

# PAC Learning from a Strategic Crowd

**Dinesh Garg**  
**IBM Research - Bangalore**

Joint work with

Sourangshu Bhattacharya, S. Sundararajan, and Shirish Shevade

January 14, 2016

# Amazon's Mechanical Turk (M-Turk)

The screenshot shows a web browser with the URL <https://www.mturk.com/mturk/welcome> in the address bar. The page is titled "amazon mechanical turk" and "Artificial Artificial Intelligence". It features a navigation bar with "Your Account", "HITS", and "Qualifications" buttons, and links for "Introduction", "Dashboard", "Status", and "Account Settings".

**Mechanical Turk is a marketplace for work.**  
We give businesses and developers access to an on-demand, scalable workforce.  
Workers select from thousands of tasks and work whenever it's convenient.

**355,164 HITs** available. [View them now.](#)

**Make Money**  
by working on HITs

HITS - *Human Intelligence Tasks* - are individual tasks that you work on. [Find HITs now.](#)

**As a Mechanical Turk Worker you:**

- Can work from home
- Choose your own work hours
- Get paid for doing good work

**Find an interesting task** **Work** **Earn money**

**Find HITs Now**

**Get Results**  
from Mechanical Turk Workers

Ask workers to complete HITs - *Human Intelligence Tasks* - and get results using Mechanical Turk. [Get Started.](#)

**As a Mechanical Turk Requester you:**

- Have access to a global, on-demand, 24 x 7 workforce
- Get thousands of HITs completed in minutes
- Pay only when you're satisfied with the results

**Fund your account** **Load your tasks** **Get results**

**Get Started**

# Human Intelligence Tasks (HITs)

**amazon mechanical turk** Artificial Artificial Intelligence [Sign In](#)

Your Account [HITS](#) Qualifications **363,428 HITs** available now

All HITs | HITs Available To You | HITs Assigned To You

Find **HITs** containing  that pay at least \$ **0.00**  for which you are qualified  require Master Qualification **GO**

**HITs containing 'classify'**  
1-10 of 10 Results

Sort by: HITs Available (most first) **GO** Show all details | Hide all details

**Classify Receipt** [View a HIT in this group](#)

**Requester:** Jon Breig **HIT Expiration Date:** Oct 28, 2015 (6 days 23 hours) **Reward:** \$0.02  
**Time Allotted:** 20 minutes

**Find and list craft shows, fairs and festivals in the USA - .25 cent additional bonus PER HIT available** [View a HIT in this group](#)

**Requester:** Craft Listings **HIT Expiration Date:** Oct 6, 2016 (50 weeks 1 day) **Reward:** \$0.20  
**Time Allotted:** 60 minutes

**Classify short video for suitability to children: language = GERMAN** [View a HIT in this group](#)

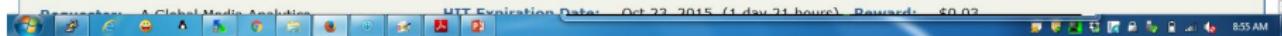
**Requester:** Amazon-Tahoe **HIT Expiration Date:** Nov 4, 2015 (1 week 6 days) **Reward:** \$1.00  
**Time Allotted:** 45 minutes

**Draw outlines around businesses on Google Maps (2-3 min/HIT, multiple available)** [View a HIT in this group](#)

**Requester:** Consumer Survey Research **HIT Expiration Date:** Oct 23, 2015 (1 day 18 hours) **Reward:** \$0.20  
**Time Allotted:** 45 minutes

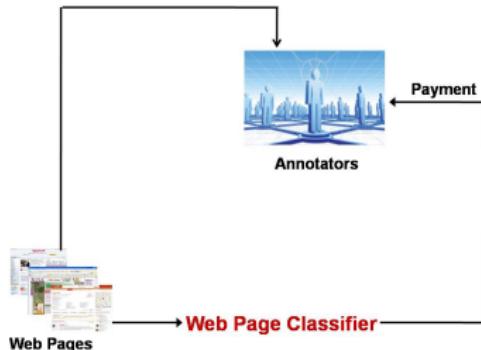
**Listen and answer questions about an AUDIO recording and translate from FRENCH** [View a HIT in this group](#)

**Requester:** A Global Media Application **HIT Expiration Date:** Oct 23, 2015 (1 day 21 hours) **Reward:** \$0.02



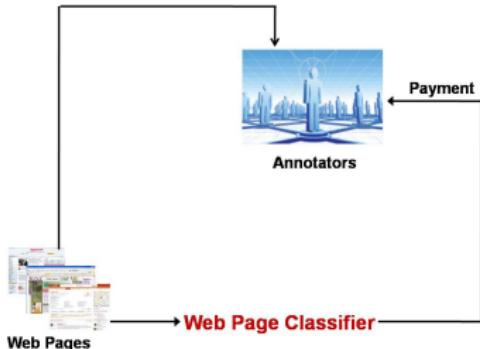
# Crowdsourcing: Motivation

# Crowdsourcing: Motivation



(i) Data Labeling: Web Pages Classification

# Crowdsourcing: Motivation

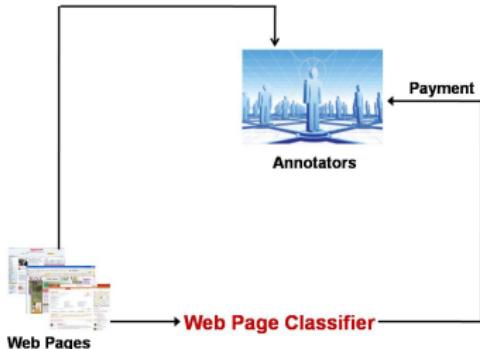


(i) Data Labeling: Web Pages Classification



(ii) Data Labeling: Legal Documents Classification

# Crowdsourcing: Motivation



(i) Data Labeling: Web Pages Classification

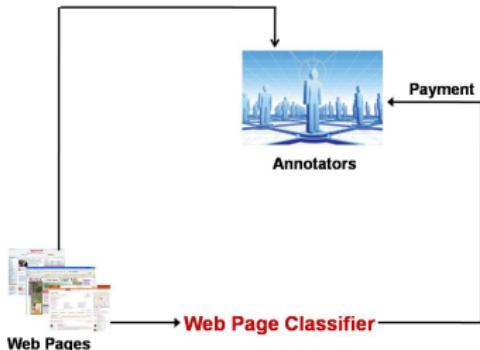


(ii) Data Labeling: Legal Documents Classification



(iii) Mobile Sensing

# Crowdsourcing: Motivation



(i) Data Labeling: Web Pages Classification



(ii) Data Labeling: Legal Documents Classification

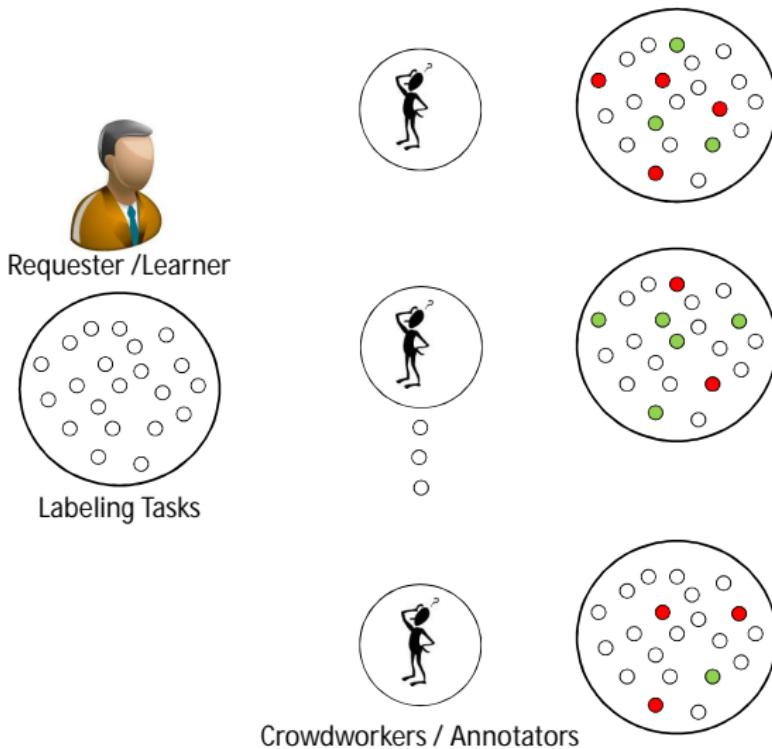


(iii) Mobile Sensing

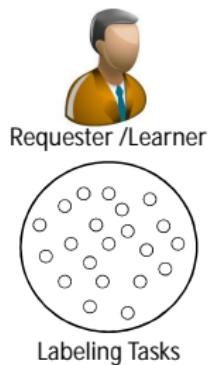
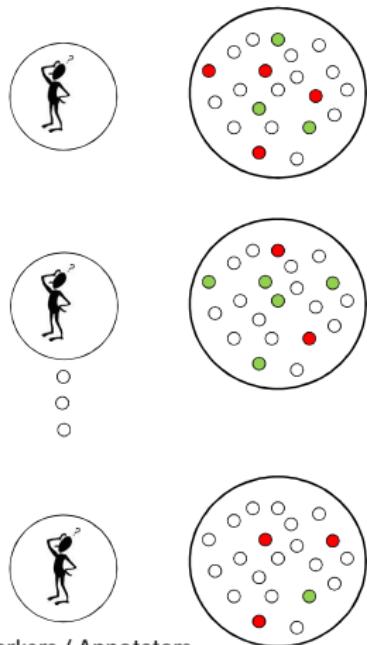
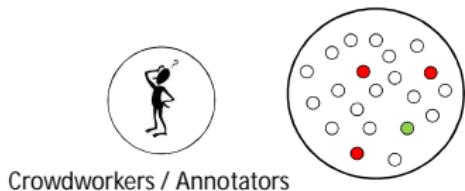


(iv) MOOC

# Data Labeling: Not a Child's Play



# Data Labeling: Not a Child's Play

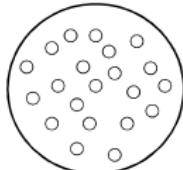


| Annotations \ Data | $x_1$ | $x_2$ | ...  | $x_m$ | True Label |
|--------------------|-------|-------|------|-------|------------|
| $A_1$              | +1    | ?     | ...  | -1    | ?          |
| $A_2$              | -1    | +1    | ...  | -1    | ?          |
| $A_3$              | ?     | +1    | ...  | ?     | ?          |
| .....              | ....  | ....  | .... | ....  | ....       |
| $A_n$              | ?     | +1    | ...  | ?     | ?          |

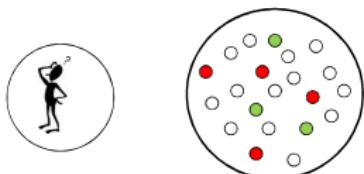
# Data Labeling: Not a Child's Play



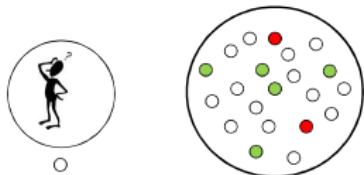
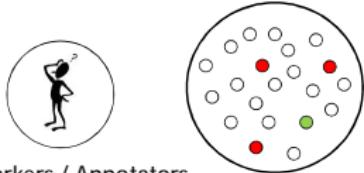
Requester / Learner



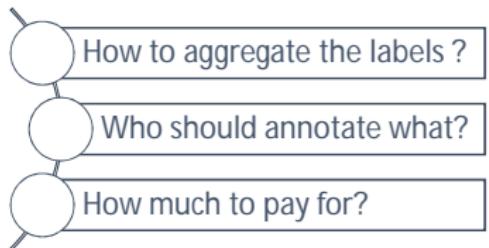
Labeling Tasks



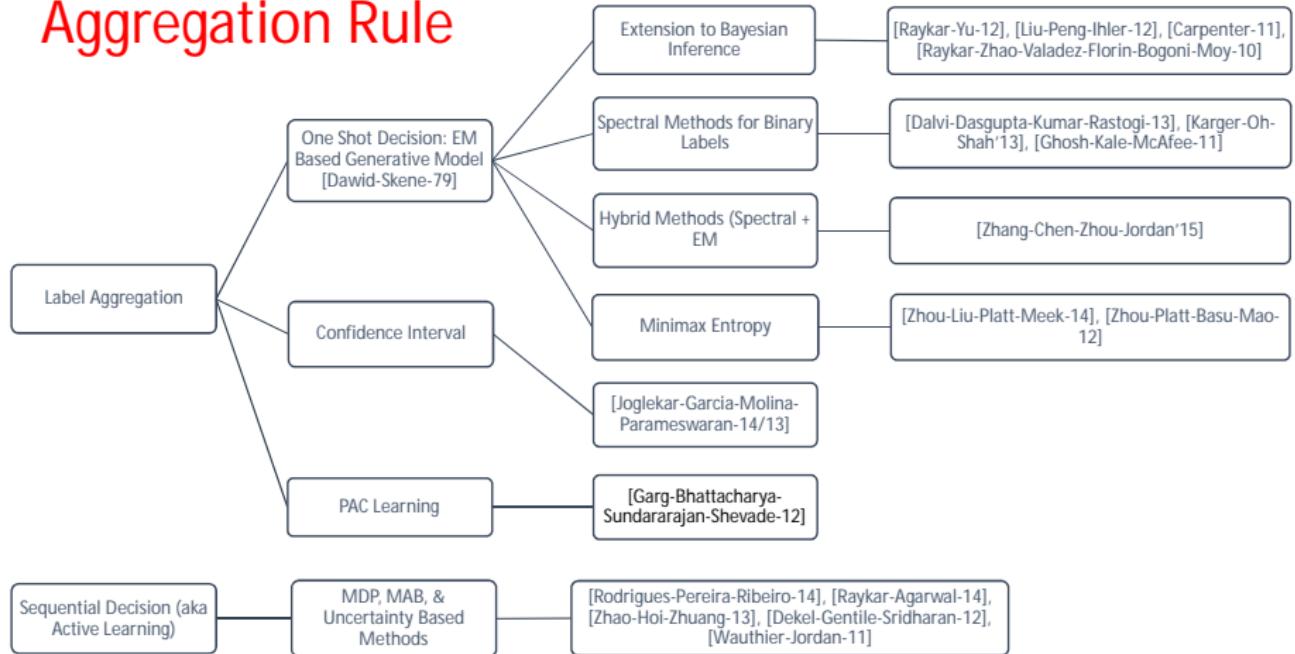
Crowdworkers / Annotators



| Annotations \ Data | $x_1$ | $x_2$ | ...  | $x_m$ | True Label |
|--------------------|-------|-------|------|-------|------------|
| $A_1$              | +1    | ?     | ...  | -1    | ?          |
| $A_2$              | -1    | +1    | ...  | -1    | ?          |
| $A_3$              | ?     | +1    | ...  | ?     | ?          |
| .....              | ....  | ....  | .... | ....  | ....       |
| $A_n$              | ?     | +1    | ...  | ?     | ?          |



## Aggregation Rule

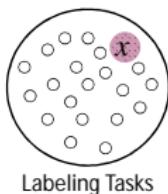


# Binary Labeling: A Mental Model

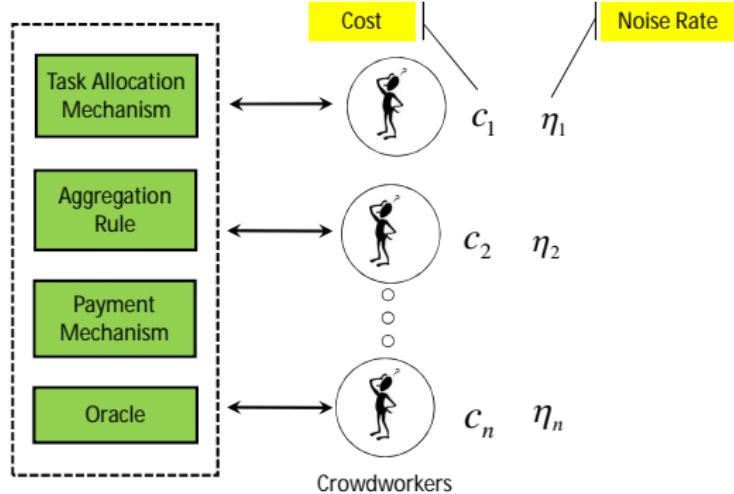
$y :=$  True Label of  $x$

$y^i :=$  Label of  $x$  given by annotator  $i$

$\eta_i = \text{Prob}(y^i \neq y)$



Requester / Learner



## Annotators:

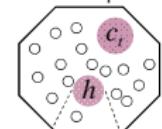
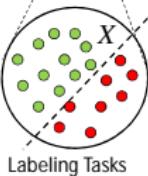
- Multiple **noisy** human annotators
- Noise could be due to **human error, lack of expertise**, or even **intentional**
- Expertise level of an annotator can be expressed by its **noise rate**
- Each annotator needs to be **paid**

## Learner:

- Goal is to obtain good **quality labels** at **minimum cost**

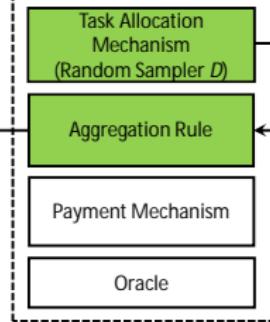
# Binary Labeling: Problem Setup

Finite Concept Class C



Classifier  $h$

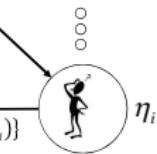
Requester /Learner



$\{x_1^i, x_2^i, \dots, x_{m_i}^i\}$

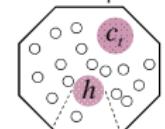
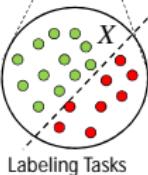
$\{(x_1^i, y_1^i), (x_2^i, y_2^i), \dots, (x_{m_i}^i, y_{m_i}^i)\}$

Noisy Labeled Data



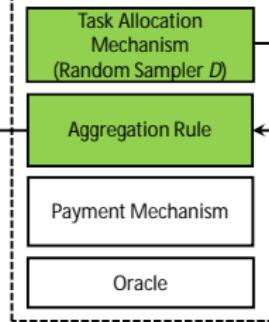
# Binary Labeling: Problem Setup

Finite Concept Class C



Classifier  $h$

Requester /Learner



$\{x_1^i, x_2^i, \dots, x_{m_i}^i\}$

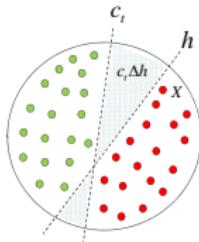
$\{(x_1^i, y_1^i), (x_2^i, y_2^i), \dots, (x_{m_i}^i, y_{m_i}^i)\}$

Noisy Labeled Data

$\eta_1$

$\eta_i$

$\eta_n$



$c_t$

$h$

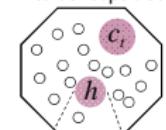
$x$

$c_t \Delta h$

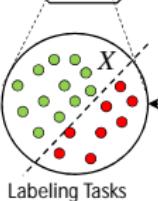
- annotation plan  $\mathbf{m} := (m_1, m_2, \dots, m_n)$
- error rate of  $h := \mathbf{Pr}^D(c_t \Delta h)$
- $\epsilon$ -bad hypothesis  $:= \mathbf{Pr}^D(c_t \Delta h) > \epsilon$
- PAC Bound  $:= \mathbf{Pr}^{\mathbf{m}}(\mathbf{Pr}^D(c_t \Delta h) > \epsilon) < \delta$

# Binary Labeling: Problem Setup

Finite Concept Class C

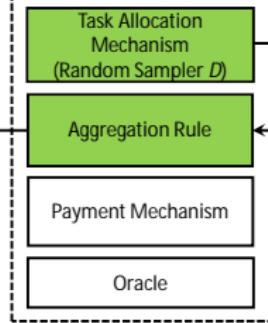


Classifier  $h$



Labeling Tasks

Requester /Learner



$\{x_1^i, x_2^i, \dots, x_{m_i}^i\}$

Noisy Labeled Data

$\eta_1$

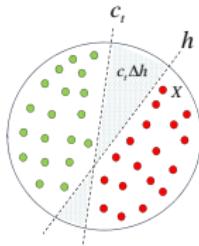
$\eta_i$



$\eta_n$

$c_t$

$h$



- annotation plan  $\mathbf{m} := (m_1, m_2, \dots, m_n)$
- error rate of  $h := \Pr^D(c_t \Delta h)$
- $\epsilon$ -bad hypothesis  $:= \Pr^D(c_t \Delta h) > \epsilon$
- PAC Bound  $:= \Pr^{\mathbf{m}}(\Pr^D(c_t \Delta h) > \epsilon) < \delta$

**Goal:** Design an (1) Aggregation Rule and an (2) Annotation Plan to ensure PAC bound for the learned classifier  $h$  at (3) Minimum Cost.

[1] L.G. Valiant, "A Theory of Learnable", Communications of the ACM, 27:1134-1142, 1984.

# (1) Aggregation Rule: *Minimum Disagreement Algorithm*

**Input:** Labeled examples from  $n$  annotators.

**Output:** A hypothesis  $h^* \in \mathcal{C}$

**Algorithm:**

- ① Let  $\{(x_j^i, y_j^i) \mid i = 1, 2, \dots, n; j = 1, \dots, m_i\}$  be the labeled examples.
- ② Output a hypothesis  $h^*$  that minimally disagrees with the given labels (use any tie breaking rule). That is,

$$h^* \in \arg \min_{h \in \mathcal{C}} \sum_{i=1}^n \sum_{j=1}^{m_i} \mathbf{1}(h(x_j^i) \neq y_j^i)$$

## Properties of the MDA

- Does not require the knowledge of annotators' noise rates  $\eta_i$  (**Analysis would require !!**)
- Does not require the knowledge of sampling distribution  $D$

## (2) Annotation Plan for MDA [*Complete Info. Setting*]

## (2) Annotation Plan for MDA [*Complete Info. Setting*]

Learner's Problem: "Which annotation plan would guarantee me  $(\epsilon, \delta)$  PAC bound?"

## (2) Annotation Plan for MDA [Complete Info. Setting]

Learner's Problem: "Which annotation plan would guarantee me  $(\epsilon, \delta)$  PAC bound?"

**Assumption:** Learner precisely knows the noise rate  $\eta_i$  of every annotator  $i$

## (2) Annotation Plan for MDA [Complete Info. Setting]

Learner's Problem: "Which annotation plan would guarantee me  $(\epsilon, \delta)$  PAC bound?"

**Assumption:** Learner precisely knows the noise rate  $\eta_i$  of every annotator  $i$

### Theorem (Feasible Annotation Plan for MDA)

The MDA will satisfy PAC bound if the annotation plan  $\mathbf{m} = (m_1, m_2, \dots, m_n)$  satisfies:

$$\log(N/\delta) \leq \sum_{i=1}^n m_i \psi(\eta_i) \quad (1)$$

where concept class is finite, i.e.  $N = |\mathcal{C}| < \infty$  and  $\forall i = 1, 2, \dots, n$ , we have

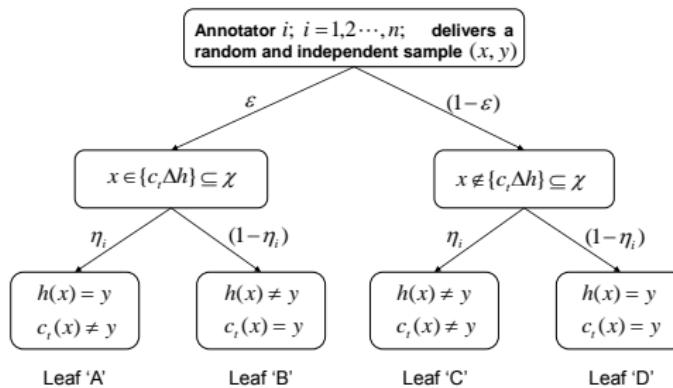
- $0 < \eta_i < 1/3$
- $\psi(\eta_i) = -\log [1 - \epsilon (1 - \exp(-\frac{3\eta_i - 1}{8}))]$ .

---

D. Garg, S. Bhattacharya, S. Sundararajan, S. Shevade, "Mechanism Design for Cost Optimal PAC Learning in the Presence of Strategic Noisy Annotators", Uncertainty in Artificial Intelligence (UAI), 275-285, 2012.

# Proof Sketch

Probability of an  $\epsilon$ -bad hypothesis  $h$  having lower empirical error than  $c_t$

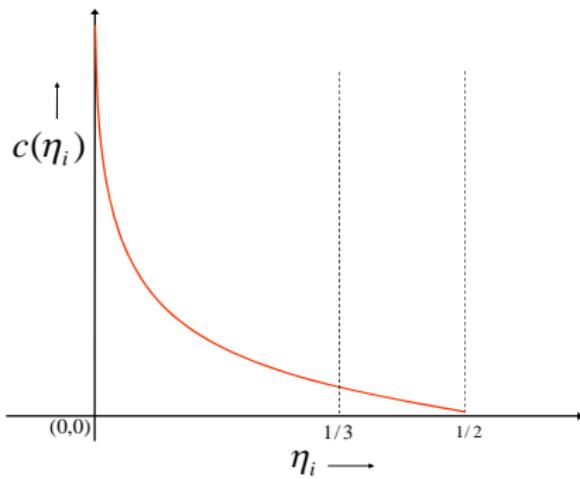


$$\Pr^{(m_1, \dots, m_n)}[L_e(h) \leq L_e(c_t)] = \Pr\{\# \text{ samples under leaf A} \geq \# \text{ samples under leaf B}\}$$

### (3) Cost of Annotation

#### Assumptions:

- Each annotator  $i$  incurs a cost of  $c(\eta_i)$  for labeling one data point
- The cost function  $c(\cdot)$  is the same for all the annotators
- $c(\cdot)$  is bounded, continuously differentiable, and strictly decreasing function
- Function  $c(\cdot)$  is a common knowledge



- A more competitive annotator  $i$  means low  $\eta_i$
- He can earn more by selling his services (time)
- It means his internal cost of annotation is high

# (1-2-3) Putting It All Together [Complete Info Setting]

## Learner's Problem:

- Learner is using MDA as an aggregation rule to learn a binary classifier
- Learner precisely knows the cost (equivalently, noise rates  $\eta_i$ ) of each annotator  $i$
- Learner wants to ensure PAC learning with parameters  $(\epsilon, \delta)$
- Learner wants to minimize the cost of a feasible annotation plan

# (1-2-3) Putting It All Together [Complete Info Setting]

## Learner's Problem:

- Learner is using MDA as an aggregation rule to learn a binary classifier
- Learner precisely knows the cost (equivalently, noise rates  $\eta_i$ ) of each annotator  $i$
- Learner wants to ensure PAC learning with parameters  $(\epsilon, \delta)$
- Learner wants to minimize the cost of a feasible annotation plan

### Relaxed Primal Problem

$$\underset{m_1, m_2, \dots, m_n}{\text{Minimize}} \quad \sum_{i=1}^n c(\eta_i) m_i$$

$$\text{subject to} \quad \log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i) m_i$$

$$0 \leq m_i \quad \forall i$$

# (1-2-3) Putting It All Together [Complete Info Setting]

## Learner's Problem:

- Learner is using MDA as an aggregation rule to learn a binary classifier
- Learner precisely knows the cost (equivalently, noise rates  $\eta_i$ ) of each annotator  $i$
- Learner wants to ensure PAC learning with parameters  $(\epsilon, \delta)$
- Learner wants to minimize the cost of a feasible annotation plan

### Relaxed Primal Problem

$$\begin{aligned} \text{Minimize}_{m_1, m_2, \dots, m_n} \quad & \sum_{i=1}^n c(\eta_i) m_i \\ \text{subject to} \quad & \log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i) m_i \\ & 0 \leq m_i \quad \forall i \end{aligned}$$

### Relaxed Dual Problem

$$\begin{aligned} \text{Maximize}_{\lambda} \quad & \lambda \log \left( \frac{N}{\delta} \right) \\ \text{subject to} \quad & \lambda \leq \frac{c(\eta_i)}{\psi(\eta_i)} \quad \forall i \\ & 0 \leq \lambda \end{aligned}$$

# (1-2-3) Putting It All Together [Complete Info Setting]

## Learner's Problem:

- Learner is using MDA as an aggregation rule to learn a binary classifier
- Learner precisely knows the cost (equivalently, noise rates  $\eta_i$ ) of each annotator  $i$
- Learner wants to ensure PAC learning with parameters  $(\epsilon, \delta)$
- Learner wants to minimize the cost of a feasible annotation plan

### Relaxed Primal Problem

$$\begin{aligned} \text{Minimize}_{m_1, m_2, \dots, m_n} \quad & \sum_{i=1}^n c(\eta_i) m_i \\ \text{subject to} \quad & \log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i) m_i \\ & 0 \leq m_i \quad \forall i \end{aligned}$$

### Relaxed Dual Problem

$$\begin{aligned} \text{Maximize}_{\lambda} \quad & \lambda \log \left( \frac{N}{\delta} \right) \\ \text{subject to} \quad & \lambda \leq \frac{c(\eta_i)}{\psi(\eta_i)} \quad \forall i \\ & 0 \leq \lambda \end{aligned}$$

## Definition (Near Optimal Allocation Rule - NOAR)

Let  $i^*$  be the annotator having minimum value for *cost-per-quality* given by  $c(\eta_i)/\psi(\eta_i)$ . The learner should buy  $\lceil \log(N/\delta)/\psi(\eta_{i^*}) \rceil$  number of examples from such an annotator.

# (1-2-3) Putting It All Together [Complete Info Setting]

## Theorem

Let  $\text{COST}$  be the total cost of purchase incurred by the Near Optimal Allocation Rule. Let  $\text{OPT}$  be the optimal value of the ILP. Then,

$$\text{OPT} \leq \text{COST} \leq \text{OPT} \left(1 + \frac{1}{m_0}\right)$$

where  $m_0 = \log\left(\frac{1}{1-\epsilon}\right)$

## Proof:

$$\begin{aligned}\text{COST} &= c(\eta_{i^*}) \lceil \log(N/\delta)/\psi(\eta_{i^*}) \rceil \\ &\leq \log(N/\delta) c(\eta_{i^*})/\psi(\eta_{i^*}) + c(\eta_{i^*}) \\ &\leq \text{OPT} + c(\eta_{i^*}) \\ &\leq \text{OPT} + m_0 c(\eta_{i^*})/m_0 \\ &\leq \text{OPT} + \text{OPT}/m_0\end{aligned}$$

## Back to Binary Labeling Problem: *Incomplete Info Setting*

# Back to Binary Labeling Problem: *Incomplete Info Setting*

**Let us Face the Reality**

# Back to Binary Labeling Problem: *Incomplete Info Setting*

## Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

# Back to Binary Labeling Problem: *Incomplete Info Setting*

## Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

## So What?

# Back to Binary Labeling Problem: *Incomplete Info Setting*

## Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

## So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because  $\psi(\eta_i)$  is required for this:  $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

# Back to Binary Labeling Problem: *Incomplete Info Setting*

## Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

## So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because  $\psi(\eta_i)$  is required for this:  $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

## Options Available with Learner

# Back to Binary Labeling Problem: *Incomplete Info Setting*

## Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

## So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because  $\psi(\eta_i)$  is required for this:  $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

## Options Available with Learner

- ▶ Estimation

# Back to Binary Labeling Problem: *Incomplete Info Setting*

## Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

## So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because  $\psi(\eta_i)$  is required for this:  $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

## Options Available with Learner

- ▶ **Estimation**
  - Overestimation  $\Rightarrow$  Excess examples procured by **NOAR**  $\Rightarrow$  Higher **COST**

# Back to Binary Labeling Problem: *Incomplete Info Setting*

## Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

## So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because  $\psi(\eta_i)$  is required for this:  $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

## Options Available with Learner

- ▶ **Estimation**
  - Overestimation  $\Rightarrow$  Excess examples procured by **NOAR**  $\Rightarrow$  Higher **COST**
  - Underestimation  $\Rightarrow$   $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$

# Back to Binary Labeling Problem: *Incomplete Info Setting*

## Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

## So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because  $\psi(\eta_i)$  is required for this:  $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

## Options Available with Learner

- ▶ **Estimation**
  - Overestimation  $\Rightarrow$  Excess examples procured by **NOAR**  $\Rightarrow$  Higher **COST**
  - Underestimation  $\Rightarrow$   $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$
- ▶ **Elicitation**

# Back to Binary Labeling Problem: *Incomplete Info Setting*

## Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

## So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because  $\psi(\eta_i)$  is required for this:  $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

## Options Available with Learner

- ▶ **Estimation**
  - Overestimation  $\Rightarrow$  Excess examples procured by **NOAR**  $\Rightarrow$  Higher **COST**
  - Underestimation  $\Rightarrow$   $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$
- ▶ **Elicitation**
  - Invite annotators to report (bid) their costs (equivalently, noise rates)

# Back to Binary Labeling Problem: *Incomplete Info Setting*

## Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

## So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because  $\psi(\eta_i)$  is required for this:  $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

## Options Available with Learner

- ▶ **Estimation**
  - Overestimation  $\Rightarrow$  Excess examples procured by **NOAR**  $\Rightarrow$  Higher **COST**
  - Underestimation  $\Rightarrow$   $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$
- ▶ **Elicitation**
  - Invite annotators to report (bid) their costs (equivalently, noise rates)
  - Setup an auction to decide the work (contract) size and payment for annotators

# Back to Binary Labeling Problem: *Incomplete Info Setting*

## Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

## So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because  $\psi(\eta_i)$  is required for this:  $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

## Options Available with Learner

- ▶ **Estimation**
  - Overestimation  $\Rightarrow$  Excess examples procured by **NOAR**  $\Rightarrow$  Higher **COST**
  - Underestimation  $\Rightarrow$   $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$
- ▶ **Elicitation**
  - Invite annotators to report (bid) their costs (equivalently, noise rates)
  - Setup an auction to decide the work (contract) size and payment for annotators
  - **Challenge:** If annotators **misreport** noise rates, we are *back to square one!!*

# Back to Binary Labeling Problem: *Incomplete Info Setting*

## Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

## So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because  $\psi(\eta_i)$  is required for this:  $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

## Options Available with Learner

- ▶ **Estimation**
  - Overestimation  $\Rightarrow$  Excess examples procured by **NOAR**  $\Rightarrow$  Higher **COST**
  - Underestimation  $\Rightarrow$   $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$
- ▶ **Elicitation**
  - Invite annotators to report (bid) their costs (equivalently, noise rates)
  - Setup an auction to decide the work (contract) size and payment for annotators
  - **Challenge:** If annotators **misreport** noise rates, we are *back to square one!!*

# Back to Binary Labeling Problem: *Incomplete Info Setting*

## Let us Face the Reality

- ▶ Learner **does not know** the cost (equivalently, noise rate) of any annotator

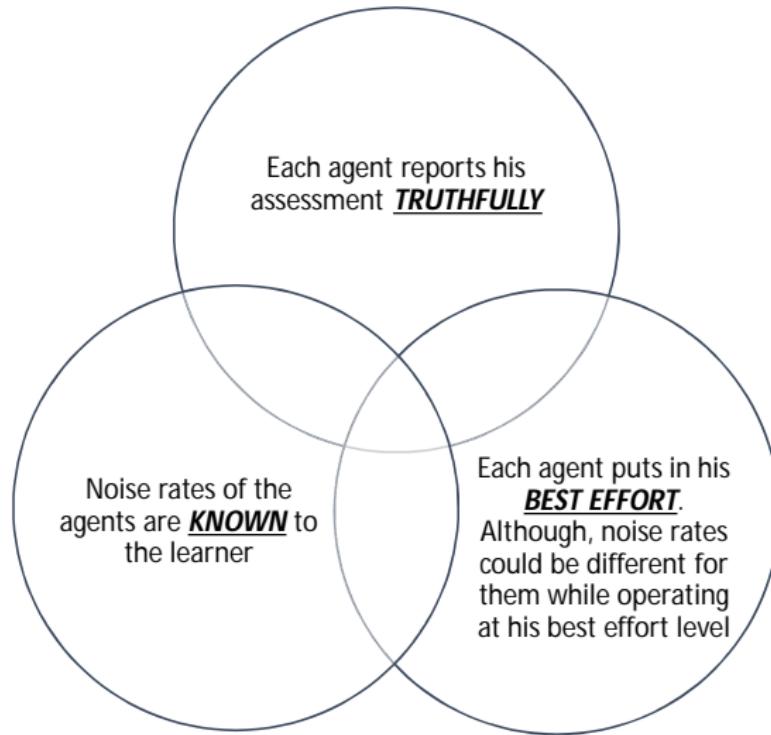
## So What?

- ▶ Learner **can not** compute the **PAC annotation plan** because  $\psi(\eta_i)$  is required for this:  $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i)m_i$

## Options Available with Learner

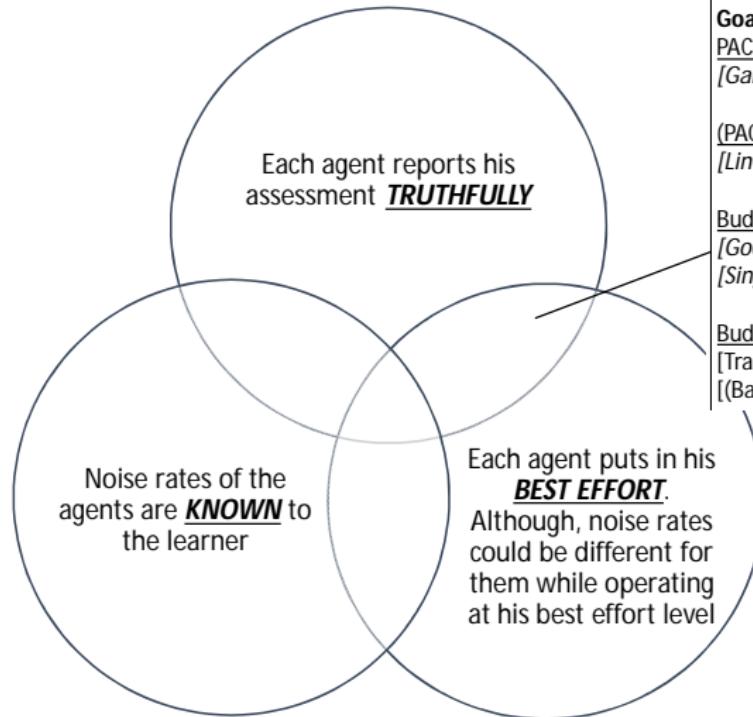
- ▶ **Estimation**
  - Overestimation  $\Rightarrow$  Excess examples procured by **NOAR**  $\Rightarrow$  Higher **COST**
  - Underestimation  $\Rightarrow$   $\Pr(\epsilon\text{-bad hypothesis gets picked by NOAR}) > \delta$
- ▶ **Elicitation**
  - Invite annotators to report (bid) their costs (equivalently, noise rates)
  - Setup an auction to decide the work (contract) size and payment for annotators
  - **Challenge:** If annotators **misreport** noise rates, we are *back to square one!!*

**Goal:** Design a **Truthful & Cost Optimal Auction** for PAC Learning via MDA.



## Payment Mechanisms

# Prior Work



## Goal: Whom to hire?

PAC Constraints + Solicit Bids:

[Garg-Bhattacharya-Sudararajan-Shevade-12],

(PAC & Budget) Constraint + Same Noise

[Lin-Mausam-Weld-14]

Budget Constraint + Online+ Solicit Bids:

[Goel-Nikzad-Singla-14], [Singla-Krause-13],

[Singer-Mittal-11],

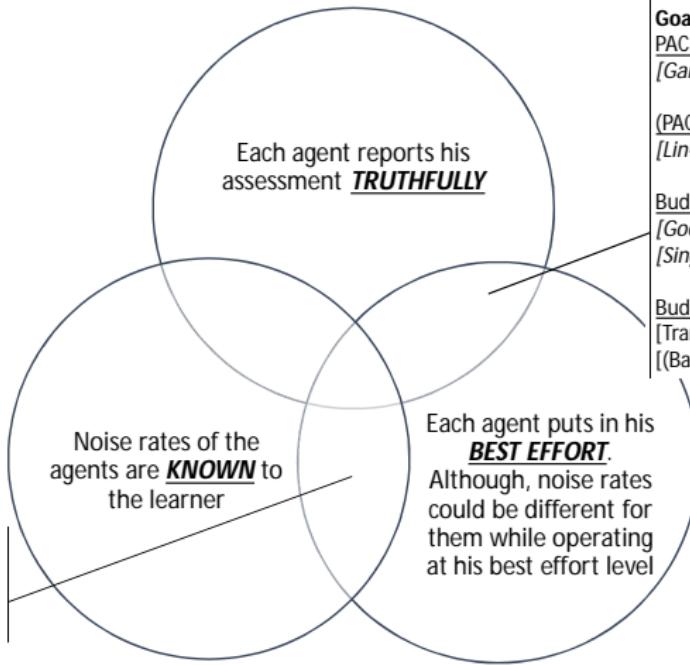
Budget Constraint+ No Bidding+ MAB:

[Tran-Thanh-Stein-Rogers-Jennings-12],

[Badanidiyuru-Kleinberg-Singer-12]

## Payment Mechanisms

# Prior Work



**Goal: Whom to hire?**

PAC Constraints + Solicit Bids:

[Garg-Bhattacharya-Sudararajan-Shevade-12],

(PAC & Budget) Constraint + Same Noise

[Lin-Mausam-Weld-14]

Budget Constraint + Online+ Solicit Bids:

[Goel-Nikzad-Singla-14], [Singla-Krause-13],

[Singer-Mittal-11],

Budget Constraint+ No Bidding+ MAB:

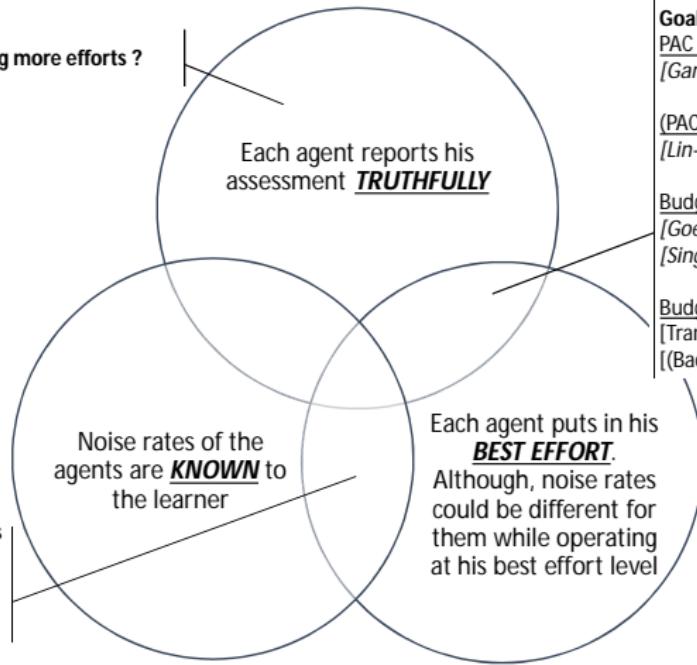
[Tran-Thanh-Stein-Rogers-Jennings-12],

[(Badanidiyuru-Kleinberg-Singer-12)]

## Payment Mechanisms

# Prior Work

Goal: Encourage putting more efforts ?



Goal: Encourage agents to report truthfully  
[Jurca-Faltings-09],  
[Witkowski-Parkes-12],  
[Witkowski-Parkes-11]

Goal: Whom to hire?

PAC Constraints + Solicit Bids:

[Garg-Bhattacharya-Sudararajan-Shevade-12],

(PAC & Budget) Constraint + Same Noise

[Lin-Mausam-Weld-14]

Budget Constraint + Online+ Solicit Bids:

[Goel-Nikzad-Singla-14], [Singla-Krause-13],

[Singer-Mittal-11],

Budget Constraint+ No Bidding+ MAB:

[Tran-Thanh-Stein-Rogers-Jennings-12],

[(Badanidiyuru-Kleinberg-Singer-12)]

## Payment Mechanisms

# Prior Work

Goal: Encourage putting more efforts ?

[Dasgupta-Ghosh-13]

Each agent reports his assessment **TRUTHFULLY**

Noise rates of the agents are **KNOWN** to the learner

Goal: Encourage agents to report truthfully  
[Jurca-Faltings-09],  
[Witkowski-Parkes-12],  
[Witkowski-Parkes-11]

Each agent puts in his **BEST EFFORT**.  
Although, noise rates could be different for them while operating at his best effort level

Goal: Whom to hire?

PAC Constraints + Solicit Bids:

[Garg-Bhattacharya-Sudararajan-Shevade-12],

(PAC & Budget) Constraint + Same Noise

[Lin-Mausam-Weld-14]

Budget Constraint + Online+ Solicit Bids:

[Goel-Nikzad-Singla-14], [Singla-Krause-13],

[Singer-Mittal-11],

Budget Constraint+ No Bidding+ MAB:

[Tran-Thanh-Stein-Rogers-Jennings-12],

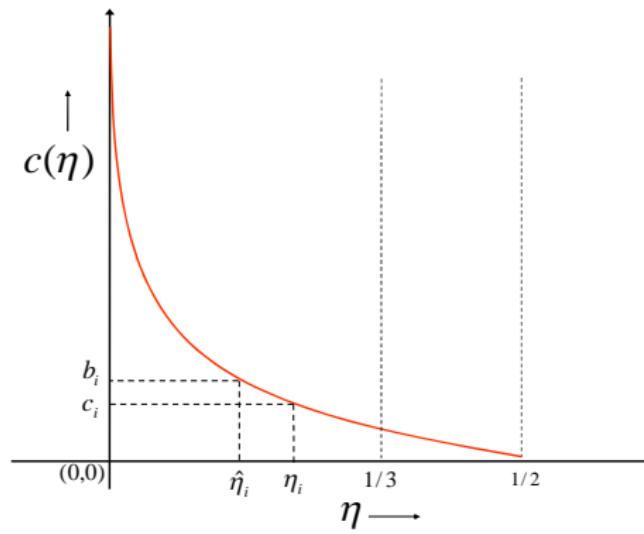
[Badanidiyuru-Kleinberg-Singer-12]

## Payment Mechanisms

# Auction Framework for Incomplete Info Setting

- **Bids**

- ▶ Annotator  $i$  bids  $b_i$  (could be different than his true cost  $c_i$ )
- ▶ Bids are translated into equivalent noise rates:  $\hat{\eta}_i = c^{-1}(b_i) \in I_i = [0, 1/3]$
- ▶ Let  $I = I_1 \times I_2 \dots \times I_n$
- ▶ The bid vector is given by  $\hat{\eta} = (\hat{\eta}_1, \hat{\eta}_2, \dots, \hat{\eta}_n) \in I$



# Auction Framework for Incomplete Info Setting

- Task Allocation Mechanism  $a(\cdot)$ 
  - ▶ Learner uses an allocation rule  $a : I \mapsto \mathbb{N}_0^n$  to award the contracts
- Payment Mechanism  $p(\cdot)$ 
  - ▶ Learner uses a payment rule  $p : I \mapsto \mathbb{R}^n$  to pay the annotators
- Mechanism  $\mathcal{M}$ 
  - ▶ A pair of allocation and payment mechanisms is called mechanism  
 $\mathcal{M} = (a, p)$
- Utilities
  - ▶ Annotator  $i$  accumulates following utility when bid vector is  $\hat{\eta}$ 
$$u_i(\hat{\eta}; \eta_i) = p_i(\hat{\eta}) - a_i(\hat{\eta}) \mathbf{c}(\eta_i)$$
  - ▶ To compute this utility, annotator  $i$  must know the bids of others

# Common Prior Assumption and Expected Utility

## Assumptions (IPV Model):

- Noise rate  $\eta_i$  gets assigned via an independent random draw from interval  $[0, 1/3]$
- $\phi_i(\cdot)$  and  $\Phi_i(\cdot)$  denote the corresponding prior density and CDF respectively
- The joint prior  $(\phi(\cdot) = \prod_{i=1}^n \phi_i(\cdot))$  is a common knowledge

### • Expected Allocation Rule $\alpha_i(\cdot)$

$$\alpha_i(\hat{\eta}_i) = \int_{I_{-i}} a_i(\hat{\eta}_i, \hat{\eta}_{-i}) \phi_{-i}(\hat{\eta}_{-i}) d\hat{\eta}_{-i}$$

### • Expected Payment Rule $\pi_i(\cdot)$

$$\pi_i(\hat{\eta}_i) = \int_{I_{-i}} p_i(\hat{\eta}_i, \hat{\eta}_{-i}) \phi_{-i}(\hat{\eta}_{-i}) d\hat{\eta}_{-i}$$

### • Expected Utility $U_i(\cdot)$

$$U_i(\hat{\eta}_i; \eta_i) = \pi_i(\hat{\eta}_i) - \alpha_i(\hat{\eta}_i) c(\eta_i)$$

# Optimal Auction Design for Incomplete Info Setting

$$\underset{a(\cdot), p(\cdot)}{\text{Minimize}} \quad \Pi(a, p) = \sum_{i=1}^n \int_0^{1/3} \pi_i(t_i) \phi_i(t_i) dt_i \quad (\text{Procurement Cost})$$

$$\text{Subject to} \quad \log(N/\delta) \leq \sum_i a_i(\eta_i, \eta_{-i}) \psi(\eta_i) \quad \forall (\eta_i, \eta_{-i}) \in I \quad (\text{PAC Constraint})$$

$(a, p)$  satisfies **BIC** (BIC Constraint)

$\pi_i(\eta_i) \geq \alpha_i(\eta_i) c(\eta_i) \quad \forall \eta_i \in I_i, \forall i$  (IR Constraint)

A Mechanism is said to be

- **Bayesian Incentive Compatible (BIC)** if for every annotator  $i$ ,  $U_i(\cdot)$  is maximized when  $\hat{\eta}_i = \eta_i$ , i.e.,  $U_i(\eta_i; \eta_i) \geq U_i(\hat{\eta}_i; \eta_i) \quad \forall \hat{\eta}_i \in I_i$ .
- **Individually Rational (IR)** if no annotator loses (in expected sense) anything by reporting true noise rates, i.e.,  $\pi_i(\eta_i) - \alpha_i(\eta_i) c(\eta_i) \geq 0 \quad \forall \eta_i \in I_i$ .

# BIC Characterization: *Myerson's Theorem*

An allocation rule  $a$  is said to be **Non-decreasing in Expectation (NDE)** if we have  $\alpha_i(\eta_i) \geq \alpha_i(\hat{\eta}_i) \forall \eta_i > \hat{\eta}_i$

## Theorem (Myerson 1981)

*Mechanism  $\mathcal{M} = (a, p)$  is a BIC mechanism iff*

- ① *Allocation rule  $a(\cdot)$  is NDE, and*
- ② *Expected payment rule satisfies:*

$$\begin{aligned} U_i(\eta_i) &= U_i(0) - \int_0^{\eta_i} \alpha_i(t_i) c'(t_i) dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i) c(\eta_i) + U_i(0) - \int_0^{\eta_i} \alpha_i(t_i) c'(t_i) dt_i \end{aligned}$$



Roger Myerson

(Winner of 2007 Nobel  
Prize in Economics)

---

[1] R. B. Myerson. Optimal Auction Design. *Math. Operations Res.*, 6(1):58 -73, Feb. 1981.

# Back to Optimal Auction Design

Minimize  $a(\cdot), p(\cdot)$   $\Pi(a, p) = \sum_{i=1}^n \int_0^{1/3} \pi_i(t_i) \phi_i(t_i) dt_i$  (Procurement Cost)

Subject to  $\log(N/\delta) \leq \sum_i a_i(\eta_i, \eta_{-i}) \psi(\eta_i) \quad \forall (\eta_i, \eta_{-i}) \in I$  (PAC Constraint)  
 $\alpha_i(\cdot)$  is non-decreasing (BIC Constraint 1)

$$\pi_i(\eta_i) = \alpha_i(\eta_i) c(\eta_i) + U_i(0) - \int_0^{\eta_i} \alpha_i(t_i) c'(t_i) dt_i \quad (\text{BIC Constraint 2})$$

$$\pi_i(\eta_i) \geq \alpha_i(\eta_i) c(\eta_i) \quad \forall \eta_i \in I_i, \forall i \quad (\text{IR Constraint})$$

# Back to Optimal Auction Design

Minimize  $\Pi(a, p) = \sum_{i=1}^n \int_0^{1/3} \pi_i(t_i) \phi_i(t_i) dt_i$  (Procurement Cost)

Subject to  $\log(N/\delta) \leq \sum_i a_i(\eta_i, \eta_{-i}) \psi(\eta_i) \quad \forall (\eta_i, \eta_{-i}) \in I$  (PAC Constraint)  
 $\alpha_i(\cdot)$  is non-decreasing (BIC Constraint 1)

$$\pi_i(\eta_i) = \alpha_i(\eta_i) c(\eta_i) + U_i(0) - \int_0^{\eta_i} \alpha_i(t_i) c'(t_i) dt_i \quad (\text{BIC Constraint 2})$$

$$\pi_i(\eta_i) \geq \alpha_i(\eta_i) c(\eta_i) \quad \forall \eta_i \in I_i, \forall i \quad (\text{IR Constraint})$$

Insights:

- If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff  $U_i(0) \geq 0$

# Back to Optimal Auction Design

Minimize  $\Pi(a, p) = \sum_{i=1}^n \int_0^{1/3} \pi_i(t_i) \phi_i(t_i) dt_i$  (Procurement Cost)

Subject to  $\log(N/\delta) \leq \sum_i a_i(\eta_i, \eta_{-i}) \psi(\eta_i) \quad \forall (\eta_i, \eta_{-i}) \in I$  (PAC Constraint)  
 $\alpha_i(\cdot)$  is non-decreasing (BIC Constraint 1)

$$\pi_i(\eta_i) = \alpha_i(\eta_i) c(\eta_i) + U_i(0) - \int_0^{\eta_i} \alpha_i(t_i) c'(t_i) dt_i \quad (\text{BIC Constraint 2})$$

$$\pi_i(\eta_i) \geq \alpha_i(\eta_i) c(\eta_i) \quad \forall \eta_i \in I_i, \forall i \quad (\text{IR Constraint})$$

## Insights:

- If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff  $U_i(0) \geq 0$
- Because our goal is to minimize the objective function, we must have  $U_i(0) = 0$

# Back to Optimal Auction Design

Minimize  $\Pi(a, p) = \sum_{i=1}^n \int_0^{1/3} \pi_i(t_i) \phi_i(t_i) dt_i$  (Procurement Cost)

Subject to  $\log(N/\delta) \leq \sum_i a_i(\eta_i, \eta_{-i}) \psi(\eta_i) \quad \forall (\eta_i, \eta_{-i}) \in I$  (PAC Constraint)  
 $\alpha_i(\cdot)$  is non-decreasing (BIC Constraint 1)

$$\pi_i(\eta_i) = \alpha_i(\eta_i) c(\eta_i) + U_i(0) - \int_0^{\eta_i} \alpha_i(t_i) c'(t_i) dt_i \quad (\text{BIC Constraint 2})$$

$$\pi_i(\eta_i) \geq \alpha_i(\eta_i) c(\eta_i) \quad \forall \eta_i \in I_i, \forall i \quad (\text{IR Constraint})$$

Insights:

- If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff  $U_i(0) \geq 0$
- Because our goal is to minimize the objective function, we must have  $U_i(0) = 0$
- Using (BIC Constraint 2), objective becomes  $\Pi(a, p) = \int_I \left( \sum_{i=1}^n v_i(x_i) a_i(x) \right) \phi(x) dx$
- $v_i(\eta_i) := c(\eta_i) - \frac{1 - \Phi_i(\eta_i)}{\phi_i(\eta_i)} c'(\eta_i)$  is virtual cost function (Note  $v_i(\eta_i) \geq c(\eta_i)$ )

# Reduced Problem

## Overall Problem

$$\underset{a(\cdot), p(\cdot)}{\text{Minimize}} \quad \Pi(a, p) = \int_I \left( \sum_{i=1}^n v_i(x_i) a_i(x) \right) \phi(x) dx \quad (\text{Procurement Cost})$$

$$\text{Subject to} \quad \log(N/\delta) \leq \sum_i a_i(\eta_i, \eta_{-i}) \psi(\eta_i) \quad \forall (\eta_i, \eta_{-i}) \in I \quad (\text{PAC Constraint})$$
$$a_i(\cdot) \text{ is non-decreasing} \quad (\text{BIC Constraint 1})$$

## Insights:

- Keep aside (BIC Constraint 1) for the moment
- It suffices to solve following problem for every possible profile  $\eta$

## Instance Specific ILP

$$\underset{a_1(\eta), \dots, a_n(\eta)}{\text{Minimize}} \quad \sum_{i=1}^n v_i(\eta_i) a_i(\eta) \quad (\text{Procurement Cost for profile } \eta)$$

$$\text{Subject to} \quad \log(N/\delta) \leq \sum_i \psi(\eta_i) a_i(\eta) \quad \forall (\eta_i, \eta_{-i}) \in I \quad (\text{PAC Constraint})$$
$$a_i(\eta) \in \mathbb{N}_0 \quad \forall i$$

# Solution Via Instance Specific ILP

- Instance specific ILP is similar to Primal Problem in complete info setting (replace  $c(\eta_i)$  with  $v_i(\eta_i)$ )
- Instance specific ILP can be relaxed and solved approximately just like NOAR

## Definition (Minimum Allocation Rule)

Let  $i^*$  be the annotator having minimum value for cost-per-quality given by  $v_i(\eta_i)/\psi(\eta_i)$ . The learner should buy  $\lceil \log(N/\delta)/\psi(\eta_{i^*}) \rceil$  number of examples from such an annotator.

## Theorem

Let  $\text{COST}$  be the total cost of purchase incurred by the Minimum Allocation Rule. Let  $\text{OPT}$  be the optimal procurement cost. Then,

$$\text{OPT} \leq \text{COST} \leq \text{OPT} + c(\eta_{i^*}) \leq \text{OPT}(1 + 1/m_0)$$

where  $m_0 = \log[1 - \epsilon]^{-1}$

## What About (BIC Constraint 1) ?

**Regularity Condition:**  $v_i(\cdot)/\psi(\cdot)$  is a non-increasing function.

If **Regularity Condition** is satisfied, then under the **minimum allocation rule**

- As  $\eta_i$  increases, the annotator  $i$  remains the winner if he/she is already the winner (with an increased contract size) or becomes the winner
- The allocation rule satisfies ND property (hence, NDE)
- The payment of annotator  $i$  is given by

$$p_i(\eta_i, \eta_{-i}) = a_i(\eta_i, \eta_{-i})c(\eta_i) - \int_0^{\eta_i} a_i(t_i, \eta_{-i})c'(t_i)dt_i$$

- Winning annotator gets positive payment and others get zero payment

# Near Optimal Auction Mechanism for PAC Learning

Under regularity condition of  $v_i(\cdot)/\psi(\cdot)$  being a non-increasing function of  $\eta_i$

$$a_i(\eta) = \begin{cases} \lceil \log(N/\delta)/\psi(\eta_i) \rceil & : \text{if } \frac{v_i(\eta_i)}{\psi(\eta_i)} \leq \frac{v_j(\eta_j)}{\psi(\eta_j)} \forall j \neq i \\ 0 & : \text{otherwise} \end{cases}$$
$$p_i(\eta) = \begin{cases} \left\lceil \frac{\log(N/\delta)}{\psi(\eta_i)} \right\rceil c(q_i(\eta_{-i})) & : \text{for winner} \\ 0 & : \text{otherwise} \end{cases}$$
$$q_i(\eta_{-i}) = \inf \left\{ \hat{\eta}_i \mid \frac{v_i(\hat{\eta}_i)}{\psi(\hat{\eta}_i)} \leq \frac{v_j(\eta_j)}{\psi(\eta_j)} \forall j \neq i \right\}$$
$$= \text{smallest bid value sufficient to win the contract for annotator } i$$

## Theorem

Suppose **Regularity Condition** holds. Then, above mechanism is an **approximate optimal mechanism** satisfying **BIC**, **IR**, and **PAC** constraints. The approximation guarantee of this mechanism is given by  $ALG \leq OPT + v_{i^*}(\eta_{i^*}) \leq OPT(1 + 1/m_0)$ .

# Conclusions

- Analyzed the PAC learning model for noisy data from multiple annotators
- Analyzed complete and incomplete information scenarios
- Essentially, we identify the annotator whose (cost/quality) ratio is the least
- Surprisingly, greedily buying all the examples from such an annotator is near optimal

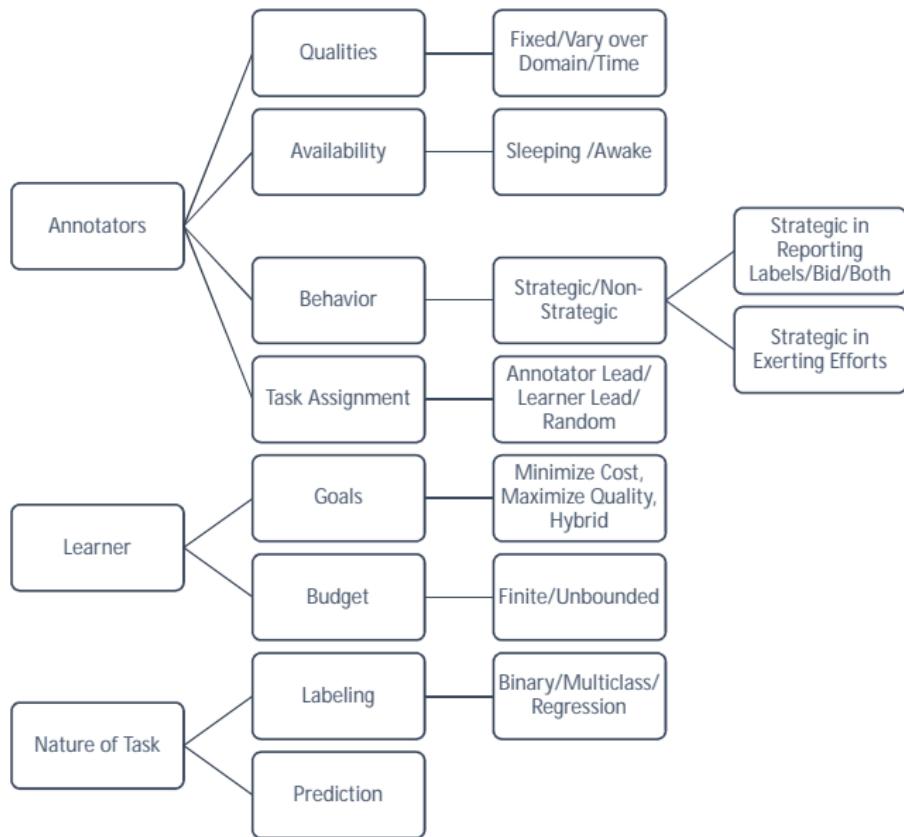
## Future Extensions

- What if the cost function  $c(\cdot)$  is not a common knowledge?
- What if the cost function  $c(\cdot)$  is different for different annotators?
- Annotators having a capacity constraint and/or learner having a budget constraint
- Work with general hypothesis class (e.g. linear models of classification)
- Other learning tasks - *multiclass/multilabel classification, regression*
- What about *sequentially deciding the tasks assignments?*

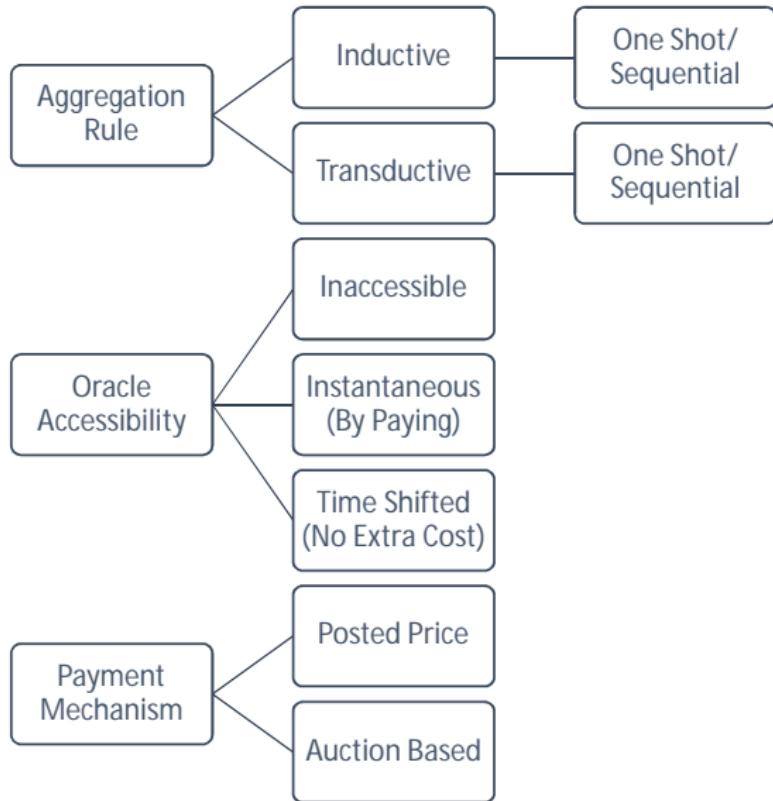
# Thank You!!

# Backup Slides

# Aspects of Crowdsourcing Systems



# Aspects of Crowdsourcing Systems



# Proof Sketch

## Events

- $E_1(h, m_1, \dots, m_n)$ : The empirical error of a given hypothesis  $h \in \mathcal{C}$  is no more than the empirical error of the true hypothesis  $c_t$ , i.e.  $L_e(h) \leq L_e(c_t)$ .
- $E_2(h, m_1, \dots, m_n)$ : The empirical error of a given hypothesis  $h \in \mathcal{C}$  is the minimum across all hypotheses in the class  $\mathcal{C}$ , i.e.  $L_e(h) \leq L_e(h') \forall h' \in \mathcal{C}$ .
- $E_3(h, m_1, \dots, m_n)$ : MDA outputs a given hypothesis  $h$ .
- $E_4(\epsilon, m_1, \dots, m_n)$ : MDA outputs an  $\epsilon$ -bad hypothesis.

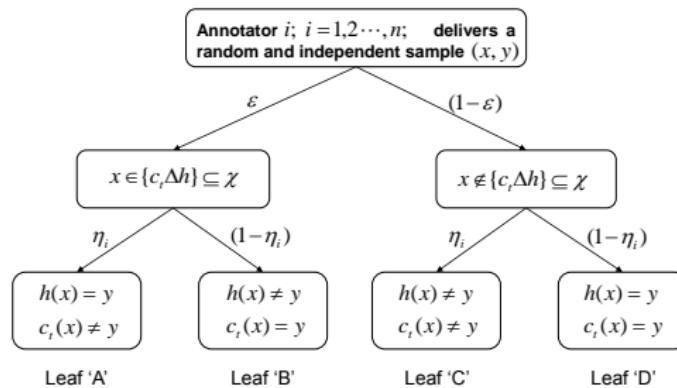
## Observations

- $E_3(h, m_1, \dots, m_n) \subseteq E_2(h, m_1, \dots, m_n) \subseteq E_1(h, m_1, \dots, m_n)$
- $\Pr^{(m_1, \dots, m_n)}[E_4(\epsilon)] \leq (N-1) \times \left[ \max_{h \in \mathcal{C}, h \text{ is } \epsilon\text{-bad}} \Pr^{(m_1, \dots, m_n)}[E_1(h)] \right]$
- If annotation plan  $(m_1, \dots, m_n)$  satisfies the following condition, then MDA will satisfy PAC bound.

$$\left[ \max_{h \text{ is } \epsilon\text{-bad}} \Pr^{(m_1, \dots, m_n)}[E_1(h)] \right] \leq \delta/N \quad (2)$$

# Proof Sketch

Probability of an  $\epsilon$ -bad hypothesis  $h$  having lower empirical error than  $c_t$



$$\Pr^{(m_1, \dots, m_n)}[L_e(h) \leq L_e(c_t)] = \Pr\{\# \text{ samples under leaf A} \geq \# \text{ samples under leaf B}\}$$

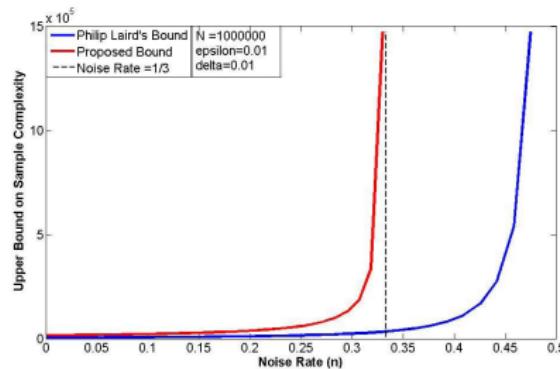
# Special Case: Single Annotator

## When $\eta = 0$

- Easy to show that sample complexity  $m_0$  satisfies  $m_0 \leq \log(N/\delta)/\log[1 - \epsilon]^{-1}$
- The range of  $\eta_i$  in previous theorem can be extended to include  $\eta_i = 0$  by having  $\psi(0) = \log[1 - \epsilon]^{-1}$

## When $\eta = 1/3$

- Angluin and Laird proposed following bound for single annotator, for  $0 \leq \eta < 1/2$   
$$\psi(\eta_i) = \log [1 - \epsilon (1 - \exp(-(1 - 2\eta_i)^2/2))]^{-1}$$
- The range of  $\eta_i$  in previous theorem can be extended to include  $\eta_i = 1/3$  by having  
$$\psi(1/3) = \log[1 - \epsilon(1 - \exp(-1/18))]^{-1}$$



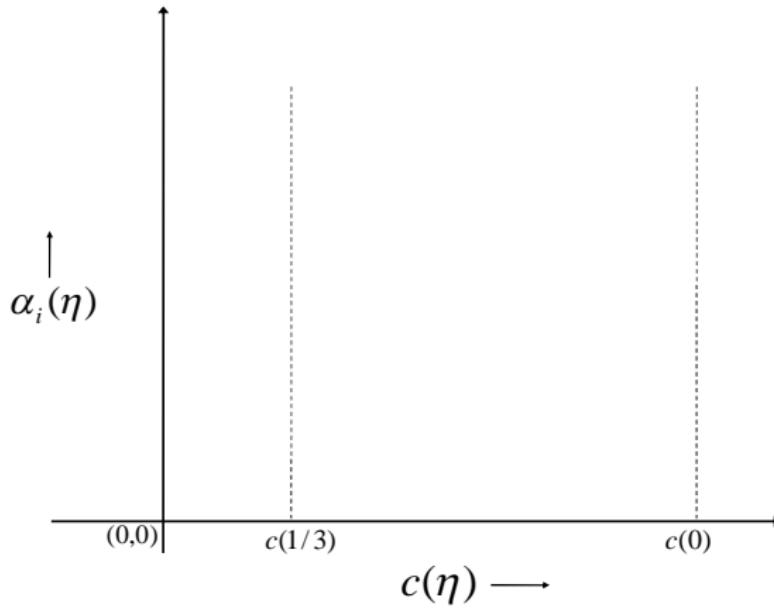
[1] Dana Angluin and Philip Laird. Learning from noisy examples. *Machine Learning*, 2(4):343-370, 1988.

# Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

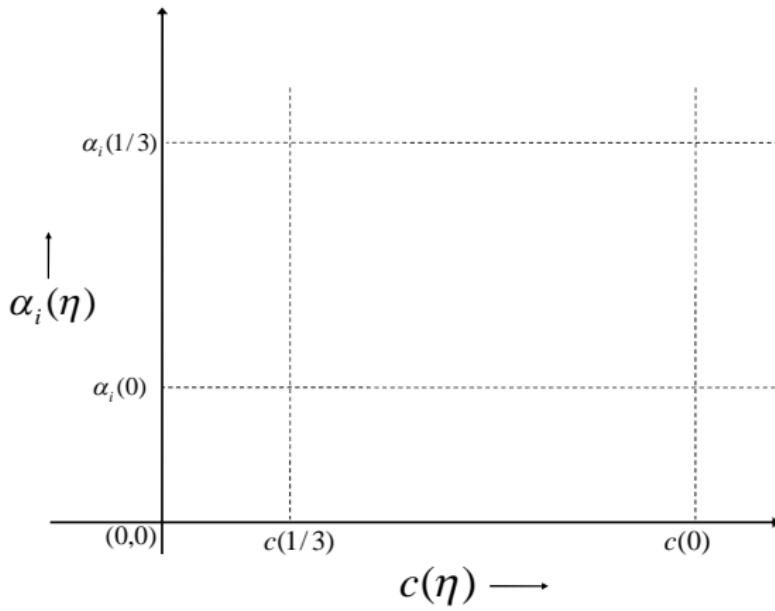
# Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$



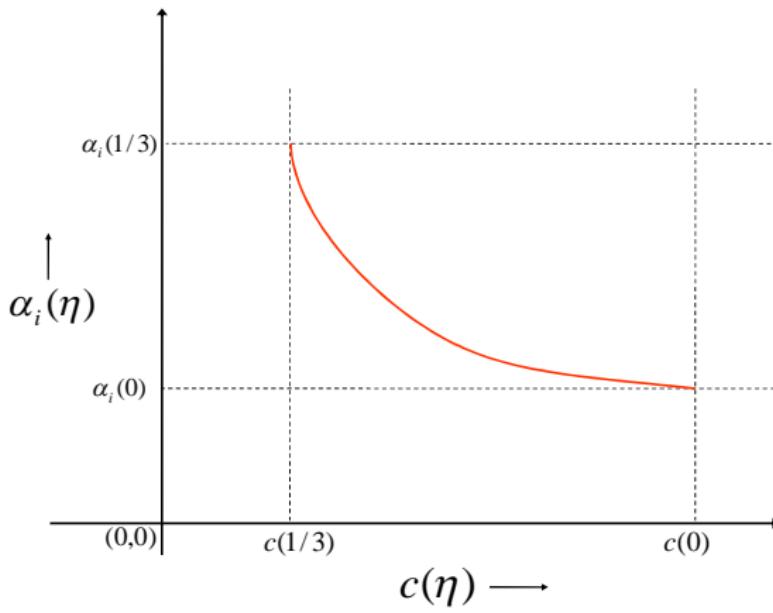
# Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$



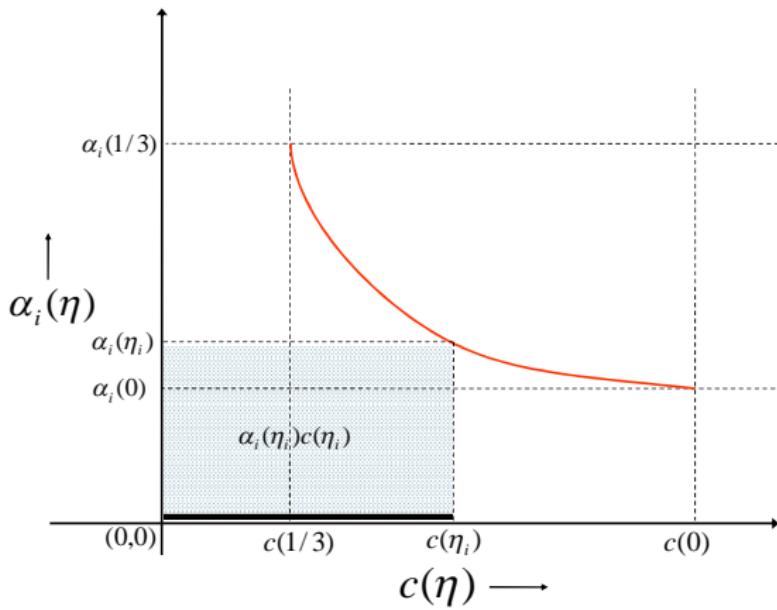
# Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$



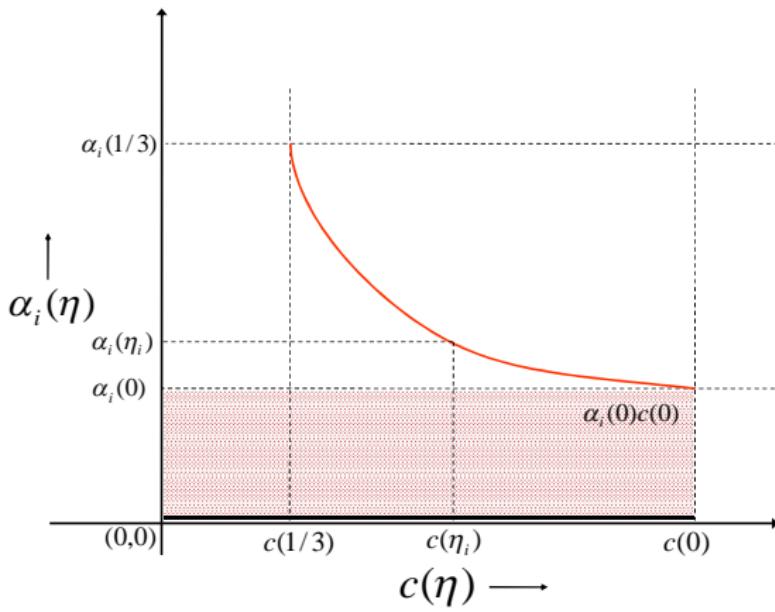
# Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$



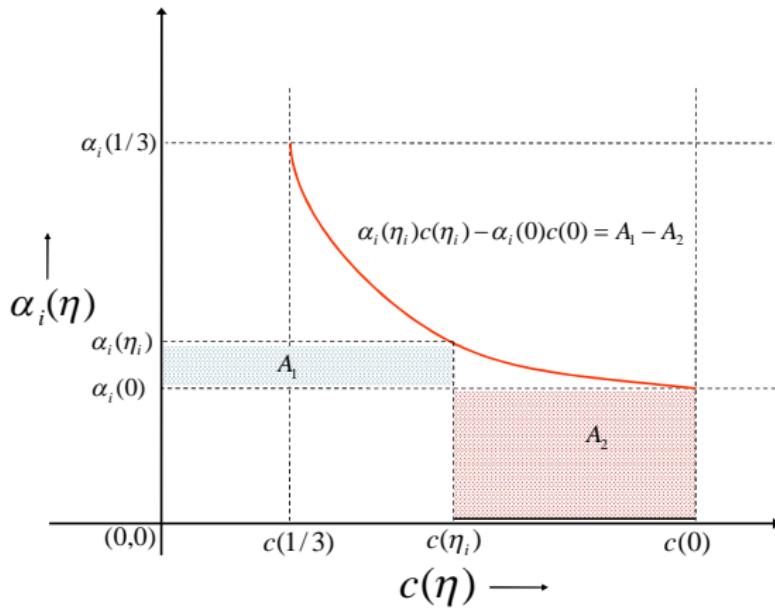
# Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$



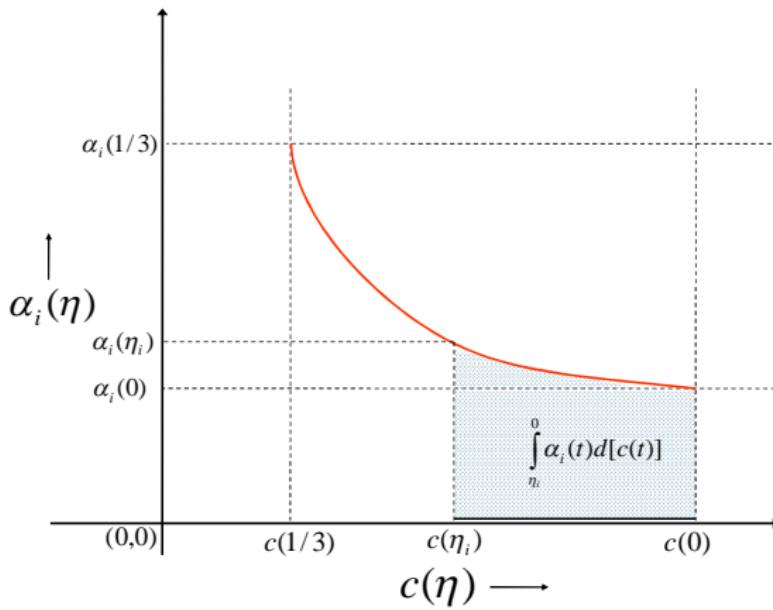
# Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$



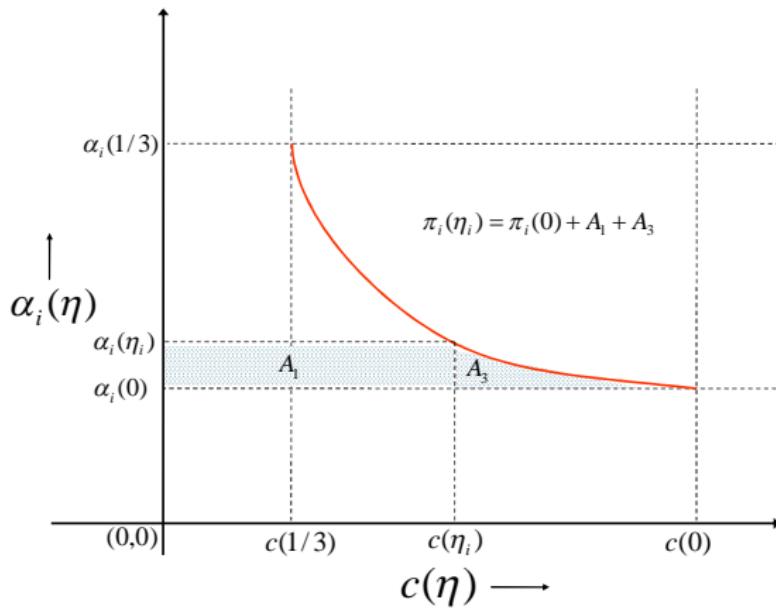
# Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$



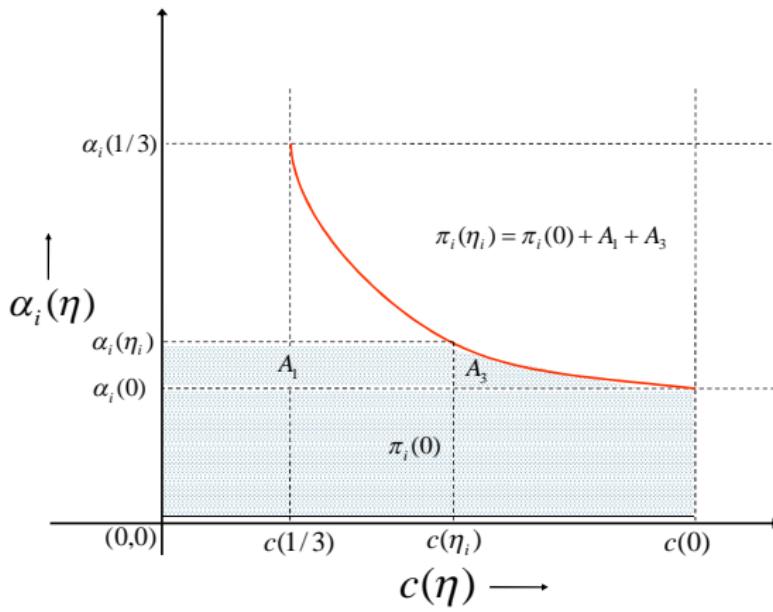
# Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$



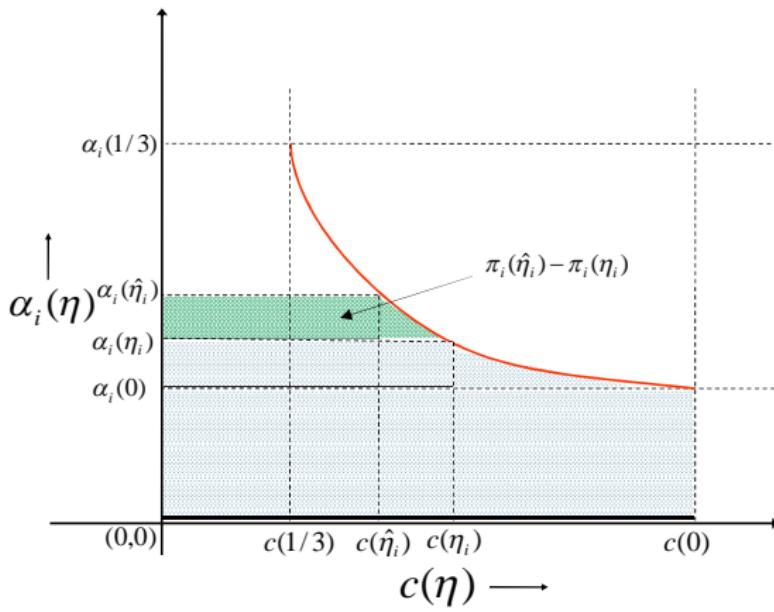
# Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$



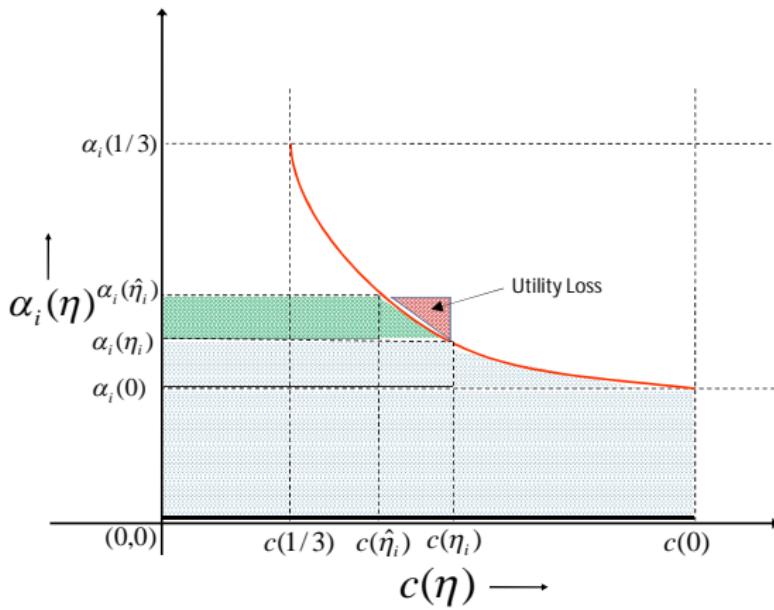
# Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$



# Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$



# Understanding Myerson's Theorem

$$\begin{aligned}\pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i \\ \Rightarrow \pi_i(\eta_i) &= \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]\end{aligned}$$

