — ai(0)c(0) + / ai(ti)d [c(t)]
nj
o;(1/3)
a;(n)
a;(m;)
(0)
a; (mi)e(m;)
0.0 c(1/3) c(m) c(0)
c(n) —
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

ni
o,1/3)
a;(n)
o (m;)
(0
() (0)c(0)
_(_Y0,0 m—c(+c(m,

c(m) —
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Understanding Myerson’s Theorem

0
m(m) = ai(m)e(m) + Ui(0) + / ai(8)< (t)dt

i

=mi(n) = ai(m)e(n) +mi(0) — i(0)c(0) + /0 ai(ti)d [c(t)]

ni

a,1/3)

] a;(7,)c(,) — 2, (0)c(0) = A - A,

0,0 c(1/3) C(;li) 6(6)
c(n) —

Dinesh Garg (IBM Research) Learning from a Strategic Crowd January 14, 2016 35 /35



Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d
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ni
a,(1/3)
a;(n)
o;(m)
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

o, (113)

ni

[ () =m0)+ A+ A

a;(m)

o (m;)

«(0)

(0,0) c(1/3) ()
c(n) —
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ni
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Understanding Myerson’s Theorem
mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

ni

o,(1/3)

o LAGDREAUD)

©0) c(1/3) () <) c(0)
c(n) —
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Understanding Myerson’s Theorem
mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

ni

o,(1/3)

___— Utility Loss

©0) c(1/3) () <) c(0)
c(n) —
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Understanding Myerson’s Theorem

mn) = ai(m)etn) + U(0)+ [ ai(t)e (6)d

=mi(n) = ai(m)ec(n) +mi(0) — i(0)c(0) + /O ai(ti)d [e(t)]

ni
o, (1/3)
I U, (Wi) =A+A
a;(n)
a;(m)
«(0) -
A
(0.0 c(1/3) c(m) c(0)
c(n) —
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