
Markets with Production and constant number of
goods

Jugal Garg and Ravi Kannan [Nikhil Devanur]

I First, assume no production.

I n agents. m goods.
I Agent i has a utility function Ui (xi), where

I xi is his “consumption bundle” (amount of each good
consumed) given as a m vector of non-negative reals. (eg.
(number of loaves of bread, liters of milk)).
Ui is concave (Diminishing returns) and here assume
piece-wise linear (we call it PLC) utilities.

I i always agent. j always good.
I 2 models : (i) Each agent comes with a fixed amount of

money or (ii) a fixed bundle of goods.

I First, assume no production.
I n agents. m goods.

I Agent i has a utility function Ui (xi), where

I xi is his “consumption bundle” (amount of each good
consumed) given as a m vector of non-negative reals. (eg.
(number of loaves of bread, liters of milk)).
Ui is concave (Diminishing returns) and here assume
piece-wise linear (we call it PLC) utilities.

I i always agent. j always good.
I 2 models : (i) Each agent comes with a fixed amount of

money or (ii) a fixed bundle of goods.

I First, assume no production.
I n agents. m goods.
I Agent i has a utility function Ui (xi), where

I xi is his “consumption bundle” (amount of each good
consumed) given as a m vector of non-negative reals. (eg.
(number of loaves of bread, liters of milk)).
Ui is concave (Diminishing returns) and here assume
piece-wise linear (we call it PLC) utilities.

I i always agent. j always good.
I 2 models : (i) Each agent comes with a fixed amount of

money or (ii) a fixed bundle of goods.

I First, assume no production.
I n agents. m goods.
I Agent i has a utility function Ui (xi), where

I xi is his “consumption bundle” (amount of each good
consumed) given as a m vector of non-negative reals. (eg.
(number of loaves of bread, liters of milk)).
Ui is concave (Diminishing returns) and here assume
piece-wise linear (we call it PLC) utilities.

I i always agent. j always good.
I 2 models : (i) Each agent comes with a fixed amount of

money or (ii) a fixed bundle of goods.

I First, assume no production.
I n agents. m goods.
I Agent i has a utility function Ui (xi), where

I xi is his “consumption bundle” (amount of each good
consumed) given as a m vector of non-negative reals. (eg.
(number of loaves of bread, liters of milk)).
Ui is concave (Diminishing returns) and here assume
piece-wise linear (we call it PLC) utilities.

I i always agent. j always good.
I 2 models : (i) Each agent comes with a fixed amount of

money or (ii) a fixed bundle of goods.

I First, assume no production.
I n agents. m goods.
I Agent i has a utility function Ui (xi), where

I xi is his “consumption bundle” (amount of each good
consumed) given as a m vector of non-negative reals. (eg.
(number of loaves of bread, liters of milk)).
Ui is concave (Diminishing returns) and here assume
piece-wise linear (we call it PLC) utilities.

I i always agent. j always good.

I 2 models : (i) Each agent comes with a fixed amount of
money or (ii) a fixed bundle of goods.

I First, assume no production.
I n agents. m goods.
I Agent i has a utility function Ui (xi), where

I xi is his “consumption bundle” (amount of each good
consumed) given as a m vector of non-negative reals. (eg.
(number of loaves of bread, liters of milk)).
Ui is concave (Diminishing returns) and here assume
piece-wise linear (we call it PLC) utilities.

I i always agent. j always good.
I 2 models : (i) Each agent comes with a fixed amount of

money or (ii) a fixed bundle of goods.

I Price : a m vector giving unit price for each good. [Cost
Linear]

I Equilibrium Price : A price at which

I if Pi is the set of bundles achieving maximum utility for agent
i subject to budget (each agent maximizes separately ignoring
others),

I there exists a set of bundles x1 ∈ P1, x2 ∈ P2, . . . so that the
market clears exacly.

I Nash : An equilibrium price always exists.

I Central Problem in Computational Economics : Algorithm to
find an equilibrium price.

I Our interest : Can we do it in poly time ? Yes, for constant
number of goods.

I Note : If prices are given, each agent’s problem is an LP –
maximize min of several linear function. If prices are
unknowns, problem is non-linear – (price)(amount of good
bought).

I Price : a m vector giving unit price for each good. [Cost
Linear]

I Equilibrium Price : A price at which

I if Pi is the set of bundles achieving maximum utility for agent
i subject to budget (each agent maximizes separately ignoring
others),

I there exists a set of bundles x1 ∈ P1, x2 ∈ P2, . . . so that the
market clears exacly.

I Nash : An equilibrium price always exists.

I Central Problem in Computational Economics : Algorithm to
find an equilibrium price.

I Our interest : Can we do it in poly time ? Yes, for constant
number of goods.

I Note : If prices are given, each agent’s problem is an LP –
maximize min of several linear function. If prices are
unknowns, problem is non-linear – (price)(amount of good
bought).

I Price : a m vector giving unit price for each good. [Cost
Linear]

I Equilibrium Price : A price at which
I if Pi is the set of bundles achieving maximum utility for agent

i subject to budget (each agent maximizes separately ignoring
others),

I there exists a set of bundles x1 ∈ P1, x2 ∈ P2, . . . so that the
market clears exacly.

I Nash : An equilibrium price always exists.

I Central Problem in Computational Economics : Algorithm to
find an equilibrium price.

I Our interest : Can we do it in poly time ? Yes, for constant
number of goods.

I Note : If prices are given, each agent’s problem is an LP –
maximize min of several linear function. If prices are
unknowns, problem is non-linear – (price)(amount of good
bought).

I Price : a m vector giving unit price for each good. [Cost
Linear]

I Equilibrium Price : A price at which
I if Pi is the set of bundles achieving maximum utility for agent

i subject to budget (each agent maximizes separately ignoring
others),

I there exists a set of bundles x1 ∈ P1, x2 ∈ P2, . . . so that the
market clears exacly.

I Nash : An equilibrium price always exists.

I Central Problem in Computational Economics : Algorithm to
find an equilibrium price.

I Our interest : Can we do it in poly time ? Yes, for constant
number of goods.

I Note : If prices are given, each agent’s problem is an LP –
maximize min of several linear function. If prices are
unknowns, problem is non-linear – (price)(amount of good
bought).

I Price : a m vector giving unit price for each good. [Cost
Linear]

I Equilibrium Price : A price at which
I if Pi is the set of bundles achieving maximum utility for agent

i subject to budget (each agent maximizes separately ignoring
others),

I there exists a set of bundles x1 ∈ P1, x2 ∈ P2, . . . so that the
market clears exacly.

I Nash : An equilibrium price always exists.

I Central Problem in Computational Economics : Algorithm to
find an equilibrium price.

I Our interest : Can we do it in poly time ? Yes, for constant
number of goods.

I Note : If prices are given, each agent’s problem is an LP –
maximize min of several linear function. If prices are
unknowns, problem is non-linear – (price)(amount of good
bought).

I Price : a m vector giving unit price for each good. [Cost
Linear]

I Equilibrium Price : A price at which
I if Pi is the set of bundles achieving maximum utility for agent

i subject to budget (each agent maximizes separately ignoring
others),

I there exists a set of bundles x1 ∈ P1, x2 ∈ P2, . . . so that the
market clears exacly.

I Nash : An equilibrium price always exists.

I Central Problem in Computational Economics : Algorithm to
find an equilibrium price.

I Our interest : Can we do it in poly time ? Yes, for constant
number of goods.

I Note : If prices are given, each agent’s problem is an LP –
maximize min of several linear function. If prices are
unknowns, problem is non-linear – (price)(amount of good
bought).

I Price : a m vector giving unit price for each good. [Cost
Linear]

I Equilibrium Price : A price at which
I if Pi is the set of bundles achieving maximum utility for agent

i subject to budget (each agent maximizes separately ignoring
others),

I there exists a set of bundles x1 ∈ P1, x2 ∈ P2, . . . so that the
market clears exacly.

I Nash : An equilibrium price always exists.

I Central Problem in Computational Economics : Algorithm to
find an equilibrium price.

I Our interest : Can we do it in poly time ? Yes, for constant
number of goods.

I Note : If prices are given, each agent’s problem is an LP –
maximize min of several linear function. If prices are
unknowns, problem is non-linear – (price)(amount of good
bought).

I Price : a m vector giving unit price for each good. [Cost
Linear]

I Equilibrium Price : A price at which
I if Pi is the set of bundles achieving maximum utility for agent

i subject to budget (each agent maximizes separately ignoring
others),

I there exists a set of bundles x1 ∈ P1, x2 ∈ P2, . . . so that the
market clears exacly.

I Nash : An equilibrium price always exists.

I Central Problem in Computational Economics : Algorithm to
find an equilibrium price.

I Our interest : Can we do it in poly time ? Yes, for constant
number of goods.

I Note : If prices are given, each agent’s problem is an LP –
maximize min of several linear function. If prices are
unknowns, problem is non-linear – (price)(amount of good
bought).

I Deng Devanur Papdimitriou, Saberi Vazirani; Jain gave a
poly-time algorithm for linear utilities.

I In many cases equilibrium prices and/or allocations are
irrational numbers and hence one has to settle for
approximations to the equilibrium. For instance, Codenotti et
al. [CPV05] give an algorithm based on the ellipsoid method
to compute an approximate equilibrium in markets with
utilities that satisfy the so called weak gross substitutes
(WGS) property. [Note : Approximate equilibrium very
different beast than exact one.]

I For non-constant number of goods, with PLC concave
utilities, (or even Leontief utilities) PPAD hard. Codenotti,
Saberi, Varadarajan and Ye

I Leontief utilities (special case of PLC)

Ui (xi) = minjxij/φij .

I Deng Devanur Papdimitriou, Saberi Vazirani; Jain gave a
poly-time algorithm for linear utilities.

I In many cases equilibrium prices and/or allocations are
irrational numbers and hence one has to settle for
approximations to the equilibrium. For instance, Codenotti et
al. [CPV05] give an algorithm based on the ellipsoid method
to compute an approximate equilibrium in markets with
utilities that satisfy the so called weak gross substitutes
(WGS) property. [Note : Approximate equilibrium very
different beast than exact one.]

I For non-constant number of goods, with PLC concave
utilities, (or even Leontief utilities) PPAD hard. Codenotti,
Saberi, Varadarajan and Ye

I Leontief utilities (special case of PLC)

Ui (xi) = minjxij/φij .

I Deng Devanur Papdimitriou, Saberi Vazirani; Jain gave a
poly-time algorithm for linear utilities.

I In many cases equilibrium prices and/or allocations are
irrational numbers and hence one has to settle for
approximations to the equilibrium. For instance, Codenotti et
al. [CPV05] give an algorithm based on the ellipsoid method
to compute an approximate equilibrium in markets with
utilities that satisfy the so called weak gross substitutes
(WGS) property. [Note : Approximate equilibrium very
different beast than exact one.]

I For non-constant number of goods, with PLC concave
utilities, (or even Leontief utilities) PPAD hard. Codenotti,
Saberi, Varadarajan and Ye

I Leontief utilities (special case of PLC)

Ui (xi) = minjxij/φij .

I Deng Devanur Papdimitriou, Saberi Vazirani; Jain gave a
poly-time algorithm for linear utilities.

I In many cases equilibrium prices and/or allocations are
irrational numbers and hence one has to settle for
approximations to the equilibrium. For instance, Codenotti et
al. [CPV05] give an algorithm based on the ellipsoid method
to compute an approximate equilibrium in markets with
utilities that satisfy the so called weak gross substitutes
(WGS) property. [Note : Approximate equilibrium very
different beast than exact one.]

I For non-constant number of goods, with PLC concave
utilities, (or even Leontief utilities) PPAD hard. Codenotti,
Saberi, Varadarajan and Ye

I Leontief utilities (special case of PLC)

Ui (xi) = minjxij/φij .

Our Results

I Devanur, K. Polynomial time algorithm for finding an exact
equilibrium when the number of goods in constant. We also
do the same for the case when the number of agents is
constant provided the utilities are separable –

Ui (xi) =
∑
j

Uijxij .

An important open question : Poly time alg for the case when
number of agents is constant, but utilities are not separable.

I Jugal Garg, K.
I Constant number of goods now with Production - poly time

I Reduction from market with Production, PLC utilities to one
with no production and PLC utilities with same set of
equilibria (1-1 correspondance)

Our Results

I Devanur, K. Polynomial time algorithm for finding an exact
equilibrium when the number of goods in constant. We also
do the same for the case when the number of agents is
constant provided the utilities are separable –

Ui (xi) =
∑
j

Uijxij .

An important open question : Poly time alg for the case when
number of agents is constant, but utilities are not separable.

I Jugal Garg, K.
I Constant number of goods now with Production - poly time
I Reduction from market with Production, PLC utilities to one

with no production and PLC utilities with same set of
equilibria (1-1 correspondance)

Overview of method

I Step 1: Cell decomposition: Divide price space Rm
+ into small

cells, either by hyperplanes or polynomial surfaces so that
(intuitively), the “order” of the pieces in the PLC utilities is
the same for all price vectors in the cell.

I Step II : In each cell, either find a price that has a market
clearing allocation, or certify that no such price exists. For
this, one solves a system of linear/polynomial equations
involving a constant number of variables.

Overview of method

I Step 1: Cell decomposition: Divide price space Rm
+ into small

cells, either by hyperplanes or polynomial surfaces so that
(intuitively), the “order” of the pieces in the PLC utilities is
the same for all price vectors in the cell.

I Step II : In each cell, either find a price that has a market
clearing allocation, or certify that no such price exists. For
this, one solves a system of linear/polynomial equations
involving a constant number of variables.

MUPUC : Marginal utility per unit cost

I MUPUC = Increase in optimal utility when per unit increase
in budget. (Simply slope divided by price of piece.)

I Warm-up : Constant number of goods. (m ∈ O(1).)
Separable utilities.

I Fact There is a “critical MUPUC” - call it αi for each agent
i such that the set of optimal solutions for the agent consist
precisely of those in which

I Agent buys fully all pieces with MUPUC > αi .
I Agent does not buy any of the pieces with MUPUC < αi .
I Buys partially the pieces with exact equality.

I Quick Proof: If the agent was buying something with lower
MUPUC than something the agent was not buying, then
transfer some money from the former to the latter to gain.
[Separable.]

MUPUC : Marginal utility per unit cost

I MUPUC = Increase in optimal utility when per unit increase
in budget. (Simply slope divided by price of piece.)

I Warm-up : Constant number of goods. (m ∈ O(1).)
Separable utilities.

I Fact There is a “critical MUPUC” - call it αi for each agent
i such that the set of optimal solutions for the agent consist
precisely of those in which

I Agent buys fully all pieces with MUPUC > αi .
I Agent does not buy any of the pieces with MUPUC < αi .
I Buys partially the pieces with exact equality.

I Quick Proof: If the agent was buying something with lower
MUPUC than something the agent was not buying, then
transfer some money from the former to the latter to gain.
[Separable.]

MUPUC : Marginal utility per unit cost

I MUPUC = Increase in optimal utility when per unit increase
in budget. (Simply slope divided by price of piece.)

I Warm-up : Constant number of goods. (m ∈ O(1).)
Separable utilities.

I Fact There is a “critical MUPUC” - call it αi for each agent
i such that the set of optimal solutions for the agent consist
precisely of those in which

I Agent buys fully all pieces with MUPUC > αi .
I Agent does not buy any of the pieces with MUPUC < αi .
I Buys partially the pieces with exact equality.

I Quick Proof: If the agent was buying something with lower
MUPUC than something the agent was not buying, then
transfer some money from the former to the latter to gain.
[Separable.]

MUPUC : Marginal utility per unit cost

I MUPUC = Increase in optimal utility when per unit increase
in budget. (Simply slope divided by price of piece.)

I Warm-up : Constant number of goods. (m ∈ O(1).)
Separable utilities.

I Fact There is a “critical MUPUC” - call it αi for each agent
i such that the set of optimal solutions for the agent consist
precisely of those in which

I Agent buys fully all pieces with MUPUC > αi .

I Agent does not buy any of the pieces with MUPUC < αi .
I Buys partially the pieces with exact equality.

I Quick Proof: If the agent was buying something with lower
MUPUC than something the agent was not buying, then
transfer some money from the former to the latter to gain.
[Separable.]

MUPUC : Marginal utility per unit cost

I MUPUC = Increase in optimal utility when per unit increase
in budget. (Simply slope divided by price of piece.)

I Warm-up : Constant number of goods. (m ∈ O(1).)
Separable utilities.

I Fact There is a “critical MUPUC” - call it αi for each agent
i such that the set of optimal solutions for the agent consist
precisely of those in which

I Agent buys fully all pieces with MUPUC > αi .
I Agent does not buy any of the pieces with MUPUC < αi .

I Buys partially the pieces with exact equality.

I Quick Proof: If the agent was buying something with lower
MUPUC than something the agent was not buying, then
transfer some money from the former to the latter to gain.
[Separable.]

MUPUC : Marginal utility per unit cost

I MUPUC = Increase in optimal utility when per unit increase
in budget. (Simply slope divided by price of piece.)

I Warm-up : Constant number of goods. (m ∈ O(1).)
Separable utilities.

I Fact There is a “critical MUPUC” - call it αi for each agent
i such that the set of optimal solutions for the agent consist
precisely of those in which

I Agent buys fully all pieces with MUPUC > αi .
I Agent does not buy any of the pieces with MUPUC < αi .
I Buys partially the pieces with exact equality.

I Quick Proof: If the agent was buying something with lower
MUPUC than something the agent was not buying, then
transfer some money from the former to the latter to gain.
[Separable.]

MUPUC : Marginal utility per unit cost

I MUPUC = Increase in optimal utility when per unit increase
in budget. (Simply slope divided by price of piece.)

I Warm-up : Constant number of goods. (m ∈ O(1).)
Separable utilities.

I Fact There is a “critical MUPUC” - call it αi for each agent
i such that the set of optimal solutions for the agent consist
precisely of those in which

I Agent buys fully all pieces with MUPUC > αi .
I Agent does not buy any of the pieces with MUPUC < αi .
I Buys partially the pieces with exact equality.

I Quick Proof: If the agent was buying something with lower
MUPUC than something the agent was not buying, then
transfer some money from the former to the latter to gain.
[Separable.]

Figure: Critical MUPUC

I Want to divide price space Rm
+ into cells so that in each cell,

the order of MUPUC of pieces is same for all prices in the cell.

I Order of two pieces :

Slope 1

price 1
≥ slope 2

price 2
≡ Slope 1price 2 ≥ Slope 2price 1.

I Put down all such linear constriants. Subdivides space into
cells. Can we have exp(poly) cells ??

I N hyperplanes in m space divide space into at most
(N
m

)
non-empty cells !! They can be found.

I Want to divide price space Rm
+ into cells so that in each cell,

the order of MUPUC of pieces is same for all prices in the cell.

I Order of two pieces :

Slope 1

price 1
≥ slope 2

price 2
≡ Slope 1price 2 ≥ Slope 2price 1.

I Put down all such linear constriants. Subdivides space into
cells. Can we have exp(poly) cells ??

I N hyperplanes in m space divide space into at most
(N
m

)
non-empty cells !! They can be found.

I Want to divide price space Rm
+ into cells so that in each cell,

the order of MUPUC of pieces is same for all prices in the cell.

I Order of two pieces :

Slope 1

price 1
≥ slope 2

price 2
≡ Slope 1price 2 ≥ Slope 2price 1.

I Put down all such linear constriants. Subdivides space into
cells. Can we have exp(poly) cells ??

I N hyperplanes in m space divide space into at most
(N
m

)
non-empty cells !! They can be found.

I Want to divide price space Rm
+ into cells so that in each cell,

the order of MUPUC of pieces is same for all prices in the cell.

I Order of two pieces :

Slope 1

price 1
≥ slope 2

price 2
≡ Slope 1price 2 ≥ Slope 2price 1.

I Put down all such linear constriants. Subdivides space into
cells. Can we have exp(poly) cells ??

I N hyperplanes in m space divide space into at most
(N
m

)
non-empty cells !! They can be found.

Problem in a cell

I In one cell, the pieces are linearly orderable by MUPUC’s.

I Agent buys all of the first s pieces iff Total cost is at most
budget - linear constraint in p, the price vector.

I Sub-divide cell with all such linear constraints so that in each
sub-cell, know what whole pieces each agent buys.

I Subtract full pieces to get residual.

I Variables : p, fij = amount of money spent by i on good j
only for partial pieces.

I

Clearing Good j :
∑
i

fij = pj(residual amount of good j)

Agent i :
∑
j

fij = residual budget of i

0 ≤ fij

Linear Program !!

Problem in a cell

I In one cell, the pieces are linearly orderable by MUPUC’s.

I Agent buys all of the first s pieces iff Total cost is at most
budget - linear constraint in p, the price vector.

I Sub-divide cell with all such linear constraints so that in each
sub-cell, know what whole pieces each agent buys.

I Subtract full pieces to get residual.

I Variables : p, fij = amount of money spent by i on good j
only for partial pieces.

I

Clearing Good j :
∑
i

fij = pj(residual amount of good j)

Agent i :
∑
j

fij = residual budget of i

0 ≤ fij

Linear Program !!

Problem in a cell

I In one cell, the pieces are linearly orderable by MUPUC’s.

I Agent buys all of the first s pieces iff Total cost is at most
budget - linear constraint in p, the price vector.

I Sub-divide cell with all such linear constraints so that in each
sub-cell, know what whole pieces each agent buys.

I Subtract full pieces to get residual.

I Variables : p, fij = amount of money spent by i on good j
only for partial pieces.

I

Clearing Good j :
∑
i

fij = pj(residual amount of good j)

Agent i :
∑
j

fij = residual budget of i

0 ≤ fij

Linear Program !!

Problem in a cell

I In one cell, the pieces are linearly orderable by MUPUC’s.

I Agent buys all of the first s pieces iff Total cost is at most
budget - linear constraint in p, the price vector.

I Sub-divide cell with all such linear constraints so that in each
sub-cell, know what whole pieces each agent buys.

I Subtract full pieces to get residual.

I Variables : p, fij = amount of money spent by i on good j
only for partial pieces.

I

Clearing Good j :
∑
i

fij = pj(residual amount of good j)

Agent i :
∑
j

fij = residual budget of i

0 ≤ fij

Linear Program !!

Problem in a cell

I In one cell, the pieces are linearly orderable by MUPUC’s.

I Agent buys all of the first s pieces iff Total cost is at most
budget - linear constraint in p, the price vector.

I Sub-divide cell with all such linear constraints so that in each
sub-cell, know what whole pieces each agent buys.

I Subtract full pieces to get residual.

I Variables : p, fij = amount of money spent by i on good j
only for partial pieces.

I

Clearing Good j :
∑
i

fij = pj(residual amount of good j)

Agent i :
∑
j

fij = residual budget of i

0 ≤ fij

Linear Program !!

Problem in a cell

I In one cell, the pieces are linearly orderable by MUPUC’s.

I Agent buys all of the first s pieces iff Total cost is at most
budget - linear constraint in p, the price vector.

I Sub-divide cell with all such linear constraints so that in each
sub-cell, know what whole pieces each agent buys.

I Subtract full pieces to get residual.

I Variables : p, fij = amount of money spent by i on good j
only for partial pieces.

I

Clearing Good j :
∑
i

fij = pj(residual amount of good j)

Agent i :
∑
j

fij = residual budget of i

0 ≤ fij

Linear Program !!

Constant Number of Goods, general PLC utilities

I Each agent’s LP is “local” to the agent EXCEPT:

I Agent’s budget:
∑

j pjxij = mi and
I Market Clearing:

∑
i xi = 1.

I Want to Divide into cells, so that for any price vector in a cell,
solution for all agents is “uniformly” computable.

I Agent i ’s Linear Program:
max y0 : Ay ≤ b ; y ≥ 0 ;

∑
j pjyj = m, where, A, b do not

depend on price.

I Set of optimal solutions (need whole set - Why ?) is some face
F of {y : Ay ≤ b; y ≥ 0} intersected with budget constraint.

I We can find some M linear constraints on p so that for all p
satisfying those constraints, there is a single face F so that
the set of optimal solutions is F∩ budget. (LP Duality).
M ≤POLY for m ∈ O(1).

Constant Number of Goods, general PLC utilities

I Each agent’s LP is “local” to the agent EXCEPT:
I Agent’s budget:

∑
j pjxij = mi and

I Market Clearing:
∑

i xi = 1.

I Want to Divide into cells, so that for any price vector in a cell,
solution for all agents is “uniformly” computable.

I Agent i ’s Linear Program:
max y0 : Ay ≤ b ; y ≥ 0 ;

∑
j pjyj = m, where, A, b do not

depend on price.

I Set of optimal solutions (need whole set - Why ?) is some face
F of {y : Ay ≤ b; y ≥ 0} intersected with budget constraint.

I We can find some M linear constraints on p so that for all p
satisfying those constraints, there is a single face F so that
the set of optimal solutions is F∩ budget. (LP Duality).
M ≤POLY for m ∈ O(1).

Constant Number of Goods, general PLC utilities

I Each agent’s LP is “local” to the agent EXCEPT:
I Agent’s budget:

∑
j pjxij = mi and

I Market Clearing:
∑

i xi = 1.

I Want to Divide into cells, so that for any price vector in a cell,
solution for all agents is “uniformly” computable.

I Agent i ’s Linear Program:
max y0 : Ay ≤ b ; y ≥ 0 ;

∑
j pjyj = m, where, A, b do not

depend on price.

I Set of optimal solutions (need whole set - Why ?) is some face
F of {y : Ay ≤ b; y ≥ 0} intersected with budget constraint.

I We can find some M linear constraints on p so that for all p
satisfying those constraints, there is a single face F so that
the set of optimal solutions is F∩ budget. (LP Duality).
M ≤POLY for m ∈ O(1).

Constant Number of Goods, general PLC utilities

I Each agent’s LP is “local” to the agent EXCEPT:
I Agent’s budget:

∑
j pjxij = mi and

I Market Clearing:
∑

i xi = 1.

I Want to Divide into cells, so that for any price vector in a cell,
solution for all agents is “uniformly” computable.

I Agent i ’s Linear Program:
max y0 : Ay ≤ b ; y ≥ 0 ;

∑
j pjyj = m, where, A, b do not

depend on price.

I Set of optimal solutions (need whole set - Why ?) is some face
F of {y : Ay ≤ b; y ≥ 0} intersected with budget constraint.

I We can find some M linear constraints on p so that for all p
satisfying those constraints, there is a single face F so that
the set of optimal solutions is F∩ budget. (LP Duality).
M ≤POLY for m ∈ O(1).

Constant Number of Goods, general PLC utilities

I Each agent’s LP is “local” to the agent EXCEPT:
I Agent’s budget:

∑
j pjxij = mi and

I Market Clearing:
∑

i xi = 1.

I Want to Divide into cells, so that for any price vector in a cell,
solution for all agents is “uniformly” computable.

I Agent i ’s Linear Program:
max y0 : Ay ≤ b ; y ≥ 0 ;

∑
j pjyj = m, where, A, b do not

depend on price.

I Set of optimal solutions (need whole set - Why ?) is some face
F of {y : Ay ≤ b; y ≥ 0} intersected with budget constraint.

I We can find some M linear constraints on p so that for all p
satisfying those constraints, there is a single face F so that
the set of optimal solutions is F∩ budget. (LP Duality).
M ≤POLY for m ∈ O(1).

The harder part- In Each Cell

I Need to check if there is an equilibrium in a given cell. Now
this is a non-linear problem. [The trick used in separable case
of “taking critical MUPUC” to the other side to get rid of
non-linearity does not work anymore......]

I Let Pi be set of optimal solutions of agent i .

I Want xi ∈ Pi , i = 1, 2, . . . , n so that market clears :
∑

i xi = 1.
(*)

I Lemma (Again LP Duality): (*) iff for all m−vectors q,∑
j qj ≤

∑
i Max(q · xi : xi ∈ Pi).

I Can cut up (p, q) space by polynomial inequalities, so that in
each cell, the set of n vertices of Pi at which attain
Max(q · xi : xi ∈ Pi) is the same.

I N degree d polynomial inequalities in 2m space produce at
most Nmd cells.

The harder part- In Each Cell

I Need to check if there is an equilibrium in a given cell. Now
this is a non-linear problem. [The trick used in separable case
of “taking critical MUPUC” to the other side to get rid of
non-linearity does not work anymore......]

I Let Pi be set of optimal solutions of agent i .

I Want xi ∈ Pi , i = 1, 2, . . . , n so that market clears :
∑

i xi = 1.
(*)

I Lemma (Again LP Duality): (*) iff for all m−vectors q,∑
j qj ≤

∑
i Max(q · xi : xi ∈ Pi).

I Can cut up (p, q) space by polynomial inequalities, so that in
each cell, the set of n vertices of Pi at which attain
Max(q · xi : xi ∈ Pi) is the same.

I N degree d polynomial inequalities in 2m space produce at
most Nmd cells.

The harder part- In Each Cell

I Need to check if there is an equilibrium in a given cell. Now
this is a non-linear problem. [The trick used in separable case
of “taking critical MUPUC” to the other side to get rid of
non-linearity does not work anymore......]

I Let Pi be set of optimal solutions of agent i .
I Want xi ∈ Pi , i = 1, 2, . . . , n so that market clears :

∑
i xi = 1.

(*)

I Lemma (Again LP Duality): (*) iff for all m−vectors q,∑
j qj ≤

∑
i Max(q · xi : xi ∈ Pi).

I Can cut up (p, q) space by polynomial inequalities, so that in
each cell, the set of n vertices of Pi at which attain
Max(q · xi : xi ∈ Pi) is the same.

I N degree d polynomial inequalities in 2m space produce at
most Nmd cells.

The harder part- In Each Cell

I Need to check if there is an equilibrium in a given cell. Now
this is a non-linear problem. [The trick used in separable case
of “taking critical MUPUC” to the other side to get rid of
non-linearity does not work anymore......]

I Let Pi be set of optimal solutions of agent i .
I Want xi ∈ Pi , i = 1, 2, . . . , n so that market clears :

∑
i xi = 1.

(*)

I Lemma (Again LP Duality): (*) iff for all m−vectors q,∑
j qj ≤

∑
i Max(q · xi : xi ∈ Pi).

I Can cut up (p, q) space by polynomial inequalities, so that in
each cell, the set of n vertices of Pi at which attain
Max(q · xi : xi ∈ Pi) is the same.

I N degree d polynomial inequalities in 2m space produce at
most Nmd cells.

The harder part- In Each Cell

I Need to check if there is an equilibrium in a given cell. Now
this is a non-linear problem. [The trick used in separable case
of “taking critical MUPUC” to the other side to get rid of
non-linearity does not work anymore......]

I Let Pi be set of optimal solutions of agent i .
I Want xi ∈ Pi , i = 1, 2, . . . , n so that market clears :

∑
i xi = 1.

(*)

I Lemma (Again LP Duality): (*) iff for all m−vectors q,∑
j qj ≤

∑
i Max(q · xi : xi ∈ Pi).

I Can cut up (p, q) space by polynomial inequalities, so that in
each cell, the set of n vertices of Pi at which attain
Max(q · xi : xi ∈ Pi) is the same.

I N degree d polynomial inequalities in 2m space produce at
most Nmd cells.

The harder part- In Each Cell

I Need to check if there is an equilibrium in a given cell. Now
this is a non-linear problem. [The trick used in separable case
of “taking critical MUPUC” to the other side to get rid of
non-linearity does not work anymore......]

I Let Pi be set of optimal solutions of agent i .
I Want xi ∈ Pi , i = 1, 2, . . . , n so that market clears :

∑
i xi = 1.

(*)

I Lemma (Again LP Duality): (*) iff for all m−vectors q,∑
j qj ≤

∑
i Max(q · xi : xi ∈ Pi).

I Can cut up (p, q) space by polynomial inequalities, so that in
each cell, the set of n vertices of Pi at which attain
Max(q · xi : xi ∈ Pi) is the same.

I N degree d polynomial inequalities in 2m space produce at
most Nmd cells.

Production

I Now include a number of factories. Each factory has a
production set of pairs (x , y), where x , y are each a bundles
(of goods). With x as raw materials, factory can produce y .
The production set is convex. Each factory maximizes its
profit independent of others.

I Each agent owns a fixed share of each factory.

I Now, there is a consumption bundle xi for each agent, a
“raw” bundle yl for factory l , produced bundle zl for factory l ,
all connected by obvious constraints. Each agent maximizes
utility plus share of all factories.

I Equilibrium: Prices at which individually optimized xi , yl , zl
clear the market.

Production

I Now include a number of factories. Each factory has a
production set of pairs (x , y), where x , y are each a bundles
(of goods). With x as raw materials, factory can produce y .
The production set is convex. Each factory maximizes its
profit independent of others.

I Each agent owns a fixed share of each factory.

I Now, there is a consumption bundle xi for each agent, a
“raw” bundle yl for factory l , produced bundle zl for factory l ,
all connected by obvious constraints. Each agent maximizes
utility plus share of all factories.

I Equilibrium: Prices at which individually optimized xi , yl , zl
clear the market.

Production

I Now include a number of factories. Each factory has a
production set of pairs (x , y), where x , y are each a bundles
(of goods). With x as raw materials, factory can produce y .
The production set is convex. Each factory maximizes its
profit independent of others.

I Each agent owns a fixed share of each factory.

I Now, there is a consumption bundle xi for each agent, a
“raw” bundle yl for factory l , produced bundle zl for factory l ,
all connected by obvious constraints. Each agent maximizes
utility plus share of all factories.

I Equilibrium: Prices at which individually optimized xi , yl , zl
clear the market.

Production

I Now include a number of factories. Each factory has a
production set of pairs (x , y), where x , y are each a bundles
(of goods). With x as raw materials, factory can produce y .
The production set is convex. Each factory maximizes its
profit independent of others.

I Each agent owns a fixed share of each factory.

I Now, there is a consumption bundle xi for each agent, a
“raw” bundle yl for factory l , produced bundle zl for factory l ,
all connected by obvious constraints. Each agent maximizes
utility plus share of all factories.

I Equilibrium: Prices at which individually optimized xi , yl , zl
clear the market.

Equilibrium with Production - Constant number of goods

I We can convert a market with production into one without
preserving (essentially) the set of equalibria by having a new
“good” and a new agent for each factory.

I But number of factories is not a constant, so does not reduce
to old case.

I More directly, going back to the cell decomposition : Each
factory’s production set is a polytope and by decomposing
cells further, we can ensure that the face of optimal
production bundles of every factory is fixed throughout the
(subdivided) cell.

I Proceed as earlier.... (Some more technical issues...)

Equilibrium with Production - Constant number of goods

I We can convert a market with production into one without
preserving (essentially) the set of equalibria by having a new
“good” and a new agent for each factory.

I But number of factories is not a constant, so does not reduce
to old case.

I More directly, going back to the cell decomposition : Each
factory’s production set is a polytope and by decomposing
cells further, we can ensure that the face of optimal
production bundles of every factory is fixed throughout the
(subdivided) cell.

I Proceed as earlier.... (Some more technical issues...)

Equilibrium with Production - Constant number of goods

I We can convert a market with production into one without
preserving (essentially) the set of equalibria by having a new
“good” and a new agent for each factory.

I But number of factories is not a constant, so does not reduce
to old case.

I More directly, going back to the cell decomposition : Each
factory’s production set is a polytope and by decomposing
cells further, we can ensure that the face of optimal
production bundles of every factory is fixed throughout the
(subdivided) cell.

I Proceed as earlier.... (Some more technical issues...)

Equilibrium with Production - Constant number of goods

I We can convert a market with production into one without
preserving (essentially) the set of equalibria by having a new
“good” and a new agent for each factory.

I But number of factories is not a constant, so does not reduce
to old case.

I More directly, going back to the cell decomposition : Each
factory’s production set is a polytope and by decomposing
cells further, we can ensure that the face of optimal
production bundles of every factory is fixed throughout the
(subdivided) cell.

I Proceed as earlier.... (Some more technical issues...)

