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Problem: Can we optimize the prices to maximize profit
for the seller?

The utility that the customer gets from purchasing a product is
modeled as:

Ũj = Wj − pj + ε̃j j ∈ N ∪ {0}, (1)

where pj is the price of the product and Wj is the observable utility
associated with other attributes of the product j . The random
error term ε̃j models the unobservable characteristics of the utility
function.

For a given price vector p = (p1, . . . , pn), the probability that a
customer selects product j is:

Pj(p) = P

(
Wj − pj + ε̃j ≥ max

k∈N∪{0}
(Wk − pk + ε̃k)

)
.
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Challenge:

Companies build elaborate market share simulation model to
evaluate the perofrmance of pricing proposals...

Can we learn from these experiments to obtain the
optimal prices?
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Theme: Predicting Choices in Optimization and Games

Solve general random mixed 0-1 LP problem under objective
uncertainty:

Z (c̃) := max
x∈P

n∑
j=1

c̃jxj ,

P := {x ∈ Rn : aT
i x = bi , ∀i , xj ∈ {0, 1} , ∀j ∈ B ⊆ {1, . . . , n} , x ≥ 0}.

(eg. c̃ ∼ N(µ,Σ))

Goal: Design “c̃” to obtain desired x.

What is P(xi(c̃) = 1)?
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Example: Discrete Choice

Which product will she buy?

Assumes consumer maximizes utility

Z (c̃) := max
x∈P

n∑
j=1

c̃jxj , c̃j utility of product j

P := {x ∈ Rn :
n∑

i=1

xi = 1, xj ∈ {0, 1} , ∀j x ≥ 0}.

How to model c̃?
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Example: Discrete Choice

Z (c̃) := max
x∈P

n∑
j=1

c̃jxj , c̃j utility of product j

P := {x ∈ Rn :
n∑

i=1

xi = 1, xj ∈ {0, 1} , ∀j x ≥ 0}.

Logit Model

c̃j =

weights︷︸︸︷
β ·

attributes︷︸︸︷
Aj +

noise︷︸︸︷
ε̃j (eg. i.i.d. Gumbel

Distribution)

P

(
xj(c̃) = 1

)
= eβ·Aj∑n

k=1 e
β·Aj

,

β estimated from observed choices
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Issue: Discrete Choice

Logit Model

c̃j =

weights︷︸︸︷
β ·

attributes︷︸︸︷
Aj +

noise︷︸︸︷
ε̃j (eg. i.i.d. Gumbel

Distribution)

Which product will she buy? What is the outside option?

Scale - idosyncratic noise for outside option is different

Heterogeneity - each customer is different
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Learning from Experiments

Choose a Parametric Form

Heavily depend on a “convenient guess” of the underlying
choice model

Limited to some well studied choice models (e.g. pricing with
MNL(Song et al, 2007),Nest-L(Li et al, 2011))

Parameter estimation itself can be extremely complicated (eg.
Random Coefficient Logit or Mixed MNL)
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Learning from Experiments

Heavily depend on “Good guess” of the underline choice
model

Pricing problem is convex only under some well studied choice
models(pricing with MNL(Song et al, 2007), Nest-L(Li et al,
2011))

Parameters Estimation can be extremely complicated (eg.
Mixed MNL)
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Learning from Experiments

Figure: Can we use experimental data to guid ethe
choice of choice model (or Marginal Distribution)?

Heavily depend on “Good guess” of the underline choice
model
Limited to some well studied choice models(pricing with
MNL(Song et al, 2007),Nest-L(Li et al, 2011))
Estimation itself can be extremely complicated(MMNL)
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Approximation: Marginal Distribution Models

Define

Z (Ũi) = max

{∑
k∈K

Ũikyik :
∑
k∈K

yik = 1, yik ∈ {0, 1} ∀k ∈ K
}
.

Solve

max
θ∈Θ

Eθ

(
Z (Ũi)

)
.

When Θ denotes the family of probability distributions with
prescribed marginals, we obtain the Marginal Distribution Model
(MDM).

Predict choices using the extremal distribution given by:

θ∗ = arg max
θ∈Θ

Eθ

(
Z (Ũi)

)
.
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Approximation: Marginal Distribution Models

Theorem (Natarajan, Song and Teo (2009))

For consumer i , assume that the marginal distribution Fik(.) of the
error term ε̃ik is a continuous distribution for all k ∈ K.

The following concave maximization problem solves the Marginal
Distribution Model problem:

max
Pi

{∑
k∈K

(
VikPik +

∫ 1

1−Pik

F−1
ik (t)dt

)
:
∑
k∈K

Pik = 1, Pik ≥ 0 ∀k ∈ K
}

and the choice probabilities under an extremal distribution θ∗ is the
optimal solution vector P∗i .

We can solve a compact convex programming problem to obtain
the choice probabilities for the extremal distribution.
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Marginal Distribution Models

First Order Conditions are necessary and sufficient:

P∗ik = 1− Fik(λi − Vik), (2)

where the Lagrange multiplier λi satisfies the following
normalization condition:∑

k∈K
P∗ik =

∑
k∈K

(
1− Fik(λi − Vik)

)
= 1. (3)

Suppose Fik(ε) = 1− e−ε for ε ≥ 0.
Solving the FOC:

Pik =
eVik∑

l∈K
eVil

= LOGIT !
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Marginal Distribution Models

Theorem (MIshra et al. (2014))

Set Vi1 = 0. Assume MDM with error terms ε̃ik , k ∈ K that have a
strictly increasing continuous marginal distribution Fik(·) defined
either on a semi-infinite support [εik ,∞) or an infinite support
(−∞,∞). Let ∆K−1 be the K − 1 dimensional simplex of choice
probabilities:

∆K−1 =

{
Pi = (Pi1, . . . ,PiK) :

∑
k∈K

Pik = 1, Pik ≥ 0 ∀k ∈ K

}
.

Let Φ(Vi2, . . . ,ViK ) : <K−1 → ∆K−1 be a mapping from the
deterministic components of the utilities to the choice probabilities
under MDM. Then φ is a bijection between <K−1 and the interior
of the simplex ∆K−1.

MDM can model almost any choice formula!
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Change of variables to xi (Ũ):

sup
θ∈Θ

E [max
x

N∑
i=0

(Ũi − pi )xi (Ũ)]

s.t.
N∑
i=0

xi (Ũ) = 1

xi ∈ {0, 1} i = 0, 1, . . . ,N.

(4)

Obtained from solving the following concave maximization
problem:

max −
N∑
i=1

pixi +
N∑
i=0

∫ 1
1−xi F

−1
i (t)dt

s.t.
N∑
i=0

xi = 1

x ≥ 0

(5)
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Optimality condition on (5) yields

pi = F−1
i (1− xi )− F−1

0 (1− x0),
N∑
i=0

xi = 1.

Projecting out the variables p:

max
x≥0

−
N∑
i=1

wixi +
N∑
i=1

[xiF
−1
i (1− xi )]− (1− x0)F−1

0 (1− x0)

s.t.
N∑
i=0

xi = 1

xi ≥ 0, i = 0, 1, . . . ,N
(6)
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Define
Fi (ε) = 1− e−ε, ε ≥ 0, i = 0, . . . ,N

recover the pricing optimization model in Song et al, 2007 for
LOGIT

Define

Fik(ε) = 1− e−ε(

Mk∑
j=1

eajk−bkpjk )τk−1, ε ≥ (τk − 1) ln(

Mk∑
j=1

eajk−bkpjk )

recover the pricing model in Li et al, 2011 for Nested LOGIT.

Both are shown to be convex with respect to market
share.
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Generalization:

Theorem 2

Under Conditions

A1. The marginal distribution of each product Fi , i = 1, . . . ,N
satisfied that xF−1

i (1− x), i = 1, . . . ,N is concave function.

A2. The distribution of outside option F0 satisfied that xF−1
0 (x) is

convex function.

the optimal pricing problem (8) is a convex problem with respect
to market share x. If the optimal solution of (8) is x∗, then the
optimal price strategy is

p∗i = F−1
i (1− x∗i )− F−1

0 (1− x∗0 ), i = 1, 2, . . . ,N.
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Proposition 1

Let F (x) is cumulative distribution function, then

(i) Function xF−1(1− x) is concave if and only if function 1
1−F (x)

is convex.

(ii) Function xF−1(x) is convex if and only if function 1
F (x) is

convex.

Corollary 1

Condition A1 and A2 hold if the marginal distributions satisfy the
following conditions:(i) The tail distribution F̄i (y), i = 1, . . . ,N is
log-concave; (ii) The distribution F0(y) is log-concave.
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How to optimize the prices given a sales data set?

Recall: max
x≥0

−
N∑
i=1

wixi +
N∑
i=1

[xiF
−1
i (1− xi )]− (1− x0)F−1

0 (1− x0)

s.t.
N∑
i=0

xi = 1

xi ≥ 0, i = 0, 1, . . . ,N
(7)

Theorem 2

Convexity Preserving Conditions

A1. The marginal distribution of each product Fi , i = 1, . . . ,N
satisfied that xF−1

i (1− x), i = 1, . . . ,N is concave function.

A2. The distribution of outside option F0 satisfied that xF−1
0 (x) is

convex function.

Choose Fi (·) to satisfy these properties!
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How to optimize the prices given a sales data set?
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x≥0
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i (1− xi )]− (1− x0)F−1

0 (1− x0)
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N∑
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Define

y0k := (1− x0k)F−1
0 (1− x0k)

yik := xikF
−1
i (1− xik), i = 1, . . . ,N, k = 1, . . . ,M
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Estimation Problem

Penalize deviation from FOC, while preserving convexity and
monotinicty condition for marginals

min
yi,k

N∑
i=1

M∑
k=1

| yi,kxi,k
− y0,k(i)

1−x0,k(i)
− pi,k(i)|

pi,k(i)
(9)

s.t.
xi,k − xi,k−1

xi,k+1 − xi,k−1
yi,k+1 +

xi,k+1 − xi,k
xi,k+1 − xi,k−1

yi,k−1 ≤yi,k ,∀i , k (10)

x0,k − x0,k−1

x0,k+1 − x0,k−1
y0,k+1 +

x0,k+1 − x0,k

x0,k+1 − x0,k−1
y0,k−1 ≥y0,k ,∀k (11)

yi,k
xi,k

≤yi,k−1

xi,k−1
∀i , k

(12)
y0,k

1− x0,k
≤ y0,k−1

1− x0,k−1
∀k

(13)
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Optimization Problem:

Optimize over the piece wise linear extension of the fitted
values:

Π := max −
N∑
i=1

wixi +
N∑
i=1

δi − δ0

s.t. δi ≤ yi ,k +
yi,k+1−yi,k
xi,k+1−xi,k (xi − xi ,k), k = 1, . . . ,M, i = 1, . . . ,N

δ0 ≥ y0,k +
y0,k+1−y0,k

x0,k+1−x0,k
(x0 − x0,k), k = 1, . . . ,M

N∑
i=0

xi = 1

xi ≤ xi ,M ,∀i = 0, ...,N
xi ≥ xi ,1,∀i = 0, ...,N
x ≥ 0

(14)
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Proposition 2

For those model whose underline marginal distribution satisfy
Proposition 1, the estimation based optimization method converge
to the true optimal price when number of experiments goes to
infinity.

This approach can also be used to calibrate parametric choice
models based on MLE.
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Back to motivating example

Table: Prices Comparison

Product Current Price Proposed price
1 45520.91399 41018.1861
2 46906.03611 44608.3848
3 45056.02187 40606.392
4 43874.26176 41728.8295
5 47028.20538 44727.9726
6 42044.17735 39988.7095
7 45522.53382 41030.0762
8 39455 43412.7395
9 37955 39878.1332

10 33182.13546 34857.0785
11 27255 29989.6299
12 35926.64048 39519.3045
13 33550.38213 36905.4203
14 37955 39874.9055
15 39750 39749.5152
16 35809.00655 35808.2287
17 38227.44957 40156.3871
18 41250 43335.706
19 36061.2079 37214.3777
20 39750 39744.1765

Profit: 182.833957 195.983138

7.19% improvement
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Table: Attributes and levels

Product Brand Engine Capacity Drive Type Fuel Economy (mpg)
1 1 2.5 1 28.3
2 1 3 2 20.51
3 1 3 1 21.57
4 1 3.6 2 20.36
5 1 3.6 2 25.4
6 1 3.6 1 21.32
7 1 3.6 1 26.44
8 2 3.6 2 25.4
9 2 2.5 1 28.3

10 2 2.5 1 22.24
11 2 2.5 1 24.88
12 2 3.6 2 20.36
13 2 3.6 1 21.32
14 2 3.6 1 26.44
15 3 2.5 1 28.3
16 3 2.5 1 22.24
17 3 3.6 2 20.36
18 3 3.6 2 25.4
19 3 3.6 1 21.32
20 3 3.6 1 26.44

Assume β̃ follows a Multi-normal distribution

β̃ ∼



−3.23599
4.47746
3.76418

0.891799

 ,


0.05 0 0 0

0 0.05 0 0
0 0 0.05 0
0 0 0 0.01



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Pricing with Random Coefficient Logit Model

Iteration Procedure
Step 1. Start iteration from the current price, denoted as p0.
Step 2. Randomly generate a set of prices p. The generated price
uniformly distributed with mean p0 and with deviation ±5% from the
base price.

Step 3. Under each price p, we use x
(k)
i = e

β′k xi−pi
pi

1+
N∑
j=1

e

β′
k

xj−pj
pj

to get the

choice probability of Product i under each βk sampled from the given

distribution. Take average of x
(k)
i to get Product i ’s market share Xi

under p. Outside market share equals to 1−
N∑
i=1

Xi .

Step 4. Apply proposed procedure to get an optimal price p∗. Then
let p0 = p∗. Go to Step 1.
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Generate 10000 samples βk from the distribution above.

Price sample size: 500

Number of product, N = 20

Table: Optimal prices in the iteration

Product Round0 Round1 Round2 Round3 Round4 Round5 Round6
1 45.5209 45.2472 43.1932 40.6832 39.1126 39.5322 39.4915
2 46.906 48.1646 60.7988 150.878 − − −
3 45.056 46.7618 42.0065 40.431 39.4484 39.4596 38.377
4 43.8743 41.8156 39.3666 38.0697 37.9217 38.352 38.2271
5 47.0282 48.1509 45.4342 42.8126 40.6351 40.7921 40.6864
6 42.0442 42.7233 42.3595 36.4961 36.7091 36.7743 36.774
7 45.5225 42.0075 39.6487 39.329 39.4702 39.7232 39.5706
8 39.455 39.6334 40.2479 41.0651 40.9702 41.1461 40.8434
9 37.955 38.5537 38.1001 38.0518 39.6625 38.3735 39.3487

10 33.1821 33.6556 33.0572 32.3479 33.4629 33.6213 33.3792
11 27.255 28.6387 29.1422 29.624 29.5576 30.0567 29.903
12 35.9266 36.5762 36.9803 37.3772 37.5535 37.9936 37.6681
13 33.5504 34.3787 35.1876 36.3184 35.2446 35.6577 35.4948
14 37.955 38.466 38.8493 39.1859 40.1835 39.5088 39.6884
15 39.75 39.4852 37.8888 37.0477 36.7733 36.0479 36.5594
16 35.809 34.7961 33.8481 32.5897 31.5524 31.517 31.5248
17 38.2274 38.1956 37.7011 36.5208 37.642 37.0075 37.0053
18 41.25 38.5217 39.7071 40.0234 39.5396 40.6001 40.4594
19 36.0612 36.0526 35.186 34.1275 33.9306 35.2729 34.6411
20 39.75 38.0835 37.4906 38.9115 38.7519 40.4837 39.9537

Simulated Profit 2.1378 2.6155 2.8923 3.21788 3.5057 3.5137 3.5146
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Concluding Remarks

Provide a unified model on multi-product pricing with
customers’ choice model

Pricing problem remains convex for a large class of MDM
choice model

Data-driven approach for pricing under the random coefficient
LOGIT model

Assortment Problems leads to simple MIP problems.
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