Approximating Nash Equilibria via an
 Approximate Version of Carathéodory's Theorem

Siddharth Barman

Indian Institute of Science

Carathéodory's Theorem

Any vector in the convex hull of a set V in \mathbb{R}^{d} can be expressed as a convex combination of at most $d+1$ vectors of V.

Approx. Carathéodory's Theorem

Given set V in the p-unit ball with norm $p \geq 2$, for every vector in the convex hull of V there exists an ε-close (under p-norm distance) vector that is a convex combination of at most $\frac{4 p}{\varepsilon^{2}}$ vectors of V.

Approx. Carathéodory's Theorem

Given set V in the p-unit ball with norm $p \geq 2$, for every vector in the convex hull of V there exists an ε-close (under p-norm distance) vector that is a convex combination of at most $\frac{4 p}{\varepsilon^{2}}$ vectors of V.

Proof: Instantiating Maurey's Lemma.
Alternatively, via Khintchine inequality.

Application I: Approximating Nash Equilibria

Payoffs

Nash equilibrium in two-player games is PPAD-hard [GP06, DGP06, CD06, CDT09].

Payoffs
$\left.\begin{array}{|cccc}2 & 7 & \cdots & 1 \\ 8 & 2 & \cdots & 8 \\ \vdots & \vdots & \ddots & \vdots \\ 18 & 28 & \cdots & 4\end{array}\right),\left(\begin{array}{cccc}3 & 1 & \cdots & 4 \\ 1 & 5 & \cdots & 9 \\ \vdots & \vdots & \ddots & \vdots \\ 26 & 5 & \cdots & 35\end{array}\right) \xrightarrow[{\begin{array}{c}\text { Hard even in } \\ \text { two-player } \\ \text { games } \\ \text { [DGP06, } \\ \text { CDT09] }\end{array}}\end{array}]{\text { Algorithm }} \xrightarrow[\text { Prob. }]{\text { Player 1 }}$

Focus: Two-Player Games

Focus: Two-Player Games

Two-Player Games model settings in which two self-interested entities simultaneously select actions to maximize their own payoffs.

Payoff matrices A and B of size $n \times n$

$$
\begin{aligned}
& \\
& 1 \\
& 2 \\
& \vdots \\
& n
\end{aligned}\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n 1} & A_{n 2} & \cdots & A_{n n}
\end{array}\right) \quad \begin{gathered}
1 \\
2
\end{gathered}\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
B_{11} & B_{12} & \cdots & B_{1 n} \\
B_{21} & B_{22} & \cdots & B_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
B_{n 1} & B_{n 2} & \cdots & B_{n n}
\end{array}\right)
$$

Payoff matrices A and B of size $n \times n$
Probability vectors over $[n]: x$ and y

Payoff matrices A and B of size $n \times n$
Probability vectors over $[n]: x$ and y
Nash equilibrium (x, y) : No player can benefit by unilateral deviation

$$
\begin{aligned}
e_{i}^{T} A y \leq x^{T} A y & \forall i \in[n] \text { and } \\
x^{T} B e_{j} \leq x^{T} B y & \forall j \in[n]
\end{aligned}
$$

Payoff matrices A and B of size $n \times n$
Probability vectors over $[n]: x$ and y
Nash equilibrium (x, y) : No player can benefit by unilateral deviation

$$
\begin{aligned}
e_{i}^{T} A y \leq x^{T} A y & \forall i \in[n] \text { and } \\
x^{T} B e_{j} \leq x^{T} B y & \forall j \in[n]
\end{aligned}
$$

Approximate Nash equilibrium (x, y) : No player can benefit more than ε by unilateral deviation

$$
\begin{aligned}
e_{i}^{T} A y & \leq x^{T} A y+\varepsilon & \forall i \in[n] \text { and } \\
x^{T} B e_{j} & \leq x^{T} B y+\varepsilon & \forall j \in[n]
\end{aligned}
$$

Computation of Eq. in Two-Player Games

Nash Equilibria

General Games: Exp. time
[Lemke \& Howson 1964]
Zero-Sum Games: Poly. time [von Neumann 1928, Dantzig 1951]

Computation of Eq. in Two-Player Games

Nash Equilibria
General Games: Exp. time [Lemke \& Howson 1964]

Zero-Sum Games: Poly. time [von Neumann 1928, Dantzig 1951]

Approximate Nash Equilibria
General Games: $n^{O\left(\log n / \varepsilon^{2}\right)}$
[Lipton et al. 2003]
Low-Rank Games: $(1 / \varepsilon)^{\text {rank }}$
[Alon et al. 2013]

Computation of Eq. in Two-Player Games

Nash Equilibria
General Games: Exp. time [Lemke \& Howson 1964]

Zero-Sum Games: Poly. time [von Neumann 1928, Dantzig 1951]

Approximate Nash Equilibria
General Games: $n^{O\left(\log n / \varepsilon^{2}\right)}$
[Lipton et al. 2003]
Low-Rank Games: $(1 / \varepsilon)^{\text {rank }}$
[Alon et al. 2013]

This Talk: Sparsity

Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum number of non-zero entries in any column of $A+B$.

Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum number of non-zero entries in any column of $A+B$.

- Sparsity $=0$ in zero-sum games
- In general, sparsity is at most n

Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum number of non-zero entries in any column of $A+B$.

Theorem

In a two-player s-sparse game an ε-Nash equilibrium can be computed in time $n^{O\left(\log s / \varepsilon^{2}\right)}$.

Payoff matrices normalized $A, B \in[-1,1]^{n \times n}$.

Definition (Sparsity of a Game)

The sparsity of a game (A, B) is defined to be the maximum number of non-zero entries in any column of $A+B$.

Theorem

In a two-player s-sparse game an ε-Nash equilibrium can be computed in time $n^{O\left(\log s / \varepsilon^{2}\right)}$.

Implications:

- When s is a fixed constant we get a polynomial-time algorithm
- For general games $(s \leq n)$ the running time matches the best-known upper bound: $n^{O\left(\log n / \varepsilon^{2}\right)}$ [LMM'03].

Nash eq: $\quad e_{i}^{T} A y \leq x^{T} A y \quad \forall i$ and

$$
x^{T} B e_{j} \leq x^{T} B y \quad \forall j
$$

Bilinear Program for Nash Eq. [MS'64]

$$
\begin{aligned}
\operatorname{maximize} & x^{T}(A+B) y-\pi_{1}-\pi_{2} \\
\text { subject to } & x^{T} B \leq \pi_{2} \quad \text { and } \quad A y \leq \pi_{1} \\
& x, y \in \Delta^{n} \quad \text { and } \quad \pi_{1}, \pi_{2} \in[-1,1]
\end{aligned}
$$

Nash eq: $\quad e_{i}^{T} A y \leq x^{T} A y \quad \forall i$ and

$$
x^{T} B e_{j} \leq x^{T} B y \quad \forall j
$$

Bilinear Program for Nash Eq. [MS'64]

$$
\begin{aligned}
\operatorname{maximize} & x^{T} C y-\pi_{1}-\pi_{2} \\
\text { subject to } & x^{T} B \leq \pi_{2} \quad \text { and } \quad A y \leq \pi_{1} \\
& x, y \in \Delta^{n} \quad \text { and } \quad \pi_{1}, \pi_{2} \in[-1,1]
\end{aligned}
$$

Bilinear Program for Nash Eq. [MS'64]

maximize $x^{T} C y-\pi_{1}-\pi_{2}$
subject to $\quad x^{T} B \leq \pi_{2} \quad$ and $\quad A y \leq \pi_{1}$

$$
x, y \in \Delta^{n} \quad \text { and } \quad \pi_{1}, \pi_{2} \in[-1,1]
$$

Bilinear Program for Nash Eq. [MS'64]

$$
\begin{aligned}
\operatorname{maximize} & x^{T} C y-\pi_{1}-\pi_{2} \\
\text { subject to } & x^{T} B \leq \pi_{2} \quad \text { and } \quad A y \leq \pi_{1} \\
& x, y \in \Delta^{n} \quad \text { and } \quad \pi_{1}, \pi_{2} \in[-1,1]
\end{aligned}
$$

Say $\left(x^{*}, y^{*}\right)$ is a Nash eq. Given $u^{*}=C y^{*}$ we get an LP.

$$
\operatorname{maximize} \quad x^{T} u^{*}-\pi_{1}-\pi_{2}
$$

$$
\text { subject to } \quad x^{T} B \leq \pi_{2} \quad \text { and } \quad A y \leq \pi_{1}
$$

$$
x, y \in \Delta^{n} \quad \text { and } \quad \pi_{1}, \pi_{2} \in[-1,1]
$$

$$
C y=u^{*}
$$

Bilinear Program for Nash Eq. [MS'64]

$$
\begin{aligned}
\operatorname{maximize} & x^{T} C y-\pi_{1}-\pi_{2} \\
\text { subject to } & x^{T} B \leq \pi_{2} \quad \text { and } \quad A y \leq \pi_{1} \\
& x, y \in \Delta^{n} \quad \text { and } \quad \pi_{1}, \pi_{2} \in[-1,1]
\end{aligned}
$$

Say $\left(x^{*}, y^{*}\right)$ is a Nash eq. Given $u^{*}=C y^{*}$ we get an LP.

$$
\begin{aligned}
\operatorname{maximize} & x^{T} u^{*}-\pi_{1}-\pi_{2} \\
\text { subject to } & x^{T} B \leq \pi_{2} \quad \text { and } \quad A y \leq \pi_{1} \\
& x, y \in \Delta^{n} \quad \text { and } \quad \pi_{1}, \pi_{2} \in[-1,1] \\
& C y=u^{*}
\end{aligned}
$$

A vector close to $C y^{*}$ is sufficient to find an approx. Nash eq.

Bilinear Program for Nash Eq. [MS'64]

maximize $x^{T} C y-\pi_{1}-\pi_{2}$
subject to $\quad x^{T} B \leq \pi_{2} \quad$ and $\quad A y \leq \pi_{1}$

$$
x, y \in \Delta^{n} \quad \text { and } \quad \pi_{1}, \pi_{2} \in[-1,1]
$$

Bilinear Program for Nash Eq. [MS'64]

$$
\begin{aligned}
\operatorname{maximize} & x^{T} C y-\pi_{1}-\pi_{2} \\
\text { subject to } & x^{T} B \leq \pi_{2} \quad \text { and } \quad A y \leq \pi_{1} \\
& x, y \in \Delta^{n} \quad \text { and } \quad \pi_{1}, \pi_{2} \in[-1,1]
\end{aligned}
$$

Note: If C_{i} is s-sparse then $\left\|C_{i}\right\|_{\log s} \leq 2$

Bilinear Program for Nash Eq. [MS'64]

$$
\begin{array}{rll}
\operatorname{maximize} & x^{T} C y-\pi_{1}-\pi_{2} \\
\text { subject to } & x^{T} B \leq \pi_{2} \quad \text { and } & A y \leq \pi_{1} \\
& x, y \in \Delta^{n} \quad \text { and } & \pi_{1}, \pi_{2} \in[-1,1]
\end{array}
$$

Note: If C_{i} is s-sparse then $\left\|C_{i}\right\|_{\log s} \leq 2$

Bilinear Program for Nash Eq. [MS'64]

$$
\begin{array}{rll}
\operatorname{maximize} & x^{T} C y-\pi_{1}-\pi_{2} \\
\text { subject to } & x^{T} B \leq \pi_{2} \quad \text { and } & A y \leq \pi_{1} \\
& x, y \in \Delta^{n} \quad \text { and } & \pi_{1}, \pi_{2} \in[-1,1]
\end{array}
$$

Idea: Exhaustively search for w^{\prime}

Bilinear Program for Nash Eq. [MS'64]

$$
\begin{array}{rll}
\operatorname{maximize} & x^{T} C y-\pi_{1}-\pi_{2} \\
\text { subject to } & x^{T} B \leq \pi_{2} \quad \text { and } & A y \leq \pi_{1} \\
& x, y \in \Delta^{n} \quad \text { and } & \pi_{1}, \pi_{2} \in[-1,1]
\end{array}
$$

Idea: Exhaustively search for w^{\prime}, by enumerating subsets of columns of C.

Bilinear Program for Nash Eq. [MS'64]

maximize $\quad x^{T} C y-\pi_{1}-\pi_{2}$
subject to $\quad x^{T} B \leq \pi_{2} \quad$ and $\quad A y \leq \pi_{1}$

$$
x, y \in \Delta^{n} \quad \text { and } \quad \pi_{1}, \pi_{2} \in[-1,1]
$$

Theorem

In a two-player s-sparse game an ε-Nash equilibrium can be computed in time $n^{O\left(\log s / \varepsilon^{2}\right)}$.

Bilinear Program for Nash Eq. [MS'64]

$$
\begin{array}{rll}
\operatorname{maximize} & x^{T} C y-\pi_{1}-\pi_{2} \\
\text { subject to } & x^{T} B \leq \pi_{2} \quad \text { and } & A y \leq \pi_{1} \\
& x, y \in \Delta^{n} \quad \text { and } & \pi_{1}, \pi_{2} \in[-1,1]
\end{array}
$$

General Result

We can efficiently approximate any sparse bilinear or quadratic form over the simplex.

Application II: Approximation Algorithm for Densest Subgraph

Normalized Densest Subgraph Problem
Given: Graph G and size parameter k

Normalized Densest Subgraph Problem
Given: Graph G and size parameter k
Objective: Find vertex subset S of size k such that density (S) is maximized.

Normalized Densest Subgraph Problem
Given: Graph G and size parameter k
Objective: Find vertex subset S of size k such that density (S) is maximized.

$$
\operatorname{density}(S):=\frac{\# \text { edges in } S}{k^{2}}
$$

Normalized Densest Subgraph Problem
Given: Graph G and size parameter k
Objective: Find vertex subset S of size k such that density (S) is maximized.

$$
\operatorname{density}(S):=\frac{\# \text { edges in } S}{k^{2}}
$$

Theorem

In a degree d graph, an ε additive approximation for the densest bipartite subgraph problem can be computed in time

$$
n^{O\left(\varepsilon^{-2} \log (d / k)\right)}
$$

\checkmark Application I: Approximating Nash Equilibria
\checkmark Application II: Approximating Dense Subgraphs

General Result

We can efficiently approximate any sparse bilinear or quadratic form over the simplex.

Extensions

- Convex hull of matrices with entrywise norm and Schatten p-norm
- Shapley-Folkman Lemma
- Colorful Carathéodory Theorem
- Finding close vectors via linear optimization oracles (Mirrokni et al., 2015)

Extensions

- Convex hull of matrices with entrywise norm and Schatten p-norm
- Shapley-Folkman Lemma
- Colorful Carathéodory Theorem
- Finding close vectors via linear optimization oracles (Mirrokni et al., 2015)

Khintchine Inequality

Let $r_{1}, r_{2}, \ldots, r_{m}$ be a sequence of i.i.d. random variables with $\operatorname{Pr}\left(r_{i}= \pm 1\right)=\frac{1}{2}$
In addition, let $u_{1}, u_{2}, \ldots, u_{m} \in \mathbb{R}^{d}$ be a deterministic sequence of vectors. Then, for $2 \leq p<\infty$

$$
\mathbb{E}\left\|\sum_{i=1}^{m} r_{i} u_{i}\right\|_{p} \leq \sqrt{p}\left(\sum_{i=1}^{m}\left\|u_{i}\right\|_{p}^{2}\right)^{\frac{1}{2}}
$$

