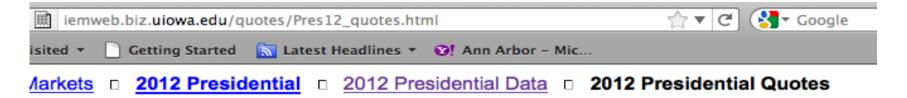
Information Aggregation in Prediction Markets

Rahul Sami University of Michigan School of Information Current affiliation: Google, Bangalore

NMI Workshop on Game Theory and Mechanism Design

Talk Goals

- Introduction to scoring rule and market scoring rule mechanisms
- Theoretical analysis of strategies
 - with connections to information theory
- Small peek into experimental methods


Information/Prediction Markets

Markets designed to aggregate traders' information.

- Issue securities with value contingent on future event.
- Trading price is taken as a prediction of future value.
- Once event occurs, security is cashed out for money

Example: Iowa Electronic Markets

Market Quotes: Pres12_VS 2012 Presidential Election Vote Share Market.

Quotes current as of 14:15:04 CST, Monday, October 31, 2011.

Symbol	Bid	Ask	Last	Low	High	Average
UDEM12_VS	0.478	0.497	0.499			
UREP12_VS	0.511	0.518	0.510			

| Prospectus | Price History | Graph |

Market Quotes: Pres12_WTA 2012 Presidential Election Winner-Take-All Market.

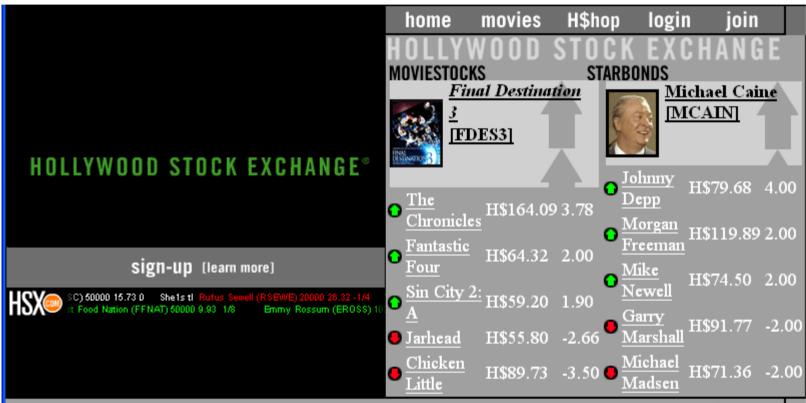
Quotes current as of 14:15:04 CST, Monday, October 31, 2011.

Symbol	Bid	Ask	Last	Low	High	Average
DEM12_WTA	0.506	0.513	0.510	0.510	0.510	0.510
REP12_WTA	0.491	0.493	0.492	0.490	0.492	0.490

| Prospectus | Price History | Graph |

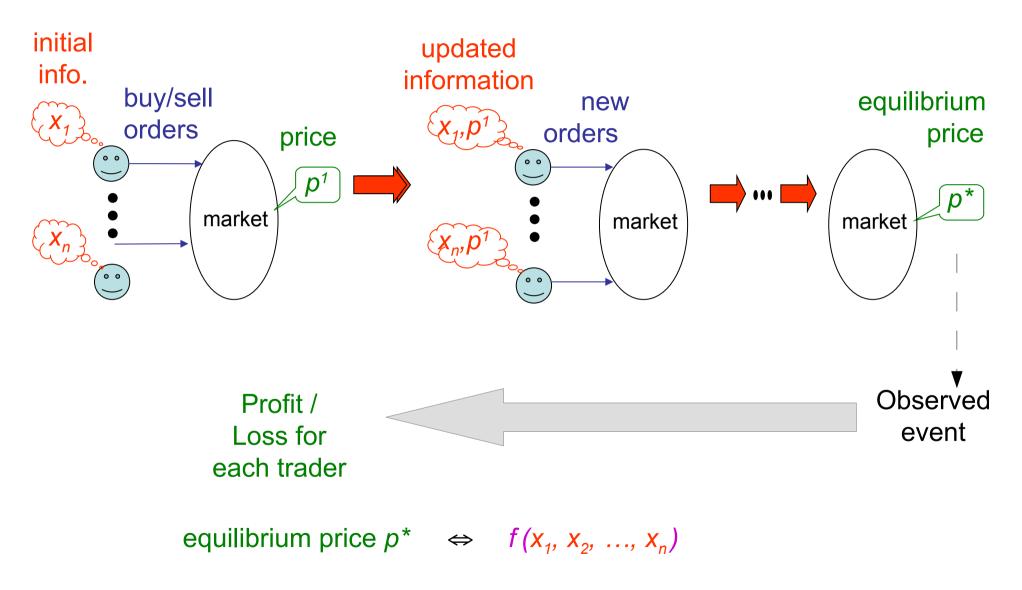
Markets aggregate information

	va Electronic irkets	THE UNIVERSITY OF IOWA HENRY B. TIPPIE COLLEGE OF BUSINESS			
Login a	nd Trade Open an Account	Current Market Quotes			
		October 30, 2005			
About the IEM					
<u>FAQ</u>	The Iowa Electronic Markets are real-money futures markets in which				
<u>Current</u> <u>Markets</u>	contract payoffs depend on economi and political events such as elections	Trading is currently			
<u>Instructor</u> <u>Resources</u>	These markets are operated by facult at the University of Iowa Tippie College of Business as part of our	based on the monetary policy decisions of the			
<u>Account</u> <u>Maintenance</u>	research and teaching mission. We invite you to join us in this mission.	Federal Open Market Committee regarding the federal funds target			
Trader's	Political Markets	rate.			

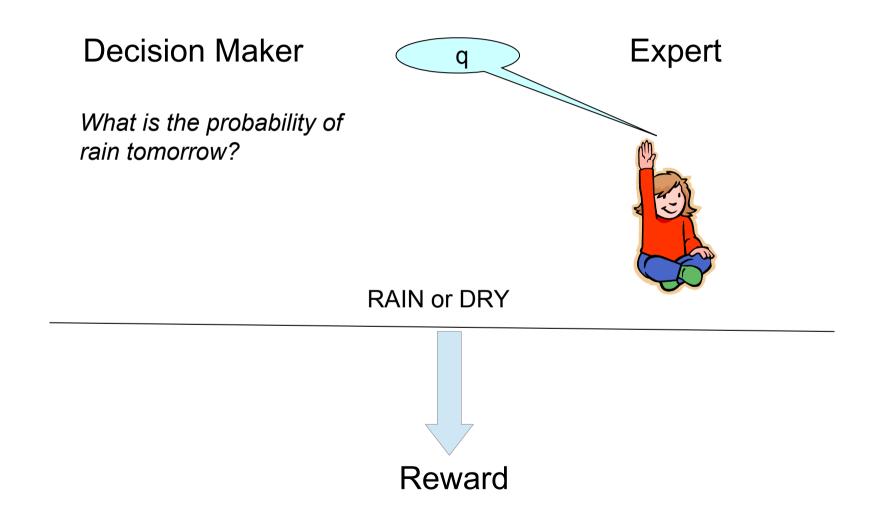

The Iowa Electronic Market predicts election outcomes better than opinion polls [Forsythe *et al.* '99].

Markets aggregate information

Trade Spo	Username: Login Password: Join 1 Login								
Home Join	Trade Here Rules & FAOs	Ab	out U	s È F	orum		Feed	back	
Trading Categories	2006 Stanley Cup Outright Winner Solution GMT								
All Markets		Best to Sell [®] 1			Best to Buy				
Hockey	Contract	BQty	Bid	Offer	AQty	Last	Vol	Chg	
Stanley Cup 2006 Stanley Cup	Trade NHL.FLYERS	1	11.0	13.0	200	13.5	988	0	
Outright Winner	Trade NHL.SENATORS	192	14.0	16.9	1	14.0	1251	-1.0	
	Trade NHL.REDWINGS	169	13.0	14.5	1	13.0	1183	+2.0	
	Trade NHL.AVALANCHI	10	3.3	3.9	25	3.9	492	0	


Sports betting markets provide unbiased forecasts of game outcomes [Gandar *et al.* '98; Debnath *et al.* '03]

Markets Designed for Aggregation


Markets sometimes deployed primarily for information aggregation (*e.g.*, IEM, Hollywood Stock Exchange)

Market as Incentive Mechanism

Goal: Profit incentive should induce optimal aggregation 8

Single Forecaster Incentives

Scoring rules

A scoring rule is a rule that is used to compute the reward for a forecaster.

- Depends on the forecast probability of rain q
- Must also depend on actual outcome
- For this example, scoring rule consists of two functions:

$$S_{RAIN}(q)$$
, $S_{DRY}(q)$

Example: Linear scoring rule

- If you say "It will rain with probability p" and it rains =>your reward is \$p
- If you say "it will rain with probability p" and it is dry=> your reward is \$(1-p)

If you think the probability is 80% of rain (and say so), what is your expected reward?

Proper scoring rule

Proper scoring rules satisfy the following property: If a forecaster believes the probability of an event is p, her expected reward is maximized by reporting q=p.

There are several well-known proper scoring rules:

- Quadratic Scoring Rule [Brier 1952]
- Logarithmic Scoring Rule [Good 1950]
- Spherical Scoring Rule
- Linear scoring rule is *not* proper

Logarithmic Scoring Rule

$$S_{RAIN}(q) = \log q$$
$$S_{DRY}(q) = \log(1-q)$$

Log scoring rule is a proper scoring rule:

Logarithmic Scoring Rule

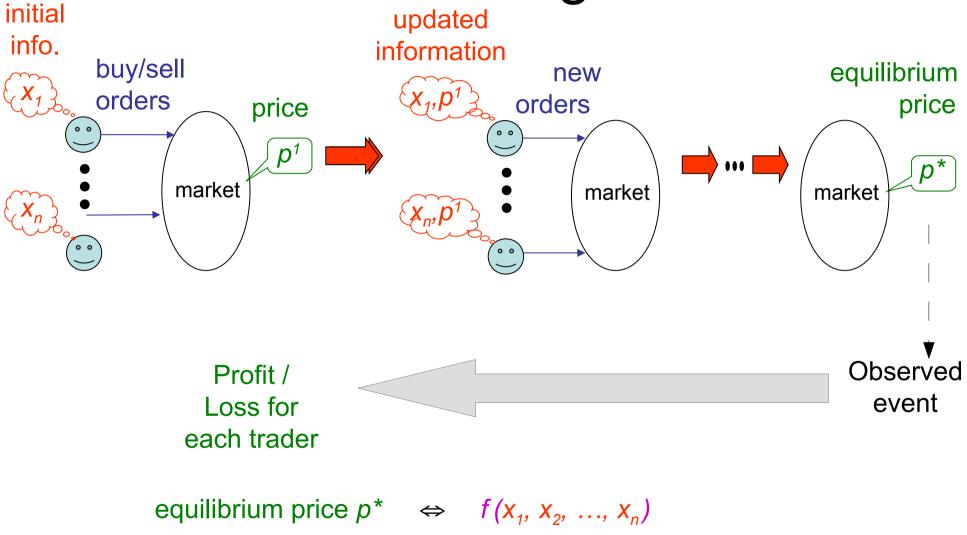
 $S_{RAIN}(q) = \log q$ $S_{DRY}(q) = \log(1-q)$

Log scoring rule is a proper scoring rule: Ep [Score(q)] = p log q + (1-p) log (1-q) = p log p + (1-p) log p + p log (q/p) + (1-p) log [(1-q)/(1-p)]

Logarithmic Scoring Rule

 $S_{RAIN}(q) = \log q$ $S_{DRY}(q) = \log(1-q)$

Log scoring rule is a proper scoring rule: Ep [Score(q)] = p log q + (1-p) log (1-q) = p log p + (1-p) log p + p log (q/p) + (1-p) log [(1-q)/(1-p)] = -H(p) - D(p || q)Entropy KL-divergence

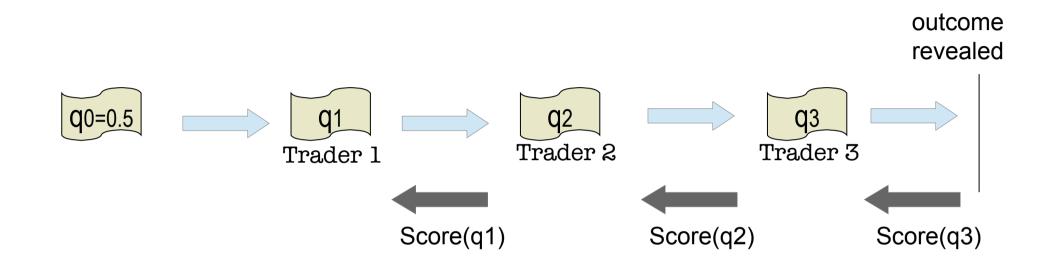

Optimal q : q=p => Expected score = -H(p)

Logarithmic Scoring Rule: Variations

$$S_{RAIN}(q) = a + b \log q$$
$$S_{DRY}(q) = a + b \log(1-q)$$

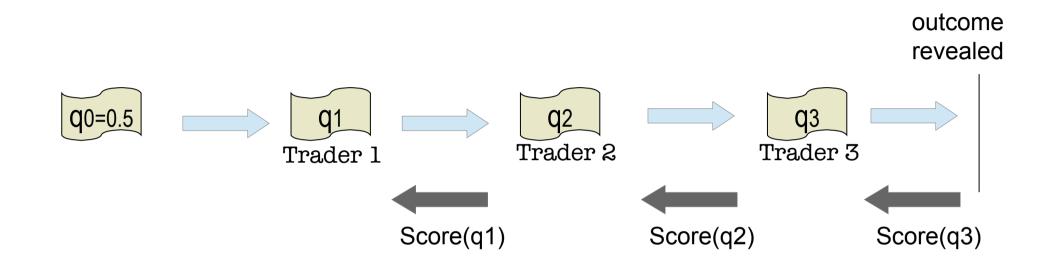
Constants a,b control scale and absolute value of rewards while retaining strategic properties.

Multiple Forecasters: Market Setting

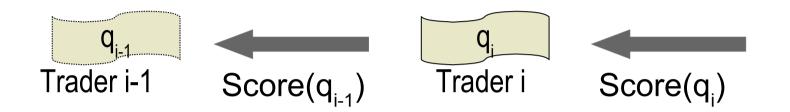

Goal: Profit incentive should induce optimal aggregation 17

Market Scoring Rules [Hanson 03]

Market based on trading scoring rules



Market Scoring Rule Payoffs


- Market maker rewards last trader
- Each trader pays previous trader's reward

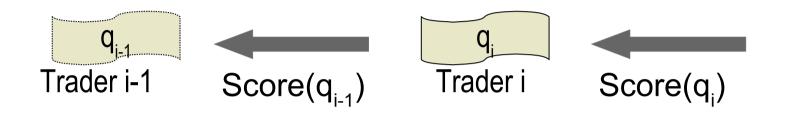
Market Scoring Rule Payoffs

- Market maker rewards last trader
- Each trader pays previous trader's reward

Strategies with Market Scoring Rules

Profit of trader i:

Profit(i) = Score(q_i) – Score(q_{i-1}) E(Profit(i)) = E(Score(q_i) – E (Score(q_{i-1})


- > Truthful reporting is "myopically" optimal strategy.
 - ie., if you rule out misleading other traders to make a long-term profit

Market maker's gain or loss

- Market operator can specify a maximum "endowment" for the market maker
- This controls:
 - how much MM can win or lose
 - how sensitive instantaneous prices are to one unit bought/sold
 - Equivalently: the constant multiplier 'b' in the underlying scoring rule:

 $S_{_{YES}}(q) = b \log p \quad ; S_{_{NO}}(q) = b \log(1-p)$

Information-theoretic characterization of profit

Profit of trader i:

Profit(i) = Score(q_i) – Score(q_{i-1}) E(Profit(i)) = E[Score(q_i)] – E[Score(q_{i-1})]

Assuming all reports are truthful:
Expected Profit of trader i =

 $b[H(Event | x_1, x_2, ..., x_{i-1}) - H(Event | x_1, x_2, ..., x_i)]$

Alternative view: automated market maker

The market scoring rule can also be viewed as an automated market maker

- "Instantaneous prices" are set based on current probability
- For log-MSR, if M shares on outcome X and N shares on outcome Y have been sold,

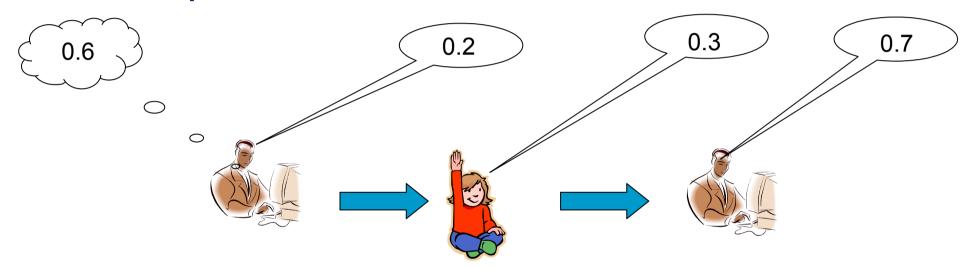
instantaneous price of X =

$$\frac{e^{M/b}}{e^{M/b} + e^{N/b}}$$

- updated for every little additional unit bought or sold
- Payoff of outcome that happens =1
- Trader buys/sells until price exactly matches her expected value for the security

Mathematically equivalent to previous description!

Market Scoring Rules : Summary of Basic Properties


[Hanson03]

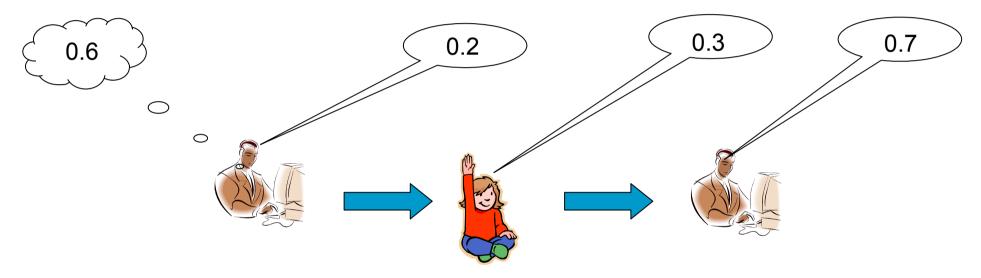
- > Truth-revealing is strategically optimal (myopically)
- Can be implemented as a price-setting market maker
- Market-maker's loss / subsidy is bounded (regardless of number of traders)
- Expected profit connected to entropy

Long-term strategies?

Long-term Incentives to be Untruthful

Is it ever profitable to bluff and correct?

Motivating example


- Trader1 information:
 - '1': IND focus on batting (with prior 0.49),'0' IND focus on bowling (with prior 0.51)
- Trader2 information:
 - '1': AUS focus on batting (with prior 0.49),
 - '0': AUS focus on bowling (with prior 0.51)
- > True outcome: $XOR(x_1, x_2)$

Motivating example

- > True outcome: XOR(x_1, x_2), prior = 0.5
- If Trader 1 sees '1':
 - Truthful:
 - \succ Move price $0.5 \rightarrow 0.49$
 - Trader 2 moves from 0.49 to 1 or 0
 - Bluff:
 - \succ Move price from $0.5 \rightarrow 0.51$
 - Trader 2 moves to 0 or 1
 - Trader 1 flips price to 1 or 0!

Single market: Is honest play optimal?

[Dimitrov, S. '07]

- Assumption: traders get independent signals
- Thm: Generically, honest play is not an equilibrium strategy

A different model: conditional independence

[Chen, Reeves, Pennock, Hanson, Fortnow, Gonen '07]

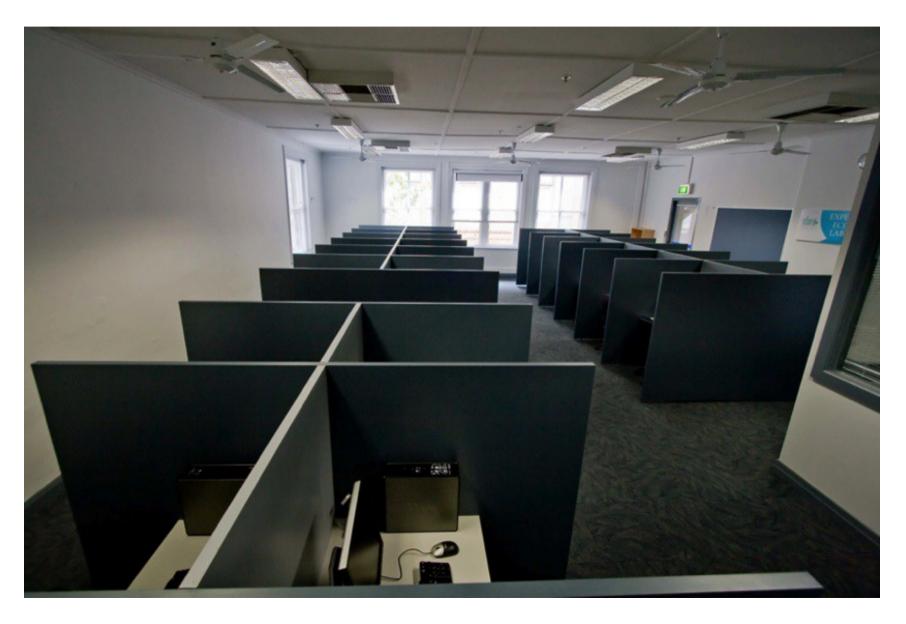
- > Truthful reporting is an equilibrium strategy!
 - Assume that signals are conditionally independent, conditioned on the (unknown) true value

Resolving the different results:

[CDSRPHFG '10]:

- Critical factor: Are signals substitutes or complements?
 - > Value of signal is reduction in entropy due to signal
 - May be different before/after knowing other signal
- > Truthful reporting is an equilibrium in former case

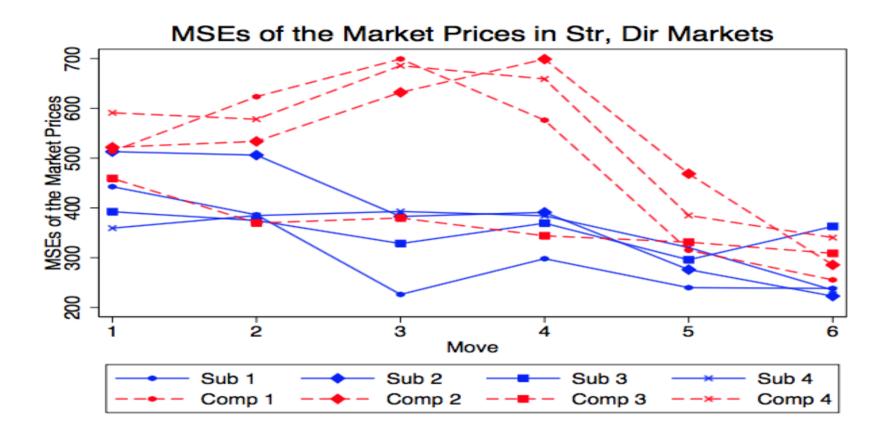
Handling Complementarity: Discounted Market Scoring Rule


- One solution: discount profits over time [DS'07]
 - > Second round payoff is $\delta b(\log q_2 \log q_1),...$
- Bluffing still possible..
- But, market converges to the optimal price:
 - Thm: In any weak-perfect bayesian equilibrium, the distribution of prices p_t after t trades each satisfies: E [D(p*||p_t)] < cδ^{at}

What happens in the real world?

Lab experiments are a good first step at testing theory predictions

Experiments: Effect of information structure and market form


[Jian, S., 2010]

Experiment design

- 2-player markets with repeated play
- 8 treatments
 - Independent (complements) vs. CI (substitute)
 - Interface variations: prediction vs. trading
 - Structured vs. Unstructured
- 4 sessions/treatment, 8 subjects/session
- Measure: Intermediate and Final price accuracy

Results: Structured trading markets

 Result: Error in Complementary case after 2,4 rounds was significantly higher than in Substitutes case.

Results: Unstructured trading markets

Result: Error in Complementary case after 2 trades was not significantly higher than in Substitutes case.

Takeaways:

- Theoretical model was predictive when trading format exactly matched model
- •
- .. but real-world natural trading is more complex for participants (and analysts!)
- Bluffing strategies were used in both complements and substitutes treatments (more in complements)
- Aside: Structured trading helps with more effective aggregation

Conclusion

Prediction markets are an exciting class of mechanisms to study!

- Real-world applications and success stories
- Information-theoretic measures of value
- Rich strategic problems

A few directions for future work:

- Better modeling of real market microstructures
- More complete analysis of information settings and strategies
- Other market forms, scoring rules, etc.