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Introduction

Framework

I N-player/agent constrained stochastic games with independent state processes
where all agents use expected average cost criterion. [2]

I Belongs to the class of decentralized stochastic games.
I Each agent controls its own Markov chain, whose transition probabilities

do not depend on the actions of others. However, the expected average
cost of each agent depends on the strategies of all the others.

I Altman et al. [2] have shown that these games possess a stationary Nash
equilibrium under strong Slater and unichain conditions.

I Altman and Shwartz [4] introduced N-player centralized constrained stochastic
games with discounted and average cost criterion.

I Stationary Nash equilibrium exist under strong Slater and unichain
conditions.

I Some zero-sum games can be solved by linear programs.
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Model

Notations I

N-player constrained stochastic game
(
Si, γi,Ai, ci, di, pi, ξi

)N
i=1 for i,

i ∈ I = {1, 2, · · · ,N}

I Si is a finite state space of player i. Define, S:=×N
j=1Sj and S−i:=×j6=iSj. The

element of S is denoted by s where s = (s1, s2, · · · , sN) and s−i ∈ S−i denotes a
vector of states sj, j 6= i.

I γi : probability distribution for the initial state of player i. Initial states of all the
players are independent. Denote γ = (γ1, γ2, · · · , γN).

I Ai is a finite action set of player i. Ai(si) denotes the set of all actions of player i
at state si and Ai =

⋃
si∈Si Ai(si). Define, A(s)=×N

j=1Aj(sj) for each s ∈ S.

I Define, Ki = {(si, ai)|si ∈ Si, ai ∈ Ai(si)}. Define, K=×N
j=1Kj and K−i=×j6=iKj.

I ci(s, a) : K → R is immediate cost of player i.
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Model

Notations II
I di =

(
di,1, di,2, · · · , di,ni

)
, where di,k : K → R for all k = 1, 2, · · · , ni are the

immediate costs of player i. These are involved in the kth constraint,
k = 1, 2, · · · , ni, on the expected average cost of player i.

I pi : Ki → ℘(Si) is the transition law of player i, where pi(s̄i|si, ai) is the
probability that the state of player i moves from state si to s̄i if he chooses an
action ai ∈ Ai(si).

I ξi =
(
ξi

1, ξ
i
2, · · · , ξi

ni

)
are the bounds defining the constraints of player i.

I Define, hi
t =

(
si

0, a
i
0, s

i
1, a

i
1, · · · , si

t−1, a
i
t−1, s

i
t

)
a history of player i, i ∈ I, at time

t where si
m ∈ Si for m = 0, 1, · · · , t and ai

m ∈ Ai(si
m) for m = 0, 1, · · · t − 1. Let

Hi
t denotes the set of all possible histories of length t of player i.

I A decision rule f i
t of player i at time t assigns to each hi

t with final state si
t a

probability measure f i
t (hi

t) ∈ ℘(Ai(si
t)). These decision rules are called as

history dependent decision rules.
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Model

Notations III

I Let f ih ∈ Fi where Fi denotes the set of all history dependent strategies of
player i, i ∈ I and f h =

(
f 1h, f 2h, · · · , f Nh

)
∈ F where F=×N

i=1Fi denotes the set
of history dependent multi-strategies.

I Let f i =
(
(f i(1))T , (f i(2))T , · · · , (f i(|Si|))T

)T
denote a stationary strategy,

where f i(si) ∈ ℘(Ai(si)) for all si ∈ Si. Let FSi and FS=×N
i=1FSi denotes the set

of all stationary strategies of player i and multi-strategies respectively.

I Let {Xt,At}∞t=0, be a vector stochastic process where Xt =
(
Xi

t

)N
i=1,

At =
(
Ai

t

)N
i=1.

I Xi
t denotes the state of player i and Ai

t denotes the action chosen by player i at
time t.
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Model

Game dynamics

1. At time t = 0 the state of player i, i ∈ I, is si
0 ∈ Si as chosen according to an

initial distribution γi and player i chooses an action ai
0 ∈ Ai(si) independent

from other players.

2. Player i, i ∈ I incurs an immediate cost ci(s0, a0).

3. Player i, i ∈ I also incurs another ni costs,
(
di,k(s0, a0)

)ni

k=1.

4. State of player i, i ∈ I, switches to a new state si
1 at time t = 1 with probability

pi(si
1|si

0, a
i
0).

5. Dynamics of the Markov chains repeat at new state s1 = (s1
1, · · · , sN

1 ).

6. This continues forever.
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Model

The expected average costs

I These are average functionals of the strategies of all the players.

I For a given initial distribution γ and a multi-strategy f h the expected average
cost of player i, i ∈ I is defined as

Ci
ea(γ, f h) = lim sup

n→∞

1
n

n−1∑
t=0

Eγf h ci(Xt,At). (1)
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Model

The expected average constraints

I For a given initial distribution γ and a multi-strategy f h the expected average
costs of player i, i ∈ I are defined as

Di,k
ea (γ, f h) = lim sup

n→∞

1
n

n−1∑
t=0

Eγf h di,k(Xt,At),

for all k = 1, 2, · · · , ni.

I Di,k
ea (·, ·) can capture the average consumption of resource k, k = 1, 2, · · · , ni,

by player i.

I The constraints of player i, i ∈ I are given as

Di,k
ea (γ, f h) ≤ ξi

k, ∀ k = 1, 2, · · · , ni. (2)

where {ξi
k} are given reals.
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Model

Constrained stochastic games I

I Gc
ea : Constrained stochastic game where all the players choose their strategies

independently and wish to minimize their expected average costs from (1)
subject to their constraints from (2).

I f h is i-feasible if it satisfies ith player’s constraints from (2) and it is called
feasible if it is i-feasible for every i ∈ I.

I Fξ : set of all feasible history dependent multi-strategies for Gc
ea.

I FξS : set of all stationary feasible multi-strategies for Gc
ea.

I A multi-strategy f h∗ ∈ Fξ is called a Nash equilibrium of Gc
ea, if for each player

i ∈ I and for any f ih such that (f ih, f−ih∗) is i-feasible, one has that

Ci
ea(γ, f h∗) ≤ Ci

ea(γ, f ih, f−ih∗). (3)
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Model

Constrained stochastic games II

I Since player i faces a constrained Markov decision process (CMDP) f ∗ would
still be a Nash equilibrium if we replace f h∗ in (3) by f ∗ ∈ FξS and f ih by f i for
all i ∈ I.

I [1] showed that optimal strategy always exists in the space of stationary
strategies.

I Characterization ?
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Constrained Markov Decision Processes

Constrained Markov Decision Processes: Formulation I

A finite state-action constrained Markov decision process is a 5−tuple {S,A,P, c, d}
[1] where,

I S : finite state space

I A : finite set of actions. K = {(s, a) : s ∈ S, a ∈ A(s)} to be the set of
state-action pairs

I P(a): {Pij(a)} is the transition matrix when action a is taken

I c : c(s, a) is the immediate cost at state s using action a

N Hemachandra (IEOR@IITB) Equilibria and optima in some constrained stochastic games with independent state processesJanuary, 2016 12 / 37



Constrained Markov Decision Processes

Constrained Markov Decision Processes: Formulation II

I d̄ : d̄(s, a) =



d1

d2

d3
...

dk

 is a vector of immediate costs, related to constraints, when at

state s and using action a

I For any policy u and initial distribution β, the finite horizon cost for a horizon n
is defined as

Cn(β, u) =

n∑
t=1

Eu
βc(St,At) (4)

The expected average cost (with finite and infinite horizons, respectively) is
defined as

Cn
ea(β, u) =

∑n
t=1 Eu

βc(St,At)

n
, Cea(β, u) = lim sup

n→∞

n∑
t=1

Eu
βc(St,At)
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Constrained Markov Decision Processes

Constrained Markov Decision Processes: Formulation III

I The cost functions related to the immediate costs d are defined similarly; e.g.,
the finite horizon cost related to dk, k = 1, . . . ,K, is

Dn,k(β, u) =

n∑
t=1

Eu
βdk(St,At)

I For a fixed vector V = (V1, . . . ,Vk) of real numbers, we define the constrained
control problem COP as:

Find a policy that minimizes C(β, u) subject to D(β, u) ≤ V
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Constrained Markov Decision Processes Linear Programs

LPs for CMDPs

I LP(β): Find the infimum C∗ of C(x) := 〈ρ, c〉 subject to:

Dk(x) := 〈x, dk〉 ≤ Vk, k = 1, . . . ,K, x ∈ Qea(β),

where Qea(β) is the set of vectors x ∈ R|K| satisfying∑
y∈S

∑
a∈A(s)

x(y, a)(δs(y)− Pys(a)) = 0 s ∈ S

∑
y∈S

∑
a∈A(s)

x(y, a) = 1 x(y, a) ≥ 0 ∀y, a

I f (x) is defined to be any stationary policy such that

fx(y,a)(y) = x(y, a)

 ∑
a∈A(y)

x(y, a)

−1

whenever the denominator is non-zero.
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Constrained Markov Decision Processes Linear Programs

Theorem
Equivalence between COP and LP(β)

i C∗ = Cea(β).

ii For any u′ ∈ U, there exists a dominating stationary policy u ∈ US such that
x(u) := gea(β, u) ∈ Qea(β),Cea(β, u) = C(x(u)) and Dea(β, u) = D(x(u));
conversely, for any x ∈ Qea(β), the stationary policy f (x) satisfies
Cea(β, f (x)) = C(x) and Dea(β, f (x)) = D(x).

iii LP(β) is feasible if and only if COP is feasible. Assume that COP is feasible.
Then there exists an optimal solution x∗ for LP(β), and the stationary policy
f (x∗) is optimal for COP.
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Characterization of Nash equilibria

Assumptions (back to stochastic games)

As in [2] we also assume:

(A1) Ergodicity: For each agent i, i ∈ I, and for any stationary strategy f i the state
process of the agent i is an irreducible Markov chain with one ergodic class (and
possibly some transient states).

(A2) Strong Slater condition: Every player i, i ∈ I has some strategy gi such that for
any multi-strategy f−i of other players,

Di,k
ea (γ, (f−i, gi)) < ξi

k, ∀ k = 1, 2, · · · , ni.

(A3) Information: The agents do not observe their costs, i.e., the strategy chosen by
any agent does not depend on the realization of the cost.

Under (A1)-(A3) Altman et al. [2] show the existence of a stationary Nash
equilibrium for the game Gc

ea.
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Characterization of Nash equilibria Occupation measure

Definition

I For an initial distribution γi and a stationary strategy f i of player i, i ∈ I, define
the occupation measure as

πi
ea(γi, f i) :=

{
πi

ea(γi, f i; si, ai) : si ∈ Si, ai ∈ Ai(si)
}
.

I For all si ∈ Si, ai ∈ Ai(si), we have

πi
ea(γi, f i; si, ai) = πf i

(si)f i(si, ai), (5)

where πf i
=
(
πf i

(1), πf i
(2), · · · , πf i

(|Si|)
)

is the unique steady state

distribution of Markov chain induced by strategy f i of player i, which exists
under (A1).

I Occupation measure in (5) is unique and independent from initial distribution
γi.
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Characterization of Nash equilibria Occupation measure

Expected average costs in terms of occupation measure I

I For any multi-strategy f ∈ FS

Ci
ea(f ) =

∑
(s,a)∈K

 N∏
j=1

πj
ea(f j; sj, aj)

 ci(s, a).

Di,k
ea (f ) =

∑
(s,a)∈K

 N∏
j=1

πj
ea(f j; sj, aj)

 di,k(s, a),

for all k = 1, 2, · · · , ni.
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Characterization of Nash equilibria Occupation measure

Expected average costs in terms of occupation measure II

I Let Qi
ea, i ∈ I, be the set of vectors xi ∈ R|Ki| satisfying∑

(si,ai)∈Ki

(
δ(si, s̄i)− pi(s̄i|si, ai)

)
xi(si, ai) = 0, ∀ s̄i ∈ Si

∑
(si,ai)∈Ki

xi(si, ai) = 1

xi(si, ai) ≥ 0, ∀ si ∈ Si, ai ∈ Ai(si).

δ(·, ·) is a Kronecker delta.

I Completeness : For each player i, i ∈ I, the set of occupation measures achieved
by history dependent strategies equals to those achieved by stationary strategies
and further equals to the set Qi

ea [1].
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Characterization of Nash equilibria Occupation measure

Expected average costs in terms of occupation measure III
I For any xi ∈ Qi

ea, we have for each (si, ai) ∈ Ki, xi(si, ai) = πi
ea(f i; si, ai) where

strategy f i is such that

f i(si, ai) =
xi(si, ai)∑

bi∈Ai(si) xi(si, bi)
, ∀ si ∈ Si, ai ∈ Ai(si), (6)

I The immediate costs of player i, i ∈ I, when he uses action ai atstate si and
other players use f−i are defined as in [2],

ci(f−i; si, ai) =
∑

(s,a)−i∈K−i

[ N∏
j=1;j 6=i

πj
ea(f j; sj, aj)

]
ci(s, a).

di,k(f−i; si, ai) =
∑

(s,a)−i∈K−i

[ N∏
j=1;j 6=i

πj
ea(f j; sj, aj)

]
di,k(s, a),

for all k = 1, 2, · · · , ni.
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Characterization of Nash equilibria Optimization Problem based characterization

Best response linear programs
I The best response strategy of each player can be obtained by solving a CMDP.

I By using these best response linear programs for each player, we obtain an
Optimization Problem which characterizes the stationary Nash equilibria of Gc

ea

via its global minimizers.

I The best response of player i, i ∈ I, against the fixed stationary strategies f−i of
other players:

min
xi

∑
(si,ai)∈Ki

ci(f−i; si, ai)xi(si, ai)

s.t.

(i)
∑

(si,ai)∈Ki

di,k(f−i; si, ai)xi(si, ai) ≤ ξi
k, ∀ k = 1, 2, · · · , ni

(ii) xi ∈ Qi
ea.

(7)
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Characterization of Nash equilibria Optimization Problem based characterization

Dual linear programs

I If xi∗ is the optimal solution of the linear program (7), then, by using xi∗ the best
response f i∗ of player i can be obtained from (6).

I The dual of (7) is

max
vi,ui,λi

[
vi −

ni∑
k=1

λi
kξ

i
k

]
s.t.

(i) vi + ui(si) ≤ ci(f−i; si, ai) +

ni∑
k=1

di,k(f−i; si, ai)λi
k +

∑
s̄i∈Si

pi(s̄i|si, ai)ui(s̄i),

∀ si ∈ Si, ai ∈ Ai(si)

(ii) λi
k ≥ 0, ∀ k = 1, 2, · · · , ni.

(8)
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Characterization of Nash equilibria Optimization Problem based characterization

Optimization Problem

Let ζT :=
(
vi, (ui)T , (xi)T , (λi)T

)N
i=1 and ψ(ζ) denote the decision variables and the

objective function of [OP] respectively. By using N primal-dual linear programs
given by (7) and (8), we have the following result.

Theorem
(a) If (f i∗)N

i=1 is a stationary Nash equilibrium of Gc
ea, then, there exists a vector

ζ∗T =
(
vi∗, (ui∗)T , (xi∗)T , (λi∗)T

)N
i=1 such that it is a global minimum of an

Optimization Problem [OP] given below

[OP] min
ζ

N∑
i=1

 ∑
(s,a)∈K

 N∏
j=1

xj(sj, aj)

 ci(s, a)−

(
vi −

ni∑
k=1

λi
kξ

i
k

)
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Characterization of Nash equilibria Optimization Problem based characterization

Optimization Problem

s.t.

(i) vi + ui(si) ≤
∑

(s,a)−i∈K−i

 N∏
j=1;j 6=i

xj(sj, aj)

 ci(s, a)

+

ni∑
k=1

λi
k

 ∑
(s,a)−i∈K−i

 N∏
j=1;j 6=i

xj(sj, aj)

 di,k(s, a)


+
∑
s̄i∈Si

pi(s̄i|si, ai)ui(s̄i),∀ si ∈ Si, ai ∈ Ai(si), i ∈ I

(ii)
∑

(s,a)∈K

 N∏
j=1

xj(sj, aj)

 di,k(s, a) ≤ ξi
k, ∀ k = 1, 2, · · · , ni, i ∈ I

(iii) xi ∈ Qi
ea, ∀ i ∈ I

(iv) λi
k ≥ 0, ∀ k = 1, 2, · · · , ni, i ∈ I withψ(ζ∗) = 0.
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Characterization of Nash equilibria Optimization Problem based characterization

Optimization Problem

(b) If ζ∗T =
(
vi∗, (ui∗)T , (xi∗)T , (λi∗)T

)N
i=1 is a global minimum of [OP] with

ψ(ζ∗) = 0, then, (f i∗)N
i=1 is a stationary Nash equilibrium of Gc

ea where, strategy f i∗,
i ∈ I, is such that

f i∗(si, ai) =
xi∗(si, ai)∑

bi∈Ai(si) xi∗(si, bi)
,

for all si ∈ Si, ai ∈ Ai(si) whenever the denominator is non-zero (when it is zero
f i∗(si) is chosen arbitrarily from ℘(Ai(si))).
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Characterization of Nash equilibria Optimization Problem based characterization

Optimization Problem

Remark
The objective function of [OP] is non-convex because the diagonal elements of its
Hessian matrix are zero. So it will have some positive as well as some negative
eigenvalues.
As there are some non-convex constraints, the feasible region is also not a convex set.
So, [OP] is a non-convex constrained optimization problem.
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Characterization of Nash equilibria Additive Cost Decoupled Constraints Cost (AC-DCC) games

Additive Cost Decoupled Constraints Cost (AC-DCC)
games

I We consider the situation when

I The immediate costs of each agent which correspond to its expected
average costs as defined in (1) are additive over players and

I the immediate costs of each player which correspond to its expected
average constraints as defined in (2) are decoupled, i.e., these costs do not
depend on the states and actions of other players.

I This class is characterized by the following additional assumptions:

(a) ci(s, a) =
∑N

j=1 ci
j(sj, aj), ∀ s ∈ S, a ∈ A(s), i ∈ I.

(b) di,k(s, a) = di,k(si, ai), ∀ s ∈ S, a ∈ A(s), k = 1, 2, · · · , ni, i ∈ I.

I The condition (b) corresponds to the situation when each player has its own
resources that are not shared by other players.
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Characterization of Nash equilibria Additive Cost Decoupled Constraints Cost (AC-DCC) games

Additive Cost Decoupled Constraints Cost (AC-DCC)
games I

I Under the assumptions (a) and (b) the Optimization Problem [OP] reduces to a
LP as given below:

[LP] min
ζ

N∑
i=1

 N∑
j=1

∑
(sj,aj)∈Kj

ci
j(sj, aj)xj(sj, aj)−

(
vi −

ni∑
k=1

λi
kξ

i
k

)
s.t.

(i) vi + ui(si) ≤ ci
i(si, ai) +

N∑
j=1;j 6=i

∑
(sj,aj)∈Kj

ci
j(sj, aj)xj(sj, aj) +

ni∑
k=1

di,k(si, ai)λi
k

+
∑
s̄i∈Si

pi(s̄i|si, ai)ui(s̄i), ∀ si ∈ Si, ai ∈ Ai(si), i ∈ I

(ii)
∑

(si,ai)∈Ki

di,k(si, ai)xi(si, ai) ≤ ξi
k, ∀ k = 1, 2, · · · , ni, i ∈ I
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Characterization of Nash equilibria Additive Cost Decoupled Constraints Cost (AC-DCC) games

Additive Cost Decoupled Constraints Cost (AC-DCC)
games II

(iii) xi ∈ Qi
ea, ∀ i ∈ I

(iv) λi
k ≥ 0, ∀ k = 1, 2, · · · , ni, i ∈ I.

Corollary
Let the conditions (a) and (b) hold for a constrained stochastic game Gc

ea. Then a
stationary Nash equilibrium of Gc

ea can be obtained from an optimal solution of a
linear program [LP].
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Zero sum constrained stochastic game [3]

Zero sum constrained stochastic game [3]

I Special case of constrained stochastic game Gc
ea where we consider two

player zero sum games with decoupled constraints [3].

I Setting c1(s1, s2, a1, a2) = −c2(s1, s2, a1, a2) = c(s1, s2, a1, a2) for all
s1 ∈ S1, s2 ∈ S2, a1 ∈ A1(s1), a2 ∈ A2(s2) and under assumption (b)
from, the OP results in a primal-dual linear programs which are same as
given in [3].
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Conclusions

Contributions

I Stationary Nash equilibria of N-player constrained stochastic games, can
be obtained from the global minimizers of a certain non-convex
optimization problem.

I Converse is also true , i.e., from a stationary Nash equilibrium of a given
such game we can construct a point which is a global minimum of the
corresponding optimization problem.

I Identified a subclass of these N-player games, called Additive Cost -
Decoupled Constraints Cost games (AC-DCC games).

I The OP reduces into a LP, and hence, the Nash equilibrium of these games
can be obtained from an optimal solution of a LP.

I For two player zero sum game, our OP results in a primal-dual LPs.
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Related and ongoing work

I Charnes [5]: LPs for zero-sum matrix (one shot) games

I Mangasarian and Stone [7]: Quadratic programs for bi-matrix games

I Parthasarathy et al [9]: for SIR-SET games

I Parthasarthy and Raghavan [8]: Order field property for some stochastic
games

I Filar et al [6]: Math programs for stochastic games

I Vikas et al [11], etc.: Blackwell optimality for stochastic games

I V and H [10]: OPs for constrained single controller games

I Etc.
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