

PAC Learning from a Strategic Crowd

Dinesh Garg
IBM Research - Bangalore

Joint work with

Sourangshu Bhattacharya, S. Sundararajan, and Shirish Shevade

January 14, 2016

Amazon's Mechanical Turk (M-Turk)

The screenshot shows a web browser with the URL <https://www.mturk.com/mturk/welcome> in the address bar. The page is titled "amazon mechanical turk" and "Artificial Artificial Intelligence". It features a navigation bar with "Your Account", "HITS", and "Qualifications" buttons, and links for "Introduction", "Dashboard", "Status", and "Account Settings".

Mechanical Turk is a marketplace for work.
We give businesses and developers access to an on-demand, scalable workforce.
Workers select from thousands of tasks and work whenever it's convenient.

355,164 HITs available. [View them now.](#)

Make Money
by working on HITs

HITS - *Human Intelligence Tasks* - are individual tasks that you work on. [Find HITs now.](#)

As a Mechanical Turk Worker you:

- Can work from home
- Choose your own work hours
- Get paid for doing good work

Find an interesting task **Work** **Earn money**

Find HITs Now

Get Results
from Mechanical Turk Workers

Ask workers to complete HITs - *Human Intelligence Tasks* - and get results using Mechanical Turk. [Get Started.](#)

As a Mechanical Turk Requester you:

- Have access to a global, on-demand, 24 x 7 workforce
- Get thousands of HITs completed in minutes
- Pay only when you're satisfied with the results

Fund your account **Load your tasks** **Get results**

Get Started

Human Intelligence Tasks (HITs)

amazon mechanical turk Artificial Artificial Intelligence [Sign In](#)

Your Account [HITS](#) Qualifications **363,428 HITs** available now

All HITs | HITs Available To You | HITs Assigned To You

Find **HITs** containing that pay at least \$ **0.00** for which you are qualified require Master Qualification **GO**

HITs containing 'classify'
1-10 of 10 Results

Sort by: HITs Available (most first) **GO** Show all details | Hide all details

Classify Receipt [View a HIT in this group](#)

Requester: Jon Breig **HIT Expiration Date:** Oct 28, 2015 (6 days 23 hours) **Reward:** \$0.02
Time Allotted: 20 minutes

Find and list craft shows, fairs and festivals in the USA - .25 cent additional bonus PER HIT available [View a HIT in this group](#)

Requester: Craft Listings **HIT Expiration Date:** Oct 6, 2016 (50 weeks 1 day) **Reward:** \$0.20
Time Allotted: 60 minutes

Classify short video for suitability to children: language = GERMAN [View a HIT in this group](#)

Requester: Amazon-Tahoe **HIT Expiration Date:** Nov 4, 2015 (1 week 6 days) **Reward:** \$1.00
Time Allotted: 45 minutes

Draw outlines around businesses on Google Maps (2-3 min/HIT, multiple available) [View a HIT in this group](#)

Requester: Consumer Survey Research **HIT Expiration Date:** Oct 23, 2015 (1 day 18 hours) **Reward:** \$0.20
Time Allotted: 45 minutes

Listen and answer questions about an AUDIO recording and translate from FRENCH [View a HIT in this group](#)

Requester: A Global Media Application **HIT Expiration Date:** Oct 23, 2015 (1 day 21 hours) **Reward:** \$0.02

Crowdsourcing: Motivation

Crowdsourcing: Motivation

(i) Data Labeling: Web Pages Classification

Crowdsourcing: Motivation

(i) Data Labeling: Web Pages Classification

(ii) Data Labeling: Legal Documents Classification

Crowdsourcing: Motivation

(i) Data Labeling: Web Pages Classification

(ii) Data Labeling: Legal Documents Classification

(iii) Mobile Sensing

Crowdsourcing: Motivation

(i) Data Labeling: Web Pages Classification

(ii) Data Labeling: Legal Documents Classification

(iii) Mobile Sensing

(iv) MOOC

Data Labeling: Not a Child's Play

Data Labeling: Not a Child's Play

Annotations \ Data	x_1	x_2	...	x_m	True Label
A_1	+1	?	...	-1	?
A_2	-1	+1	...	-1	?
A_3	?	+1	...	?	?
.....
A_n	?	+1	...	?	?

Data Labeling: Not a Child's Play

Requester / Learner

Labeling Tasks

Crowdworkers / Annotators

Annotations \ Data	x_1	x_2	...	x_m	True Label
A_1	+1	?	...	-1	?
A_2	-1	+1	...	-1	?
A_3	?	+1	...	?	?
.....
A_n	?	+1	...	?	?

Aggregation Rule

Binary Labeling: A Mental Model

$y :=$ True Label of x

$y^i :=$ Label of x given by annotator i

$\eta_i = \text{Prob}(y^i \neq y)$

Requester / Learner

Annotators:

- Multiple **noisy** human annotators
- Noise could be due to **human error, lack of expertise**, or even **intentional**
- Expertise level of an annotator can be expressed by its **noise rate**
- Each annotator needs to be **paid**

Learner:

- Goal is to obtain good **quality labels** at **minimum cost**

Binary Labeling: Problem Setup

Finite Concept Class C

Classifier h

Requester /Learner

$\{x_1^i, x_2^i, \dots, x_{m_i}^i\}$

$\{(x_1^i, y_1^i), (x_2^i, y_2^i), \dots, (x_{m_i}^i, y_{m_i}^i)\}$

Noisy Labeled Data

Binary Labeling: Problem Setup

Finite Concept Class C

Classifier h

Requester /Learner

$\{x_1^i, x_2^i, \dots, x_{m_i}^i\}$

$\{(x_1^i, y_1^i), (x_2^i, y_2^i), \dots, (x_{m_i}^i, y_{m_i}^i)\}$

Noisy Labeled Data

η_1

η_i

η_n

c_t

h

x

$c_t \Delta h$

- annotation plan $\mathbf{m} := (m_1, m_2, \dots, m_n)$
- error rate of $h := \mathbf{Pr}^D(c_t \Delta h)$
- ϵ -bad hypothesis $:= \mathbf{Pr}^D(c_t \Delta h) > \epsilon$
- PAC Bound $:= \mathbf{Pr}^{\mathbf{m}}(\mathbf{Pr}^D(c_t \Delta h) > \epsilon) < \delta$

Binary Labeling: Problem Setup

Finite Concept Class C

Classifier h

Labeling Tasks

Requester /Learner

$\{x_1^i, x_2^i, \dots, x_{m_i}^i\}$

Noisy Labeled Data

η_1

η_i

η_n

c_t

h

- annotation plan $\mathbf{m} := (m_1, m_2, \dots, m_n)$
- error rate of $h := \Pr^D(c_t \Delta h)$
- ϵ -bad hypothesis $:= \Pr^D(c_t \Delta h) > \epsilon$
- PAC Bound $:= \Pr^{\mathbf{m}}(\Pr^D(c_t \Delta h) > \epsilon) < \delta$

Goal: Design an (1) Aggregation Rule and an (2) Annotation Plan to ensure PAC bound for the learned classifier h at (3) Minimum Cost.

[1] L.G. Valiant, "A Theory of Learnable", Communications of the ACM, 27:1134-1142, 1984.

(1) Aggregation Rule: *Minimum Disagreement Algorithm*

Input: Labeled examples from n annotators.

Output: A hypothesis $h^* \in \mathcal{C}$

Algorithm:

- ① Let $\{(x_j^i, y_j^i) \mid i = 1, 2, \dots, n; j = 1, \dots, m_i\}$ be the labeled examples.
- ② Output a hypothesis h^* that minimally disagrees with the given labels (use any tie breaking rule). That is,

$$h^* \in \arg \min_{h \in \mathcal{C}} \sum_{i=1}^n \sum_{j=1}^{m_i} \mathbf{1}(h(x_j^i) \neq y_j^i)$$

Properties of the MDA

- Does not require the knowledge of annotators' noise rates η_i (**Analysis would require !!**)
- Does not require the knowledge of sampling distribution D

(2) Annotation Plan for MDA [*Complete Info. Setting*]

(2) Annotation Plan for MDA [*Complete Info. Setting*]

Learner's Problem: "Which annotation plan would guarantee me (ϵ, δ) PAC bound?"

(2) Annotation Plan for MDA [Complete Info. Setting]

Learner's Problem: "Which annotation plan would guarantee me (ϵ, δ) PAC bound?"

Assumption: Learner precisely knows the noise rate η_i of every annotator i

(2) Annotation Plan for MDA [Complete Info. Setting]

Learner's Problem: "Which annotation plan would guarantee me (ϵ, δ) PAC bound?"

Assumption: Learner precisely knows the noise rate η_i of every annotator i

Theorem (Feasible Annotation Plan for MDA)

The MDA will satisfy PAC bound if the annotation plan $\mathbf{m} = (m_1, m_2, \dots, m_n)$ satisfies:

$$\log(N/\delta) \leq \sum_{i=1}^n m_i \psi(\eta_i) \quad (1)$$

where concept class is finite, i.e. $N = |\mathcal{C}| < \infty$ and $\forall i = 1, 2, \dots, n$, we have

- $0 < \eta_i < 1/3$
- $\psi(\eta_i) = -\log [1 - \epsilon (1 - \exp(-\frac{3\eta_i - 1}{8}))]$.

D. Garg, S. Bhattacharya, S. Sundararajan, S. Shevade, "Mechanism Design for Cost Optimal PAC Learning in the Presence of Strategic Noisy Annotators", Uncertainty in Artificial Intelligence (UAI), 275-285, 2012.

Proof Sketch

Probability of an ϵ -bad hypothesis h having lower empirical error than c_t

$$\Pr^{(m_1, \dots, m_n)}[L_e(h) \leq L_e(c_t)] = \Pr\{\# \text{ samples under leaf A} \geq \# \text{ samples under leaf B}\}$$

(3) Cost of Annotation

Assumptions:

- Each annotator i incurs a cost of $c(\eta_i)$ for labeling one data point
- The cost function $c(\cdot)$ is the same for all the annotators
- $c(\cdot)$ is bounded, continuously differentiable, and strictly decreasing function
- Function $c(\cdot)$ is a common knowledge

- A more competitive annotator i means low η_i
- He can earn more by selling his services (time)
- It means his internal cost of annotation is high

(1-2-3) Putting It All Together [Complete Info Setting]

Learner's Problem:

- Learner is using MDA as an aggregation rule to learn a binary classifier
- Learner precisely knows the cost (equivalently, noise rates η_i) of each annotator i
- Learner wants to ensure PAC learning with parameters (ϵ, δ)
- Learner wants to minimize the cost of a feasible annotation plan

(1-2-3) Putting It All Together [Complete Info Setting]

Learner's Problem:

- Learner is using MDA as an aggregation rule to learn a binary classifier
- Learner precisely knows the cost (equivalently, noise rates η_i) of each annotator i
- Learner wants to ensure PAC learning with parameters (ϵ, δ)
- Learner wants to minimize the cost of a feasible annotation plan

Relaxed Primal Problem

$$\underset{m_1, m_2, \dots, m_n}{\text{Minimize}} \quad \sum_{i=1}^n c(\eta_i) m_i$$

$$\text{subject to} \quad \log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i) m_i$$

$$0 \leq m_i \quad \forall i$$

(1-2-3) Putting It All Together [Complete Info Setting]

Learner's Problem:

- Learner is using MDA as an aggregation rule to learn a binary classifier
- Learner precisely knows the cost (equivalently, noise rates η_i) of each annotator i
- Learner wants to ensure PAC learning with parameters (ϵ, δ)
- Learner wants to minimize the cost of a feasible annotation plan

Relaxed Primal Problem

$$\begin{aligned} \text{Minimize}_{m_1, m_2, \dots, m_n} \quad & \sum_{i=1}^n c(\eta_i) m_i \\ \text{subject to} \quad & \log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i) m_i \\ & 0 \leq m_i \quad \forall i \end{aligned}$$

Relaxed Dual Problem

$$\begin{aligned} \text{Maximize}_{\lambda} \quad & \lambda \log \left(\frac{N}{\delta} \right) \\ \text{subject to} \quad & \lambda \leq \frac{c(\eta_i)}{\psi(\eta_i)} \quad \forall i \\ & 0 \leq \lambda \end{aligned}$$

(1-2-3) Putting It All Together [Complete Info Setting]

Learner's Problem:

- Learner is using MDA as an aggregation rule to learn a binary classifier
- Learner precisely knows the cost (equivalently, noise rates η_i) of each annotator i
- Learner wants to ensure PAC learning with parameters (ϵ, δ)
- Learner wants to minimize the cost of a feasible annotation plan

Relaxed Primal Problem

$$\begin{aligned} \text{Minimize}_{m_1, m_2, \dots, m_n} \quad & \sum_{i=1}^n c(\eta_i) m_i \\ \text{subject to} \quad & \log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i) m_i \\ & 0 \leq m_i \quad \forall i \end{aligned}$$

Relaxed Dual Problem

$$\begin{aligned} \text{Maximize}_{\lambda} \quad & \lambda \log \left(\frac{N}{\delta} \right) \\ \text{subject to} \quad & \lambda \leq \frac{c(\eta_i)}{\psi(\eta_i)} \quad \forall i \\ & 0 \leq \lambda \end{aligned}$$

Definition (Near Optimal Allocation Rule - NOAR)

Let i^* be the annotator having minimum value for *cost-per-quality* given by $c(\eta_i)/\psi(\eta_i)$. The learner should buy $\lceil \log(N/\delta)/\psi(\eta_{i^*}) \rceil$ number of examples from such an annotator.

(1-2-3) Putting It All Together [Complete Info Setting]

Theorem

Let COST be the total cost of purchase incurred by the Near Optimal Allocation Rule. Let OPT be the optimal value of the ILP. Then,

$$\text{OPT} \leq \text{COST} \leq \text{OPT} \left(1 + \frac{1}{m_0}\right)$$

where $m_0 = \log\left(\frac{1}{1-\epsilon}\right)$

Proof:

$$\begin{aligned}\text{COST} &= c(\eta_{i^*}) \lceil \log(N/\delta)/\psi(\eta_{i^*}) \rceil \\ &\leq \log(N/\delta) c(\eta_{i^*})/\psi(\eta_{i^*}) + c(\eta_{i^*}) \\ &\leq \text{OPT} + c(\eta_{i^*}) \\ &\leq \text{OPT} + m_0 c(\eta_{i^*})/m_0 \\ &\leq \text{OPT} + \text{OPT}/m_0\end{aligned}$$

Back to Binary Labeling Problem: *Incomplete Info Setting*

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

So What?

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because $\psi(\eta_i)$ is required for this: $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because $\psi(\eta_i)$ is required for this: $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

Options Available with Learner

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because $\psi(\eta_i)$ is required for this: $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

Options Available with Learner

- ▶ Estimation

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because $\psi(\eta_i)$ is required for this: $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

Options Available with Learner

- ▶ **Estimation**
 - Overestimation \Rightarrow Excess examples procured by **NOAR** \Rightarrow Higher **COST**

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because $\psi(\eta_i)$ is required for this: $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

Options Available with Learner

- ▶ **Estimation**
 - Overestimation \Rightarrow Excess examples procured by **NOAR** \Rightarrow Higher **COST**
 - Underestimation \Rightarrow $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because $\psi(\eta_i)$ is required for this: $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

Options Available with Learner

- ▶ **Estimation**
 - Overestimation \Rightarrow Excess examples procured by **NOAR** \Rightarrow Higher **COST**
 - Underestimation \Rightarrow $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$
- ▶ **Elicitation**

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because $\psi(\eta_i)$ is required for this: $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

Options Available with Learner

- ▶ **Estimation**
 - Overestimation \Rightarrow Excess examples procured by **NOAR** \Rightarrow Higher **COST**
 - Underestimation \Rightarrow $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$
- ▶ **Elicitation**
 - Invite annotators to report (bid) their costs (equivalently, noise rates)

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because $\psi(\eta_i)$ is required for this: $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

Options Available with Learner

- ▶ **Estimation**
 - Overestimation \Rightarrow Excess examples procured by **NOAR** \Rightarrow Higher **COST**
 - Underestimation \Rightarrow $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$
- ▶ **Elicitation**
 - Invite annotators to report (bid) their costs (equivalently, noise rates)
 - Setup an auction to decide the work (contract) size and payment for annotators

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because $\psi(\eta_i)$ is required for this: $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

Options Available with Learner

- ▶ **Estimation**
 - Overestimation \Rightarrow Excess examples procured by **NOAR** \Rightarrow Higher **COST**
 - Underestimation \Rightarrow $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$
- ▶ **Elicitation**
 - Invite annotators to report (bid) their costs (equivalently, noise rates)
 - Setup an auction to decide the work (contract) size and payment for annotators
 - **Challenge:** If annotators **misreport** noise rates, we are *back to square one!!*

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because $\psi(\eta_i)$ is required for this: $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

Options Available with Learner

- ▶ **Estimation**
 - Overestimation \Rightarrow Excess examples procured by **NOAR** \Rightarrow Higher **COST**
 - Underestimation \Rightarrow $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$
- ▶ **Elicitation**
 - Invite annotators to report (bid) their costs (equivalently, noise rates)
 - Setup an auction to decide the work (contract) size and payment for annotators
 - **Challenge:** If annotators **misreport** noise rates, we are *back to square one!!*

Back to Binary Labeling Problem: *Incomplete Info Setting*

Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because $\psi(\eta_i)$ is required for this: $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

Options Available with Learner

- ▶ **Estimation**
 - Overestimation \Rightarrow Excess examples procured by **NOAR** \Rightarrow Higher **COST**
 - Underestimation \Rightarrow $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$
- ▶ **Elicitation**
 - Invite annotators to report (bid) their costs (equivalently, noise rates)
 - Setup an auction to decide the work (contract) size and payment for annotators
 - **Challenge:** If annotators **misreport** noise rates, we are *back to square one!!*

Goal: Design a **Truthful & Cost Optimal Auction** for PAC Learning via MDA.

Payment Mechanisms

Prior Work

Goal: Whom to hire?

PAC Constraints + Solicit Bids:

[Garg-Bhattacharya-Sudararajan-Shevade-12],

(PAC & Budget) Constraint + Same Noise

[Lin-Mausam-Weld-14]

Budget Constraint + Online+ Solicit Bids:

[Goel-Nikzad-Singla-14], [Singla-Krause-13],

[Singer-Mittal-11],

Budget Constraint+ No Bidding+ MAB:

[Tran-Thanh-Stein-Rogers-Jennings-12],

[Badanidiyuru-Kleinberg-Singer-12]

Payment Mechanisms

Prior Work

Goal: Whom to hire?

PAC Constraints + Solicit Bids:

[Garg-Bhattacharya-Sudararajan-Shevade-12],

(PAC & Budget) Constraint + Same Noise

[Lin-Mausam-Weld-14]

Budget Constraint + Online+ Solicit Bids:

[Goel-Nikzad-Singla-14], [Singla-Krause-13],

[Singer-Mittal-11],

Budget Constraint+ No Bidding+ MAB:

[Tran-Thanh-Stein-Rogers-Jennings-12],

[(Badanidiyuru-Kleinberg-Singer-12)]

Payment Mechanisms

Prior Work

Goal: Encourage putting more efforts ?

Goal: Encourage agents to report truthfully
[Jurca-Faltings-09],
[Witkowski-Parkes-12],
[Witkowski-Parkes-11]

Goal: Whom to hire?

PAC Constraints + Solicit Bids:

[Garg-Bhattacharya-Sudararajan-Shevade-12],

(PAC & Budget) Constraint + Same Noise

[Lin-Mausam-Weld-14]

Budget Constraint + Online+ Solicit Bids:

[Goel-Nikzad-Singla-14], [Singla-Krause-13],

[Singer-Mittal-11],

Budget Constraint+ No Bidding+ MAB:

[Tran-Thanh-Stein-Rogers-Jennings-12],

[(Badanidiyuru-Kleinberg-Singer-12)]

Payment Mechanisms

Prior Work

Goal: Encourage putting more efforts ?

[Dasgupta-Ghosh-13]

Each agent reports his assessment **TRUTHFULLY**

Noise rates of the agents are **KNOWN** to the learner

Goal: Encourage agents to report truthfully
[Jurca-Faltings-09],
[Witkowski-Parkes-12],
[Witkowski-Parkes-11]

Each agent puts in his **BEST EFFORT**.
Although, noise rates could be different for them while operating at his best effort level

Goal: Whom to hire?

PAC Constraints + Solicit Bids:

[Garg-Bhattacharya-Sudararajan-Shevade-12],

(PAC & Budget) Constraint + Same Noise

[Lin-Mausam-Weld-14]

Budget Constraint + Online+ Solicit Bids:

[Goel-Nikzad-Singla-14], [Singla-Krause-13],

[Singer-Mittal-11],

Budget Constraint+ No Bidding+ MAB:

[Tran-Thanh-Stein-Rogers-Jennings-12],

[Badanidiyuru-Kleinberg-Singer-12]

Payment Mechanisms

Auction Framework for Incomplete Info Setting

- **Bids**

- ▶ Annotator i bids b_i (could be different than his true cost c_i)
- ▶ Bids are translated into equivalent noise rates: $\hat{\eta}_i = c^{-1}(b_i) \in I_i = [0, 1/3]$
- ▶ Let $I = I_1 \times I_2 \dots \times I_n$
- ▶ The bid vector is given by $\hat{\eta} = (\hat{\eta}_1, \hat{\eta}_2, \dots, \hat{\eta}_n) \in I$

Auction Framework for Incomplete Info Setting

- Task Allocation Mechanism $a(\cdot)$
 - ▶ Learner uses an allocation rule $a : I \mapsto \mathbb{N}_0^n$ to award the contracts
- Payment Mechanism $p(\cdot)$
 - ▶ Learner uses a payment rule $p : I \mapsto \mathbb{R}^n$ to pay the annotators
- Mechanism \mathcal{M}
 - ▶ A pair of allocation and payment mechanisms is called mechanism
 $\mathcal{M} = (a, p)$
- Utilities
 - ▶ Annotator i accumulates following utility when bid vector is $\hat{\eta}$
$$u_i(\hat{\eta}; \eta_i) = p_i(\hat{\eta}) - a_i(\hat{\eta}) \mathbf{c}(\eta_i)$$
 - ▶ To compute this utility, annotator i must know the bids of others

Common Prior Assumption and Expected Utility

Assumptions (IPV Model):

- Noise rate η_i gets assigned via an independent random draw from interval $[0, 1/3]$
- $\phi_i(\cdot)$ and $\Phi_i(\cdot)$ denote the corresponding prior density and CDF respectively
- The joint prior $(\phi(\cdot) = \prod_{i=1}^n \phi_i(\cdot))$ is a common knowledge

• Expected Allocation Rule $\alpha_i(\cdot)$

$$\alpha_i(\hat{\eta}_i) = \int_{I_{-i}} a_i(\hat{\eta}_i, \hat{\eta}_{-i}) \phi_{-i}(\hat{\eta}_{-i}) d\hat{\eta}_{-i}$$

• Expected Payment Rule $\pi_i(\cdot)$

$$\pi_i(\hat{\eta}_i) = \int_{I_{-i}} p_i(\hat{\eta}_i, \hat{\eta}_{-i}) \phi_{-i}(\hat{\eta}_{-i}) d\hat{\eta}_{-i}$$

• Expected Utility $U_i(\cdot)$

$$U_i(\hat{\eta}_i; \eta_i) = \pi_i(\hat{\eta}_i) - \alpha_i(\hat{\eta}_i) c(\eta_i)$$

Optimal Auction Design for Incomplete Info Setting

$$\underset{a(\cdot), p(\cdot)}{\text{Minimize}} \quad \Pi(a, p) = \sum_{i=1}^n \int_0^{1/3} \pi_i(t_i) \phi_i(t_i) dt_i \quad (\text{Procurement Cost})$$

$$\text{Subject to} \quad \log(N/\delta) \leq \sum_i a_i(\eta_i, \eta_{-i}) \psi(\eta_i) \quad \forall (\eta_i, \eta_{-i}) \in I \quad (\text{PAC Constraint})$$

(a, p) satisfies **BIC** (BIC Constraint)

$\pi_i(\eta_i) \geq \alpha_i(\eta_i) c(\eta_i) \quad \forall \eta_i \in I_i, \forall i$ (IR Constraint)

A Mechanism is said to be

- **Bayesian Incentive Compatible (BIC)** if for every annotator i , $U_i(\cdot)$ is maximized when $\hat{\eta}_i = \eta_i$, i.e., $U_i(\eta_i; \eta_i) \geq U_i(\hat{\eta}_i; \eta_i) \quad \forall \hat{\eta}_i \in I_i$.
- **Individually Rational (IR)** if no annotator loses (in expected sense) anything by reporting true noise rates, i.e., $\pi_i(\eta_i) - \alpha_i(\eta_i) c(\eta_i) \geq 0 \quad \forall \eta_i \in I_i$.

BIC Characterization: *Myerson's Theorem*

An allocation rule a is said to be **Non-decreasing in Expectation (NDE)** if we have $\alpha_i(\eta_i) \geq \alpha_i(\hat{\eta}_i) \forall \eta_i > \hat{\eta}_i$

Theorem (Myerson 1981)

Mechanism $\mathcal{M} = (a, p)$ is a BIC mechanism iff

- ① *Allocation rule $a(\cdot)$ is NDE, and*
- ② *Expected payment rule satisfies:*

$$\begin{aligned} U_i(\eta_i) &= U_i(0) - \int_0^{\eta_i} \alpha_i(t_i) c'(t_i) dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i) c(\eta_i) + U_i(0) - \int_0^{\eta_i} \alpha_i(t_i) c'(t_i) dt_i \end{aligned}$$

Roger Myerson

(Winner of 2007 Nobel
Prize in Economics)

[1] R. B. Myerson. Optimal Auction Design. *Math. Operations Res.*, 6(1):58 -73, Feb. 1981.

Back to Optimal Auction Design

Minimize $a(\cdot), p(\cdot)$ $\Pi(a, p) = \sum_{i=1}^n \int_0^{1/3} \pi_i(t_i) \phi_i(t_i) dt_i$ (Procurement Cost)

Subject to $\log(N/\delta) \leq \sum_i a_i(\eta_i, \eta_{-i}) \psi(\eta_i) \quad \forall (\eta_i, \eta_{-i}) \in I$ (PAC Constraint)
 $\alpha_i(\cdot)$ is non-decreasing (BIC Constraint 1)

$$\pi_i(\eta_i) = \alpha_i(\eta_i) c(\eta_i) + U_i(0) - \int_0^{\eta_i} \alpha_i(t_i) c'(t_i) dt_i \quad (\text{BIC Constraint 2})$$

$$\pi_i(\eta_i) \geq \alpha_i(\eta_i) c(\eta_i) \quad \forall \eta_i \in I_i, \forall i \quad (\text{IR Constraint})$$

Back to Optimal Auction Design

Minimize $\Pi(a, p) = \sum_{i=1}^n \int_0^{1/3} \pi_i(t_i) \phi_i(t_i) dt_i$ (Procurement Cost)

Subject to $\log(N/\delta) \leq \sum_i a_i(\eta_i, \eta_{-i}) \psi(\eta_i) \quad \forall (\eta_i, \eta_{-i}) \in I$ (PAC Constraint)
 $\alpha_i(\cdot)$ is non-decreasing (BIC Constraint 1)

$$\pi_i(\eta_i) = \alpha_i(\eta_i) c(\eta_i) + U_i(0) - \int_0^{\eta_i} \alpha_i(t_i) c'(t_i) dt_i \quad (\text{BIC Constraint 2})$$

$$\pi_i(\eta_i) \geq \alpha_i(\eta_i) c(\eta_i) \quad \forall \eta_i \in I_i, \forall i \quad (\text{IR Constraint})$$

Insights:

- If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff $U_i(0) \geq 0$

Back to Optimal Auction Design

Minimize $\Pi(a, p) = \sum_{i=1}^n \int_0^{1/3} \pi_i(t_i) \phi_i(t_i) dt_i$ (Procurement Cost)

Subject to $\log(N/\delta) \leq \sum_i a_i(\eta_i, \eta_{-i}) \psi(\eta_i) \quad \forall (\eta_i, \eta_{-i}) \in I$ (PAC Constraint)
 $\alpha_i(\cdot)$ is non-decreasing (BIC Constraint 1)

$$\pi_i(\eta_i) = \alpha_i(\eta_i) c(\eta_i) + U_i(0) - \int_0^{\eta_i} \alpha_i(t_i) c'(t_i) dt_i \quad (\text{BIC Constraint 2})$$

$$\pi_i(\eta_i) \geq \alpha_i(\eta_i) c(\eta_i) \quad \forall \eta_i \in I_i, \forall i \quad (\text{IR Constraint})$$

Insights:

- If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff $U_i(0) \geq 0$
- Because our goal is to minimize the objective function, we must have $U_i(0) = 0$

Back to Optimal Auction Design

Minimize $\Pi(a, p) = \sum_{i=1}^n \int_0^{1/3} \pi_i(t_i) \phi_i(t_i) dt_i$ (Procurement Cost)

Subject to $\log(N/\delta) \leq \sum_i a_i(\eta_i, \eta_{-i}) \psi(\eta_i) \quad \forall (\eta_i, \eta_{-i}) \in I$ (PAC Constraint)
 $\alpha_i(\cdot)$ is non-decreasing (BIC Constraint 1)

$$\pi_i(\eta_i) = \alpha_i(\eta_i) c(\eta_i) + U_i(0) - \int_0^{\eta_i} \alpha_i(t_i) c'(t_i) dt_i \quad (\text{BIC Constraint 2})$$

$$\pi_i(\eta_i) \geq \alpha_i(\eta_i) c(\eta_i) \quad \forall \eta_i \in I_i, \forall i \quad (\text{IR Constraint})$$

Insights:

- If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff $U_i(0) \geq 0$
- Because our goal is to minimize the objective function, we must have $U_i(0) = 0$
- Using (BIC Constraint 2), objective becomes $\Pi(a, p) = \int_I \left(\sum_{i=1}^n v_i(x_i) a_i(x) \right) \phi(x) dx$
- $v_i(\eta_i) := c(\eta_i) - \frac{1 - \Phi_i(\eta_i)}{\phi_i(\eta_i)} c'(\eta_i)$ is virtual cost function (Note $v_i(\eta_i) \geq c(\eta_i)$)

Reduced Problem

Overall Problem

$$\underset{a(\cdot), p(\cdot)}{\text{Minimize}} \quad \Pi(a, p) = \int_I \left(\sum_{i=1}^n v_i(x_i) a_i(x) \right) \phi(x) dx \quad (\text{Procurement Cost})$$

$$\text{Subject to} \quad \log(N/\delta) \leq \sum_i a_i(\eta_i, \eta_{-i}) \psi(\eta_i) \quad \forall (\eta_i, \eta_{-i}) \in I \quad (\text{PAC Constraint})$$
$$a_i(\cdot) \text{ is non-decreasing} \quad (\text{BIC Constraint 1})$$

Insights:

- Keep aside (BIC Constraint 1) for the moment
- It suffices to solve following problem for every possible profile η

Instance Specific ILP

$$\underset{a_1(\eta), \dots, a_n(\eta)}{\text{Minimize}} \quad \sum_{i=1}^n v_i(\eta_i) a_i(\eta) \quad (\text{Procurement Cost for profile } \eta)$$

$$\text{Subject to} \quad \log(N/\delta) \leq \sum_i \psi(\eta_i) a_i(\eta) \quad \forall (\eta_i, \eta_{-i}) \in I \quad (\text{PAC Constraint})$$
$$a_i(\eta) \in \mathbb{N}_0 \quad \forall i$$

Solution Via Instance Specific ILP

- Instance specific ILP is similar to Primal Problem in complete info setting (replace $c(\eta_i)$ with $v_i(\eta_i)$)
- Instance specific ILP can be relaxed and solved approximately just like NOAR

Definition (Minimum Allocation Rule)

Let i^* be the annotator having minimum value for cost-per-quality given by $v_i(\eta_i)/\psi(\eta_i)$. The learner should buy $\lceil \log(N/\delta)/\psi(\eta_{i^*}) \rceil$ number of examples from such an annotator.

Theorem

Let COST be the total cost of purchase incurred by the Minimum Allocation Rule. Let OPT be the optimal procurement cost. Then,

$$\text{OPT} \leq \text{COST} \leq \text{OPT} + c(\eta_{i^*}) \leq \text{OPT}(1 + 1/m_0)$$

where $m_0 = \log[1 - \epsilon]^{-1}$

What About (BIC Constraint 1) ?

Regularity Condition: $v_i(\cdot)/\psi(\cdot)$ is a non-increasing function.

If **Regularity Condition** is satisfied, then under the **minimum allocation rule**

- As η_i increases, the annotator i remains the winner if he/she is already the winner (with an increased contract size) or becomes the winner
- The allocation rule satisfies ND property (hence, NDE)
- The payment of annotator i is given by

$$p_i(\eta_i, \eta_{-i}) = a_i(\eta_i, \eta_{-i})c(\eta_i) - \int_0^{\eta_i} a_i(t_i, \eta_{-i})c'(t_i)dt_i$$

- Winning annotator gets positive payment and others get zero payment

Near Optimal Auction Mechanism for PAC Learning

Under regularity condition of $v_i(\cdot)/\psi(\cdot)$ being a non-increasing function of η_i

$$a_i(\eta) = \begin{cases} \lceil \log(N/\delta)/\psi(\eta_i) \rceil & : \text{if } \frac{v_i(\eta_i)}{\psi(\eta_i)} \leq \frac{v_j(\eta_j)}{\psi(\eta_j)} \forall j \neq i \\ 0 & : \text{otherwise} \end{cases}$$
$$p_i(\eta) = \begin{cases} \left\lceil \frac{\log(N/\delta)}{\psi(\eta_i)} \right\rceil c(q_i(\eta_{-i})) & : \text{for winner} \\ 0 & : \text{otherwise} \end{cases}$$
$$q_i(\eta_{-i}) = \inf \left\{ \hat{\eta}_i \mid \frac{v_i(\hat{\eta}_i)}{\psi(\hat{\eta}_i)} \leq \frac{v_j(\eta_j)}{\psi(\eta_j)} \forall j \neq i \right\}$$
$$= \text{smallest bid value sufficient to win the contract for annotator } i$$

Theorem

Suppose **Regularity Condition** holds. Then, above mechanism is an **approximate optimal mechanism** satisfying **BIC**, **IR**, and **PAC** constraints. The approximation guarantee of this mechanism is given by $ALG \leq OPT + v_{i^*}(\eta_{i^*}) \leq OPT(1 + 1/m_0)$.

Conclusions

- Analyzed the PAC learning model for noisy data from multiple annotators
- Analyzed complete and incomplete information scenarios
- Essentially, we identify the annotator whose (cost/quality) ratio is the least
- Surprisingly, greedily buying all the examples from such an annotator is near optimal

Future Extensions

- What if the cost function $c(\cdot)$ is not a common knowledge?
- What if the cost function $c(\cdot)$ is different for different annotators?
- Annotators having a capacity constraint and/or learner having a budget constraint
- Work with general hypothesis class (e.g. linear models of classification)
- Other learning tasks - *multiclass/multilabel classification, regression*
- What about *sequentially deciding the tasks assignments?*

Thank You!!

Backup Slides

Aspects of Crowdsourcing Systems

Aspects of Crowdsourcing Systems

Proof Sketch

Events

- $E_1(h, m_1, \dots, m_n)$: The empirical error of a given hypothesis $h \in \mathcal{C}$ is no more than the empirical error of the true hypothesis c_t , i.e. $L_e(h) \leq L_e(c_t)$.
- $E_2(h, m_1, \dots, m_n)$: The empirical error of a given hypothesis $h \in \mathcal{C}$ is the minimum across all hypotheses in the class \mathcal{C} , i.e. $L_e(h) \leq L_e(h') \forall h' \in \mathcal{C}$.
- $E_3(h, m_1, \dots, m_n)$: MDA outputs a given hypothesis h .
- $E_4(\epsilon, m_1, \dots, m_n)$: MDA outputs an ϵ -bad hypothesis.

Observations

- $E_3(h, m_1, \dots, m_n) \subseteq E_2(h, m_1, \dots, m_n) \subseteq E_1(h, m_1, \dots, m_n)$
- $\Pr^{(m_1, \dots, m_n)}[E_4(\epsilon)] \leq (N-1) \times \left[\max_{h \in \mathcal{C}, h \text{ is } \epsilon\text{-bad}} \Pr^{(m_1, \dots, m_n)}[E_1(h)] \right]$
- If annotation plan (m_1, \dots, m_n) satisfies the following condition, then MDA will satisfy PAC bound.

$$\left[\max_{h \text{ is } \epsilon\text{-bad}} \Pr^{(m_1, \dots, m_n)}[E_1(h)] \right] \leq \delta/N \quad (2)$$

Proof Sketch

Probability of an ϵ -bad hypothesis h having lower empirical error than c_t

$$\Pr^{(m_1, \dots, m_n)}[L_e(h) \leq L_e(c_t)] = \Pr\{\# \text{ samples under leaf A} \geq \# \text{ samples under leaf B}\}$$

Special Case: Single Annotator

When $\eta = 0$

- Easy to show that sample complexity m_0 satisfies $m_0 \leq \log(N/\delta)/\log[1 - \epsilon]^{-1}$
- The range of η_i in previous theorem can be extended to include $\eta_i = 0$ by having $\psi(0) = \log[1 - \epsilon]^{-1}$

When $\eta = 1/3$

- Angluin and Laird proposed following bound for single annotator, for $0 \leq \eta < 1/2$
$$\psi(\eta_i) = \log [1 - \epsilon (1 - \exp(-(1 - 2\eta_i)^2/2))]^{-1}$$
- The range of η_i in previous theorem can be extended to include $\eta_i = 1/3$ by having
$$\psi(1/3) = \log[1 - \epsilon(1 - \exp(-1/18))]^{-1}$$

[1] Dana Angluin and Philip Laird. Learning from noisy examples. *Machine Learning*, 2(4):343-370, 1988.

Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

