An Introduction to Mechanism Design

Dinesh Garg IBM India Research Lab, Bangalore <u>garg.dinesh@in.ibm.com</u>

January 11, 2016

Example 1: One Mother Two Child (Cake Cutting Problem)

(Rational & Intelligent)

Children 2 (Rational & Intelligent)

Example 2: Two Mothers One Child

(Rational & Intelligent)

Baby

(Rational & Intelligent)

Example 3: Voting

Example 4: Auctions

- n agents need to make a collective choice from outcome set X
- Each agent *i* privately observes a signal θ_i
- Signal θ_i determines agent i's preferences over the set X
- Signal *θ_i* is known as agent *i*'s type.
- The set of agent *i*'s possible types is denoted by O_i
- Agent types, $\theta = (\theta_1, \theta_2, \dots, \theta_n)$ are drawn according to a distribution $\Phi(.)$
- Each agent is rational, intelligent, and tries to maximize his utility $u_i: X \times \Theta_i \to \mathbb{R}$
- $\Phi(.), \Theta_1, \dots, \Theta_n, u_1(.), \dots, u_n(.)$ are common knowledge among the agents

Social Choice Function (SCF)

Planner ideally wants to aggregate preferences as per SCF (had he known true types of all the agents)

So What is Mechanism ?

An Indirect Mechanism $M = (g(.), (C_i)_{i \in N})$

Direct Revelation Mechanism (DRM)

Direct Revelation Mechanism (DRM): $M = (f(.), (\Theta_i)_{i \in N})$

Example 1: Cake Cutting Problem

Example 2: Two Mothers One Child

Example 3: Voting

Implementing an SCF via Mechanism

Mechanism $M = (g(.), (C_i)_{i \in N})$ Induced Bayesian Game $\Gamma^b = (N, (C_i)_{i \in N}, (\Theta_i)_{i \in N}, \phi(.), (u_i)_{i \in N})$

Equilibrium of Induced Bayesian Game

Dominant Strategy Equilibrium (DSE)

A strategy profile $(s_1^d(.), \dots s_n^d(.))$ is said to be dominant strategy equilibrium if

$$u_i(g(s_i^d(\theta_i), s_{-i}(\theta_{-i})), \theta_i) \ge u_i(g(s_i(\theta_i), s_{-i}(\theta_{-i})), \theta_i)$$

$$\forall i \in N, \theta_i \in \Theta_i, s_i \in S_i, s_{-i} \in S_{-i}$$

Bayesian Nash Equilibrium (BNE)

A strategy profile $(s_1^*(.), \dots s_n^*(.))$ is said to be Bayesian Nash equilibrium

$$E_{\theta_{(-i)}}[u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) | \theta_i] \ge E_{\theta_{(-i)}}[u_i(g(s_i(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) | \theta_i]$$

$$\forall i \in N, \theta_i \in \Theta_i, s_i \in S_i$$

Observation

Dominant Strategy-equilibrium \Longrightarrow Bayesian Nash- equilibrium

Implementing an SCF

Dominant Strategy Implementation

We say that mechanism $M = (g(.), (C_i)_{i \in N})$ implements SCF $f : \Theta \to X$ in dominant strategy equilibrium if

$$g(s_1^d(\theta_1), \cdots, s_n^d(\theta_n)) = f(\theta_1, \cdots, \theta_n) \quad \forall (\theta_1, \cdots, \theta_n)$$

Bayesian Nash Implementation

We say that mechanism $M = (g(.), (C_i)_{i \in N})$ implements SCF $f : \Theta \to X$ in Bayesian Nash equilibrium if

$$g(s_1^*(\theta_1), \cdots, s_n^*(\theta_n)) = f(\theta_1, \cdots, \theta_n) \quad \forall (\theta_1, \cdots, \theta_n)$$

Observation

Dominant Strategy-implementation \implies Bayesian Nash- implementation

[•] Andreu Mas Colell, Michael D. Whinston, and Jerry R. Green, "Microeconomic Theory", Oxford University Press, New York, 1995.

Properties of an SCF

• (Ex Post) Efficiency

For no profile of agents' type $\theta = (\theta_1, \dots, \theta_n)$ there exists an $\mathbf{X} \in \mathbf{X}$ such that $u_i(\mathbf{x}, \theta_i) \ge u_i(f(\theta), \theta_i) \forall i$ and $u_i(\mathbf{x}, \theta_i) > u_i(f(\theta), \theta_i)$ for some \mathbf{i} (Deviation from SCF recommended outcome can't make someone better-off without making anyone else worse-off)

Dominant Strategy Incentive Compatibility (DSIC)

If the direct revelation mechanism $D = (f(.), (\Theta_i)_{i \in N})$ has a dominant strategy equilibrium $(s_1^d(.), \dots s_n^d(.))$ in which

$$s_i^d(\theta_i) = \theta_i, \forall \theta_i \in \Theta_i, i \in N$$

(Irrespective of what others are doing, I must admit trust)

Bayesian Incentive Compatibility (BIC)

If the direct revelation mechanism $D = (f(.), (\Theta_i)_{i \in N})$ has a Bayesian Nash equilibrium $(s_1^*(.), \dots s_n^*(.))$ in which

$$s_i^*(\theta_i) = \theta_i, \forall \theta_i \in \Theta_i, i \in N$$

(If others are admitting truth, I must also do the same)

Properties of an SCF

Dictatorial

For every profile of agents' type $\theta = (\theta_1, \dots, \theta_n)$, we have

$$f(\theta) = \left\{ x \in X \mid u_d(x, \theta_d) \ge u_d(y, \theta_d) \forall y \in X \right\}$$

where d is a particular agent known as dictator.

(A special agent is favored all the times by the planner)

• (Ex Post) Individual Rationality

$$u_i(f(\theta_i, \theta_{-i}), \theta_i) \ge \overline{u_i}(\theta_i) \quad \forall (\theta_i, \theta_{-i})$$

where $\overline{u_i}(\theta_i)$ is the utility that agent *i* receives by withdrawing from the mechanism when his type is θ_i

(Participation in the mechanism will never make anyone worse-off)

Gibbard - Satterthwaite Impossibility

Theorem

GS Theorem: Suppose for a given SCF

(1) Range is finite and contains at least 3 elements(2) Preference structure (aka type space) is rich

then, the SCF is DSIC iff it is dictatorial

(By and large, DSIC and Non-dictatorship don't co-exist)

Possible Ways Out

- 1. Relax the assumption on richness of preferences (e.g. single peaked preferences)
- 2. Relax the assumption on finite range by allowing transfer of payments
- 3. Relax the requirement of strong solution concept namely DSIC and instead work with BIC
- A. Gibbard. Manipulation of voting schemes. *Econometrica*, 41:587-601, 1973.
- M. A. Satterthwaite. Strategy-proofness and arrow's conditions: Existence and correspondence theorem for voting procedure and social welfare functions. *Journal of Economic Theory*, 10:187-217, 1975.

Quasi-Linear Environment

$$X = \left\{ \begin{pmatrix} k, t_1, \dots, t_n \end{pmatrix} \mid k \in K, t_i \in \Re \ \forall i = 1, \dots, n, \sum_i t_i \leq 0 \right\}$$
project choice
Monetary transfer
to agent i

$$U_1(\mathbf{X}, \theta_1) = V_1(\mathbf{K}, \theta_1) + t_1$$

Valuation function of agent 1

Properties of an SCF in Quasi-Linear Environment

Allocative Efficiency (AE)

An SCF $f(.) = (k(.), t_1(.), \dots, t_n(.))$ is AE if for each $\theta \in \Theta$, $k(\theta)$ satisfies $k(\theta) \in \underset{k \in K}{\operatorname{argmax}} \sum_{i=1}^{n} v_i(k, \theta_i)$

(Strong) Budget Balance

An SCF $f(.) = (k(.), t_1(.), \dots, t_n(.))$ is BB if for each $\theta \in \Theta$, we have $\sum_{i=1}^{n} t_i(\theta) = 0$

Lemma

An SCF $f(.) = (k(.), t_1(.), \dots, t_n(.))$ is (ex post) efficient in quasi-linear environment (having no outside source of funding) iff it is (AE + BB)

Vickrey-Clarke-Groves (VCG) Mechanisms

Vickrey (1961)

Clarke (1971)

Groves (1973)

Groves Theorem [1973]: Let the SCF $f(.) = (k^*(.), t_1(.), \dots, t_n(.))$ be AE. This SCF can be truthfully implemented in dominant strategy if it satisfied the following payment structure $t_i(\theta) = \left[\sum_{i \neq i} v_j(k^*(\theta), \theta_j)\right] + h_i(\theta_{-i}) \forall i = 1, \dots n$

Clarke Pivotal Mechanism [1973]: $h_i(\theta_{-i}) = \left[\sum_{j \neq i} v_j(k_{-i}^*(\theta), \theta_j)\right]$

- T. Groves. Incentives in teams. *Econometrica*, 41:617-631, 1973.
- E. Clarke. Multi-part pricing of public goods. *Public Choice*, 11:17-23, 1971.
- W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. *Journal of Finance*, 16(1):8-37, March 1961.

Vickrey-Clarke-Groves (VCG) Mechanisms

Under some mild conditions on preference structure, VCG are the only mechanisms in quasi-linear environment satisfying AE+DSIC

(Im) Possibility Theorems in Quasi-Linear Environments

Groves (Possibility) Theorem In any quasi-linear environment, there exists an SCF which is $\underline{AE + DSIC}$

Green-Laffont (Impossibility) Theorem

In any quasi-linear environment, if preference structure (aka type space) is rich then there is no SCF which is AE + BB + DSIC

The dAGVA (Possibility) Theorem In any quasi-linear environment, there exists a social choice function which is $\underline{AE+BB+BIC}$

(Im) Possibility Theorems in Quasi-Linear Environments

Myerson-Satterthwaite (Impossibility) Theorem In the quasi-linear environment, there is no SCF which is AE + BB+ BIC +IR

Myerson's (Possibility) Theorem for Optimal Mechanism In the quasi-linear environment, if the type is one dimensional, then there exist SCF which are BIC+ IIR and maximize the earning (or surplus) of the planner

• R. B. Myerson. Optimal Auction Design. Math. Operations Res., 6(1): 58 -73, Feb. 1981.

References

Andrew Mas-Collel, Michael D. Whinston, and Jerry R. Green (1995), "*Microeconomic Theory*", Oxford University Press

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay Vazirani (2007), "*Algorithmic Game Theory*", Cambridge University Press

Y. Narahari, Dinesh Garg, Ramasuri Narayanam, and Hastagiri Prakash (2009), "*Game Theoretic Problems in Network Economics and Mechanism Design*", Springer

Jorg Rothe (2015), "Economics and Computation: An Introduction to Algoritmic Game Theory, Computational Social Choice, and Fair Division", Springer

Two Fundamental Design Aspects

Preference Aggregation

For a given type profile $\theta = (\theta_1, \theta_2, \dots, \theta_n)$ of the agents, what outcome $x \in X$ should be chosen ?

Information Revelation (Elicitation)

How do we elicit the true type θ_i of each agent *i*, which is his private information ?

Information Elicitation Problem

Revelation Principle for DSE

Revelation Principle for BNE

 $BIC \subseteq D_{BNE} \subseteq I_{BNE} \subseteq BIC$

Absence of Dictatorial SCF in Quasi-Linear Environments

<u>Lemma:</u>

In quasi-linear environment (having no source of outside funding), the utility of an agent can be made arbitrary high and thereby no SCF is a dictatorial SCF in this environment

(Thus, GS impossibility theorem does not bite us here)

Space of SCFs in Quasi-linear Environment

