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Introduction

The classical Colonel Blotto game is one of the earliest strategic
game used to model conflicts in multiple battlefields




Introduction

The classical Colonel Blotto game is one of the earliest strategic
game used to model conflicts in multiple battlefields

@ Two-person zero-sum game where two players simultaneously
allocate limited resources to multiple battlefields

@ The player who allocate more resources in one battlefield wins,
or has higher winning probability for that particular battlefield.
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@ whoever allocates the most troops to a front will win the front

@ the players do not know how their opponents will distribute
troops

@ players want to win as many fronts as possible.



Introduction

Example

Classical model: Each player has 100 troops for 3 fronts
@ whoever allocates the most troops to a front will win the front

@ the players do not know how their opponents will distribute
troops

@ players want to win as many fronts as possible.

Players | Front 1 | Front 2 | Front 3
1 100/3 | 100/3 | 100/3
2 50 50 0

Player 2 wins 2 fronts while Player 1 wins 1 front



Introduction
Equilibrium Strategy

No pure equilibrium strategy

Players | Front 1 | FRont 2 | Front 3
1 51 48 1
2 50 50 0




Introduction
Equilibrium Strategy

No pure equilibrium strategy

Players | Front 1 | FRont 2 | Front 3
1 51 48 1
2 50 50 0

Proposition [Gross and Wagner (1950)] The Colonel Blotto
game has a mixed strategy equilibrium in which the marginal
distributions are uniform on [0,2N/n] along all fronts.



Introduction

Equilibrium Strategy

No pure equilibrium strategy

Players | Front 1 | FRont 2 | Front 3
1 51 48 1
2 50 50 0

Proposition [Gross and Wagner (1950)] The Colonel Blotto
game has a mixed strategy equilibrium in which the marginal
distributions are uniform on [0,2N/n] along all fronts.

Construction of the joint equilibrium strategy is still not completely
solved
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Applications

https://sites.google.com /site/briankimblotto/home

Colonel Blotto

Introduction and History
History

Th del

Strategy

Applications
Extensions
Summary
Biblingraphy
About the Authar

Colonel Blotto is one of two games (the other being Prisoner's Dilemma) that made
game theory applicable to the real world. While Prisoner's Dilemma showed us the
challenge of reaching the preferred outcome of repeated interactions and mutual
cooperation, Colonel Blotto showed us the complexity of strategic allocation of limited
resources across domains, It is a zero sum game so when one player wins, the other
loses.

After first being introduced by Borel (1921), its popularity quickly waned until a recent
publication by Roberson (2006) started to revive its interest. A reason for the traditionally
low appeal of Blotto is its complexity. There is no right answer that shows how to win
Blotto, nor are there clear comparative statistics of results. In addition, the specificity of
Blotto makes it difficult to make modern day applications. However, a generalization of
Blotto paves the way for neater and cleaner results, as well as making it applicable to
numerous fields such as economics, policy, business, politics, law, biclogy, sports, and
philosophy. A closer examination of the model reveals that its complexity actually allows

for significant interpretations to be derived which does in fact give it relevance to the real
world.



Introduction

Real Play

http://www1l.maths.leeds.ac.uk/ pmt6jrp/personal /blotto.html
Colonel Blotto competition run in January 1990
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Sequential Blotto Game with Redeployment

Motivations

Attacker-Defender Model - Terrorists attacks

@ Attacker chooses timing of attacks based on defender
deployment

@ Defender’s ability to re-deploy forces crucial in the outcome




Sequential Blotto Game with Redeployment

Question

Suppose troops on some fronts can be re-deployed to other fronts
based on the attacker’s strategy

LRI

What is the optimal strategy for defender and attacker?



Sequential Blotto Game with Redeployment

Engagement Rules

Contest Success Function (CSF)
o Classical Blotto's CSF is not continuous on forces deployment

o Lottery Rule:

>
— di + af

leads however to simple pure equilibrium strategy

We modify the winning probability of defender on one front
to be

aj

4 ifdi<a,a#0
1, ifd;>a;,ora;=0
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Implications for Classical Blotto

@ Suppose the attacker's resources is k times the resources of
the defender (D).

@ Number of fronts = N

The following is an equilibrium strategy
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Sequential Blotto Game with Redeployment

Implications for Classical Blotto

@ Suppose the attacker's resources is k times the resources of
the defender (D).

@ Number of fronts = N
The following is an equilibrium strategy

(1)Defender evenly allocates its troops to each front, i.e.

di = %,Vi =1,...,N. (Pure Strategy)

(2). When k > 2, attacker will attack all the fronts and evenly
allocates its troops to each front, i.e. a; = %,Vi =1,..,N.
When k < 2, attacker will only attack M = int(%) number of
fronts (where int stands for the nearest integer value), and evenly
distribute its troops across those fronts, a; = %./Vi =1,..,N.
(Mixed strategy)



Sequential Blotto Game with Redeployment

Value of Flexibility: kK =1

In the Blotto Game, when k = 1, the value of the game to

defender is 0.75N:
Attacker chooses half the fronts to attack randomly and deploy
equal number of forces on each front.
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What can the defender do to increase this value if it has the option
to re-deploy troops?



Sequential Blotto Game with Redeployment

Value of Flexibility: kK =1

In the Blotto Game, when k = 1, the value of the game to
defender is 0.75N:

Attacker chooses half the fronts to attack randomly and deploy
equal number of forces on each front.

What can the defender do to increase this value if it has the option
to re-deploy troops?

If it has full flexibility, then the defender can win ALL the battle
fronts with redeployment option.

Value under full flexibility = N



Sequential Blotto Game with Redeployment
Value of Flexibility: kK =1

The defender do not need to have too much flexibility to
attain a value close to !

e Given a bipartite graph G(D, A, £), for any subset S C A, its
neighbour is defined as I'(S) = {i € D|(i,j) € &€,j € S}.

e Given a bipartite graph G(D, A, ) is a (o, A\, A)- Expander if
deg(v) < A for every node v € A. For any subset S C A
with |S| < a|A|, its neighbour size |[(S)| > A|S].

An (o, A, A)- Expander ensures that for a small subset S with
|S| < alA|, its neighbour is large enough to defend the forces in S.

Defender can achive a value of (1 — %)N under an expander
structure.



Sequential Blotto Game with Redeployment

Question

Which of the following is better for the defender?

MK

: Asymmetric graph  : Asymmetric graph : Asymmetric graph
example 1 example 2 example 3

Figure: Asymmetric redeployment examples



3-Stage Model

(Discretization) We assume there is a finite set of strategies
attacker can use, i.e. the number of troops attacker can locate to
each front are in a finite scenario set

S={ax,k=1,..,plai =0}

and 1
S=1{4]41=0,8,=—,Vk #£1}
ak



3-Stage Model

(Discretization) We assume there is a finite set of strategies
attacker can use, i.e. the number of troops attacker can locate to
each front are in a finite scenario set

S={ax,k=1,..,plai =0}

and
§S=1{4]41=0,8,=— Vk;él}

In the third stage, defender can redeploy its troop given both
parties’ allocation in the first and second stage.

%(d’y): max Z (ZI I,J)GQXUZkykJak)+Z Yij
s. t. Z,X,J <>k Yijak, Vi:(i,j)eg
ij,-jgd,-, Vi:(i,j)€g
xjj >0, Vi, j



3-Stage Model

In the second stage, attacker is to solve

Stage — 2 : fr(d) = min f3(d, ¥) (1)
y
with $; lying in the support of

(71> ) Jax < kD, yig = 1,Vj,yig € {0,1}}.
ik k



3-Stage Model

In the second stage, attacker is to solve
Stage — 2 : fr(d) = min f3(d, ¥) (1)
y
with $; lying in the support of
(71> ) Jax < kD, yig = 1,Vj,yig € {0,1}}.
ik k
In the first stage, the defender is to maximize the concave
function f(d) subjective to the total troops budget constraint.

Hence, the defender has a pure equilibrium strategy in the first
stage.



Defender's Model

Therefore, the defender is to solve

Stage—1:f = Zmax f(d) (2)

The dual for Stage-2 problem is a MIQP -
B(d)= min 32> Vijakey + 32 difi + 32 7j

s. t. o+ Bi — 3y Iijak — s =0 v(i,j)eg
> 2k Vikak +t = kD

D=1, vj
aj, Bi =2 0, Vi, Jj
)7kj S {0, 1}



Theory
Copositive and Completely Positive Cones

A completely positive cone is defined as

CPn = {M € S,3V € R*™ such that M = VVT}

k
= {Me€ S,|3vi, vy, ...,vk € RE  such that M = Z vivl}
i=1
where S, is n X n symmetric matrices.

Its dual, called copositive cone, is defined as

CO,:={MeS,|¥veR?, v Mv >0}



Copositive and Completely Positive Cones

A completely positive cone is defined as

CPn = {M € S,3V € R*™ such that M = VVT}

k
= {M € Sy|Tv1,va,...,vi € R],such that M=> wviv]}
i=1
where S, is n X n symmetric matrices.

Its dual, called copositive cone, is defined as
CO,:={MeS,|¥veR?, v Mv >0}

Burer (2009) showed that the well-known NP-hard
problem, nonconvex quadratic problems with a mixture of
binary and continuous variables has an equivalent completely
positive formulation.



Theory
Completely Positive Cone

Under mild technical conditions, all binary MIQP problems can be
reformulated as a (convex) conic program through lifting:

Xij = Xin

Theorem (Sam Burer)

Zp = maxX Z’Ll Q,-J-Xid-
s.t. alXaj—2bjalx+b2=0,Vi=1,...,m
X;;=,%j €B

1 xF
<x X)ECPO

The CP and COP problems can be solved via SDP relaxation.
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Approximating Choice Probability: Theory of Moments

Consider the following stochastic optimization problem:

Zp = sup E[Z(&)],
e~ (pE)"

where € ~ (i, )" means
€e{X : EX] = p, EXXT] = Z+ up",P(X > 0) = 1}.

Instead of full distributional information for €, assume we know
only the mean, variance and cp-variance of the uncertain
parameters
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Theory

Approximating Choice Probability: Theory of Moments

Consider the following stochastic optimization problem:

Zp = sup E[Z(&)],
e~ (pE)"

where € ~ (i, )" means
€e{X : EX] = p, EXXT] = Z+ up",P(X > 0) = 1}.

Instead of full distributional information for €, assume we know
only the mean, variance and cp-variance of the uncertain
parameters

e Optimize over a family of distributions with known
moments. Use extremal distribution to predict choices!

e Compare Jensen: inf JE [Z(€)] = Z(u).

c~(u,
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Approximating Choice Probability: Theory of Moments

Consider the following stochastic optimization problem:

ZP = sup E [Z(E)] )
E'\"(sz)+

where € ~ (i, )T means

e {X : E[X]=puEXXT] =X + puu",P(X >0) =1}.



Theory

Approximating Choice Probability: Theory of Moments

Consider the following stochastic optimization problem:

ZP = sup E [Z(E)] )
E'\"(Mvz)+

where € ~ (i, )T means

e {X : E[X]=puEXXT] =X + puu",P(X >0) =1}.

Theorem (Natarajan-Teo-Zheng (2011))

Zp=max 3 1,Yj
s.t. 1JXa,—2bax—|—b2—0V|—1
Xij=x,VjeB
1 ut xT

p T4 put YT =cp 0, x choice prob for worst ca
X Y X

v




Define
—1*0 I 1= —lg  Ogp O
T T T T T
J On: One Onxig| Owxig| O
Ogix(vxpy 1T 17 g hg 0

Az = (Inxp Onxpyxn  Onxpyxn  Onxpyx2ig 0 )

O(nx P2 5 O(nxP)x(N+2/G|+1)
H=| § On2 Onx(N+2/G|+1)

Onv+2i6/+1)x(NxP)  On+2ig1+1)xn On+2ig1+1)2



Consider following completely positive problem.

£CP(d) = min H-X+cTp Dual variables
Oy 1
s.t. Aip = 1’?\/ T = ;r_i
Bllg‘ ™
Oyg) b1
. A
dag(mxal)= | | e=| 3
B1g, ba
Aop — diag(AxXA]) = Onxp, K
L e\,
p X 7cp P
(4)

The completely positive program problem (4) is equivalent to
problem (3), i.e, f(d) = £F(d) for given d.



Theory
Co-positive Cone Formulation

(4 §)

1rTA1+;<;TA2
M = ATTl‘f—ATK, T ? T
H=2= AT N@)AL — Ay N(K)A2

The dual problem is
£C(d) =max p+ Am + 1] w3 + Blféﬂ” + Ao + 1’E¢+821|2\¢4
. t. C(d) = M 240 0
Therefore, we have a first stage problem formulated as
flco = max p-+ Amo + 1/-6773 + A2¢2 + 1/-6¢3
s. t. >.idi=D (5)
C(d)—M >, 0
d>0



Dedicated Graph - No Redeployment

N =10,D = A =10.
Attacker’s mixed strategies under dedicated structure is :

Attacker mixed strategy

WFront 1
MlFront 2
WFront 3
[Front 4

o
©

®

[CIFront 5
[IFront 6
IFront7

2

@

Front 8
MFront 9
MlFront 10

@ =

Pr(Number of troops allocated)
© oo o o o o o
S &

o =

J—— LT T —
4

Number of troops

Figure: Attacker's mixed strategy under dedicated graph

This computation result recovers the close-form equilibrium we
derived.



Numerical Experiments

2-Chain Structure (Long Cycle): Value of the game is 8.16.
The number of troops allocated to each front by the defender are 1
in equilibrium in all cases; Attacker's mixed strategies under
2-chain structure is given in

Attacker mixed strategy

WFront 1
WFront 2
06 Front 3
[WFront 4
[IFront5
08y [ JFront&
IFront7
04 [Front 8
MFront 9
WFront 10

Pr(Number of troops allocated)

o (TS LR Qe
0 1 2 3 4

Number of troops

Figure: Attacker's mixed strategy under 2-chain graph



Assymetric Structure

Which of the following is better for the defender?

NI

. Asymmetric graph : Asymmetric graph : Asymmetric graph
example 1 example 2 example 3

Figure: Asymmetric redeployment examples

8.11 8.18 7.91



For the third asymmetric graph, values of the game is 7.91. We
obtained the number of troops allocated to each front by defender
in Table 1.

Front 1 2 3 4 5 6 7 8 9 10
Troops | 1.06 054 195 054 098 099 150 080 032 1.31

Table: Defender's strategy for asymmetric graph 3

Attacker's mixed strategies is given in Figure 8

Attacker mixed strategy
WFront 1
Front 2

0.9 |
MlFront 3
F08: IFront 4
£ [ IFront5
gor [IFront6
= [CIFront7
206 WFront 8
H MFront9
=05 Front 10
5
5 0.4
£
Eos
3
02
01
0 P — S N —
3 1 2 3 4

Number of troops

Y, U D L I B T R



Conclusion

Concluding Remarks

@ This paper studies Blotto Game with sequential deployment
and redeployment

@ A modified CSF function has similar strategic implication as
classical Blotto Game: The disadvantaged force picks battles
to fight

@ The value of flexibility (in redeployment)
@ Copositive Conic Reformulation for the Defender's Solution
@ Marginal Distribution of Attacker's Strategy.
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