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Carathéodory’s Theorem

Any vector in the convex hull of a set V in Rd can be expressed as

a convex combination of at most d+ 1 vectors of V .
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Approx. Carathéodory’s Theorem

Given set V in the p-unit ball with norm p ≥ 2, for every vector in

the convex hull of V there exists an ε-close (under p-norm distance)

vector that is a convex combination of at most 4p
ε2 vectors of V .
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Given set V in the p-unit ball with norm p ≥ 2, for every vector in

the convex hull of V there exists an ε-close (under p-norm distance)

vector that is a convex combination of at most 4p
ε2 vectors of V .

Proof: Instantiating Maurey’s Lemma.

Alternatively, via Khintchine inequality.



Application I: Approximating Nash Equilibria
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Nash equilibrium in two-player games is PPAD-hard [GP06,
DGP06, CD06, CDT09].
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Focus: Two-Player Games

Two-Player Games model settings in which two self-interested
entities simultaneously select actions to maximize their own payoffs.



Payoff matrices A and B of size n× n
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Nash equilibrium (x, y): No player can benefit by unilateral
deviation

eTi Ay ≤ xTAy ∀i ∈ [n] and

xTBej ≤ xTBy ∀j ∈ [n]



Payoff matrices A and B of size n× n
Probability vectors over [n]: x and y

Nash equilibrium (x, y): No player can benefit by unilateral
deviation

eTi Ay ≤ xTAy ∀i ∈ [n] and

xTBej ≤ xTBy ∀j ∈ [n]

Approximate Nash equilibrium (x, y): No player can benefit
more than ε by unilateral deviation

eTi Ay ≤ xTAy + ε ∀i ∈ [n] and

xTBej ≤ xTBy + ε ∀j ∈ [n]



Computation of Eq. in Two-Player Games

Nash Equilibria

General Games: Exp. time
[Lemke & Howson 1964]

Zero-Sum Games: Poly. time
[von Neumann 1928, Dantzig

1951]
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Nash Equilibria

General Games: Exp. time
[Lemke & Howson 1964]
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Low-Rank Games: (1/ε)rank

[Alon et al. 2013]

This Talk: Sparsity
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The sparsity of a game (A,B) is defined to be the maximum
number of non-zero entries in any column of A+B.
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number of non-zero entries in any column of A+B.

• Sparsity = 0 in zero-sum games

• In general, sparsity is at most n



Definition (Sparsity of a Game)

The sparsity of a game (A,B) is defined to be the maximum
number of non-zero entries in any column of A+B.

Theorem

In a two-player s-sparse game an ε-Nash equilibrium can be

computed in time nO(log s/ε2).

Payoff matrices normalized A,B ∈ [−1, 1]n×n.



Definition (Sparsity of a Game)

The sparsity of a game (A,B) is defined to be the maximum
number of non-zero entries in any column of A+B.

Theorem

In a two-player s-sparse game an ε-Nash equilibrium can be

computed in time nO(log s/ε2).

Implications:

• When s is a fixed constant we get a polynomial-time algorithm

• For general games (s ≤ n) the running time matches the
best-known upper bound: nO(logn/ε2) [LMM’03].



Nash eq: eTi Ay ≤ xTAy ∀i and

xTBej ≤ xTBy ∀j

Bilinear Program for Nash Eq. [MS’64]

maximize xT (A+B)y − π1 − π2
subject to xTB ≤ π2 and Ay ≤ π1

x, y ∈ ∆n and π1, π2 ∈ [−1, 1]
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Say (x∗, y∗) is a Nash eq. Given u∗ = Cy∗ we get an LP.

maximize xTu∗ − π1 − π2
subject to xTB ≤ π2 and Ay ≤ π1

x, y ∈ ∆n and π1, π2 ∈ [−1, 1]

Cy = u∗

A vector close to Cy∗ is sufficient to find an approx. Nash eq.
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Idea: Exhaustively search for w′,
by enumerating subsets of columns of C.
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General Result

We can efficiently approximate any sparse bilinear or
quadratic form over the simplex.



Application II: Approximation Algorithm for Densest Subgraph



Normalized Densest Subgraph Problem

Given: Graph G and size parameter k

Objective: Find vertex subset S of size k such that
density(S) is maximized.

density(S) :=
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Normalized Densest Subgraph Problem

Given: Graph G and size parameter k

Objective: Find vertex subset S of size k such that
density(S) is maximized.

density(S) :=
# edges in S

k2

Theorem

In a degree d graph, an ε additive approximation for the
densest bipartite subgraph problem can be computed in time

nO(ε−2 log(d/k)).



X Application I: Approximating Nash Equilibria

X Application II: Approximating Dense Subgraphs

General Result

We can efficiently approximate any sparse bilinear or
quadratic form over the simplex.



Extensions

• Convex hull of matrices with entrywise norm and Schatten
p-norm

• Shapley-Folkman Lemma

• Colorful Carathéodory Theorem

• Finding close vectors via linear optimization oracles
(Mirrokni et al., 2015)
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Khintchine Inequality

Let r1, r2, . . . , rm be a sequence of i.i.d. random variables
with Pr(ri = ±1) = 1

2
In addition, let u1, u2, . . . , um ∈ Rd be a deterministic se-
quence of vectors. Then, for 2 ≤ p <∞

E

∥∥∥∥∥
m∑

i=1

riui

∥∥∥∥∥
p

≤ √p
(

m∑

i=1

‖ui‖2p

) 1
2


