Flavio Chierichetti Sapienza University

Abhimanyu Das *Google MTV* Anirban Dasgupta IIT Gandhinagar Ravi Kumar Google MTV

- Modular functions can be succinctly represented as linear functions: $f(S) = w_0 + \sum_{i \in S} w_i$
- It is thus very easy to optimize them

- Modular functions can be succinctly represented as linear functions: $f(S) = w_0 + \sum_{i \in S} w_i$
- It is thus very easy to optimize them

$$\arg\max_{S\subseteq[n]} f(S) = \{i \,|\, w_i > 0\}$$

A set function *f* is modular if it satisfies: $f(S) + f(T) = f(S \cup T) + f(S \cap T) \qquad \forall S, T \subseteq [n]$

- Modular functions can be succinctly represented as linear functions: $f(S) = w_0 + \sum_{i \in S} w_i$
- It is thus very easy to optimize them

$$\arg\max_{S\subseteq[n]} f(S) = \{i \,|\, w_i > 0\}$$

 $\arg \max_{S \in \binom{[n]}{k}} f(S) = \{ w_{\pi(1)}, \dots, w_{\pi(k)} \} \quad (w_{\pi(1)} \ge \dots \ge w_{\pi(n)})$

- Modular functions can be succinctly represented as linear functions: $f(S) = w_0 + \sum_{i \in S} w_i$
- It is thus very easy to optimize them (O(n)) even though the search space can be huge $(O(2^n))$

An example: Ads

 rent a car
 Q

 Web
 Maps
 Shopping
 News
 Images
 More +
 Search tools

About 439,000,000 results (0.61 seconds)

Lowest Cost Rent-a-car - Guaranteed! Book Online Today www.rentalcars.com/Cheap-Rent-a-Car *

4.0 ★★★★ rating for rentalcars.com Worldwide Car Rental Here. Includes CDW - Includes Theft Protection - Includes Free Amendments rentalcars.com has 4,468 followers on Google+

Best Car Rental Prices - Priceline.com www.priceline.com/ -Best Rates With No Hidden Charges. Book Online to get the Best Deals. No Hidden Fees - Best Prices Online - Theft Protection Included

No Credit Card Fees - Free Booking Amendments - Lowest Prices Guaranteed

Rent a Car Economico - autoeurope.it www.autoeurope.it/ ~ Rent a Car senza spese per storno e km illimitati. Tariffe online -25%!

An example: Ads

rent a	car						۹.
Web	Maps	Shopping	News	Images	More -	Search tools	СрС
About 4	39.000.00	0 results (0.61 s	seconds)				

Lowest Cost Rent-a-car - Guaranteed! Book Online Today

4.0 ★★★★ rating for rentalcars.com Worldwide Car Rental Here. Includes CDW · Includes Theft Protection · Includes Free Amendments rentalcars.com has 4,468 followers on Google+

Best Car Rental Prices - Priceline.com

No Credit Card Fees - Free Booking Amendments - Lowest Prices Guaranteed

Rent a Car Economico - autoeurope.it Rent a Car senza spese per storno e km illimitati. Tariffe online -25%!

0.03€

0.02€

Independent Clicks Model

rent a car								Q			
Web	Maps	Shopping	News	Images	More +	Search tools		<u>срс</u>		<u>ctr</u>	
About 4	st Cost w.rentalc *** rat ide Car Re s CDW - In	0 results (0.61 Rent-a-car ars.com/Chea ing for rentalca intal Here. includes Theft P	seconds) - Guara ap-Rent-a- ars.com		0.03€	Ē	5%				
Best Mail ww Best Ra No Hide No Cree	Best Car Rental Prices - Priceline.com Www.priceline.com/ Best Rates With No Hidden Charges. Book Online to get the Best Deals. No Hidden Fees - Best Prices Online - Theft Protection Included No Credit Card Fees - Free Booking Amendments - Lowest Prices Guaranteed							0.05€		2%	
Rent Ad ww Rent a	a Car E ww.autoeu Car senza	conomico rope.it/ ~ spese per stor	- autoeu mo e km illir	rope.it nitati. Tariffe (online -25%!			0.02€		3%	

Independent Clicks Model

rent a car	Q.			
Web Maps Shopping News Images More - Search tools	<u>срс</u>	<u>ctr</u>		
About 439,000,000 results (0.61 seconds) Lowest Cost Rent-a-car - Guaranteed! Book Online Today www.rentalcars.com/Cheap-Rent-a-Car * 4.0 **** rating for rentalcars.com Worldwide Car Rental Here. Includes CDW - Includes Theft Protection - Includes Free Amendments rentalcars.com here Add for for larger and Carallel	0.03€	5%		
Best Car Rental Prices - Priceline.com So www.priceline.com/ → Best Rates With No Hidden Charges. Book Online to get the Best Deals. No Hidden Fees - Best Prices Online - Theft Protection Included No Credit Card Fees - Free Booking Amendments - Lowest Prices Guaranteed	0.05€	2%		
Rent a Car Economico - autoeurope.it	0.02€	3%		

Select a set S of k adds that maximizes $f(S) = \sum_{a \in S} (\operatorname{cpc}(a) \cdot \operatorname{ctr}(a))$

Independent Clicks Model

rent a car								Q.			
Web	Maps	Shopping	News	Images	More -	Search tools	(<u> </u>	<u>ctr</u>		
About 4	st Cost w.rentalc **** rai ide Car Re s CDW - In	0 results (0.61 Rent-a-car ars.com/Cheating for rentalcantal Here. Includes Theft P	seconds) - Guaral ap-Rent-a- ars.com rotection · Ir	nteed! Bo Car -	ook Online	e Today	0	.03€	5%		
Best (Monormalication Monormalication No Hidd No Creation	Best Car Rental Prices - Priceline.com Www.priceline.com/ Best Rates With No Hidden Charges. Book Online to get the Best Deals. No Hidden Fees - Best Prices Online - Theft Protection Included No Credit Card Fees - Free Booking Amendments - Lowest Prices Guaranteed							.05€	2%		
Rent a	a Car E w.autoeu Car senza	conomico	- autoeur	rope.it	online -25%!		0	.02€	3%		

Select a set S of k adds that maximizes $f(S) = \sum_{a \in S} (\operatorname{cpc}(a) \cdot \operatorname{ctr}(a))$

In practice, clicks are not independent, but...

 \dots *f* satisfies the ϵ -approximate modularity condition

$$f(S) + f(T) = f(S \cup T) + f(S \cap T) \pm \epsilon \quad \forall S, T \subseteq [n]$$

for some small constant $\epsilon>0$.

 \dots *f* satisfies the ϵ -approximate modularity condition

$$f(S) + f(T) = f(S \cup T) + f(S \cap T) \pm \epsilon \qquad \forall S, T \subseteq [n]$$

for some small constant $\epsilon>0$.

 $\left| \left(f(S) + f(T) \right) - \left(f(S \cup T) + f(S \cap T) \right) \right| \le \epsilon$

...*f* satisfies the ϵ -approximate modularity condition

 $f(S) + f(T) = f(S \cup T) + f(S \cap T) \pm \epsilon \qquad \forall S, T \subseteq [n]$

for some small constant $\epsilon>0$.

In our paper we analyze the *nature*, and the *approximability*, of approximately modular functions

The set function *f* is ϵ -approximately modular if $f(S) + f(T) = f(S \cup T) + f(S \cap T) \pm \epsilon \quad \forall S, T \subseteq [n]$

The set function *f* is ϵ -approximately modular if $f(S) + f(T) = f(S \cup T) + f(S \cap T) \pm \epsilon \quad \forall S, T \subseteq [n]$

Our definition resembles the *approximate linearity* definition of the *Borsuk-Ulam* theory of approximate functions on convex domains

If D is a convex domain, f is ϵ -approximately linear on D if $f(x) + f(y) = f(w) + f(z) \pm \epsilon$ $\forall x, y, w, z \in D \text{ such that } x + y = w + z$

The set function f is ϵ -approximately modular if $f(S) + f(T) = f(U) + f(V) \pm O(\epsilon)$ whenever $S \cap T = U \cap V \land S \cup T = U \cup V$

Our definition resembles the *approximate linearity* definition of the *Borsuk-Ulam* theory of approximate functions on convex domains

If D is a convex domain, f is ϵ -approximately linear on D if $f(x) + f(y) = f(w) + f(z) \pm \epsilon$ $\forall x, y, w, z \in D \text{ such that } x + y = w + z$

The set function f is ϵ -approximately modular if $f(S) + f(T) = f(U) + f(V) \pm O(\epsilon)$ whenever $S \cap T = U \cap V \land S \cup T = U \cup V$

Our definition resembles the *approximate linearity* definition of the *Borsuk-Ulam* theory of approximate functions on convex domains

If D is a convex domain, f is ϵ -approximately linear on D if $f(x) + f(y) = f(w) + f(z) \pm \epsilon$ $\forall x, y, w, z \in D \text{ such that } x + y = w + z$

One of the original *B-U* theory's goals is to *approximate* an **approximately linear function** with a **truly linear function**

The set function *f* is ϵ -approximately modular if $f(S) + f(T) = f(S \cup T) + f(S \cap T) \pm \epsilon \quad \forall S, T \subseteq [n]$

• In our case, the domain is composed of the vertices of the hypercube - so it is not closed, nor convex.

The set function *f* is ϵ -approximately modular if $f(S) + f(T) = f(S \cup T) + f(S \cap T) \pm \epsilon \quad \forall S, T \subseteq [n]$

- In our case, the domain is composed of the vertices of the hypercube so it is not closed, nor convex.
 - How well can we optimize these functions in polynomial time?
 - How "close" are these functions to modularity?

Polynomial-time Optimization

- Let *f* be an *ε*-approximately modular function on [*n*].
 We show that:
 - there exists an algorithm that performs $O(n^2 \log n)$ queries to *f*, and returns a **modular** function *g* such that $\forall S \subseteq [n] ||f(S) - g(S)| \leq O(\epsilon \cdot \sqrt{n})$

Polynomial-time Optimization

- Let *f* be an *ε*-approximately modular function on [*n*].
 We show that:
 - there exists an algorithm that performs $O(n^2 \log n)$ queries to *f*, and returns a **modular** function *g* such that $\forall S \subseteq [n] ||f(S) - g(S)| \leq O(\epsilon \cdot \sqrt{n})$

Thus we can, say, approximate our ads problem to an additive $O(\epsilon\sqrt{n})$ error.

Polynomial-time Optimization

- Let *f* be an *ε*-approximately modular function on [*n*].
 We show that:
 - there exists an algorithm that performs $O(n^2 \log n)$ queries to *f*, and returns a **modular** function *g* such that $\forall S \subseteq [n] ||f(S) - g(S)| \leq O(\epsilon \cdot \sqrt{n})$
 - an algorithm performing $n^{O(1)}$ queries to f, cannot additively approximate fto better than $\Omega(\epsilon \cdot \sqrt{n/\log n})$

Polynomial-time Optimization

- Let f be an ε-approximately modular function on [n].
 We show that:
 - there exists an algorithm that performs $O(n^2 \log n)$ queries to *f*, and returns a **modular** function *g* such that $\forall S \subseteq [n] ||f(S) - g(S)| \leq O(\epsilon \cdot \sqrt{n})$
 - an algorithm performing $n^{O(1)}$ queries to *f*, **cannot** additively approximate *f* (nor the maximum value of *f*) to better than $\Omega(\epsilon \cdot \sqrt{n/\log n})$

Our Results Closeness to Modularity

- Let *f* be an *ε*-approximately modular function on [*n*].
 We show that:
 - there exists a modular function g such that $\forall S \subseteq [n] \quad |f(S) - g(S)| \leq O(\epsilon \cdot \log n)$

Our Results Closeness to Modularity

- Let *f* be an *ε*-approximately modular function on [*n*].
 We show that:
 - there exists a modular function g such that

 $\forall S \subseteq [n] \quad |f(S) - g(S)| \le O(\epsilon \cdot \log n)$

Thus, if we drop the poly-time reconstruction requirement, we can approximate *f* with a modular *g* in an *exponentially* better way

• Our goal is to "quickly" produce a modular function

$$g(S) = w_0 + \sum_{i \in S} w_i$$

$$f$$

that is close to f.

Our goal is to "quickly" produce a modular function

$$g(S) = w_0 + \sum_{i \in S} w_i$$
 to f .

that is close

• That is, our algorithm has to choose w_0, w_1, \ldots, w_n , while querying f at most $n^{O(1)}$ times, so to guarantee that |g(S) - f(S)| is small for each $S \subseteq [n]$

- First, we choose $z = f(\emptyset)$
- Then, we choose:

$$w_i = \operatorname{avg}_{k \in [n]} \operatorname{avg}_{S \in \binom{[n] - \{i\}}{k-1}} \left(f(S \cup \{i\}) - f(S) \right)$$

- First, we choose $z = f(\emptyset)$
- Then, we choose:

$$w_i = \operatorname{avg}_{k \in [n]} \operatorname{avg}_{S \in \binom{[n] - \{i\}}{k-1}} \left(f(S \cup \{i\}) - f(S) \right)$$

The average is taken over exponentially many values of $f \dots$

- First, we choose $z = f(\emptyset)$
- Then, we choose:

$$w_i = \operatorname{avg}_{k \in [n]} \operatorname{avg}_{S \in \binom{[n] - \{i\}}{k-1}} \left(f(S \cup \{i\}) - f(S) \right)$$

The average is taken over exponentially many values of $f \dots$

...but the approximate modularity condition allows us to approximate w_i with only $O(n \log n)$ many random samples

- First, we choose $z = f(\emptyset)$
- Then, we choose:

$$w_i = \operatorname{avg}_{k \in [n]} \operatorname{avg}_{S \in \binom{[n] - \{i\}}{k-1}} \left(f(S \cup \{i\}) - f(S) \right)$$

• With these weights, we can prove that $|f(S) - g(S)| \le 4 \cdot \epsilon \cdot \sqrt{\min(|S|, n - |S|)}$ $\forall S \subseteq [n]$ by studying the duals of a number of LPs

- First, we choose $z = f(\emptyset)$
- Then, we choose:

$$w_i = \operatorname{avg}_{k \in [n]} \operatorname{avg}_{S \in \binom{[n] - \{i\}}{k-1}} \left(f(S \cup \{i\}) - f(S) \right)$$

• With these weights, we can prove that $|f(S) - g(S)| \le 4 \cdot \epsilon \cdot \sqrt{\min(|S|, n - |S|)}$ $\forall S \subseteq [n]$ by studying the duals of a number of LPs

Observe that the weights, and thus g, are linear combinations of the values of f

- First, we choose $z = f(\emptyset)$
- Then, we choose:

$$w_i = \operatorname{avg}_{k \in [n]} \operatorname{avg}_{S \in \binom{[n] - \{i\}}{k-1}} \left(f(S \cup \{i\}) - f(S) \right)$$

• With these weights, we can prove that $|f(S) - g(S)| \le 4 \cdot \epsilon \cdot \sqrt{\min(|S|, n - |S|)}$ $\forall S \subseteq [n]$ by studying the duals of a number of LPs:

 $\begin{cases} \max g(S) - f(S) \text{ subject to} \\ \forall \{X, Y\} \in {2^{[n]} \choose 2} : \quad -\epsilon \le f(X \cup Y) + f(X \cap Y) - f(X) - f(Y) \le \epsilon \end{cases}$

• Our algorithm produces a modular function which approximates f to within an additive $O\left(\epsilon \cdot \sqrt{n}\right)$ value with a total of $O\left(n^2 \log n\right)$ queries to f.

Inapproximability

- We also show that no algorithm querying an ε-approximately modular *f* at most *q* times can distinguish WHP whether:
 - f is the constant 0 function; or
 - the maximum value of *f* is at least $\Omega\left(\epsilon \cdot \sqrt{n/\log q}\right)$
- Hence, the approximation of our poly-time algorithm is almost optimal.
Our two Questions

- How well can we optimize ϵ -a.m. functions in polynomial time?
- How "close" are ϵ -a.m. functions to modularity?

Our two Questions

- How well can we optimize ϵ -a.m. functions in polynomial time? $\approx \epsilon \cdot \sqrt{n}$ (by a modular approximation)
- How "close" are ϵ -a.m. functions to modularity?

Closeness to Modularity

Let *f* be an ϵ -approximately modular function on [*n*]. Then, there exists a modular function *g* such that $\forall S \subseteq [n] \quad |f(S) - g(S)| \leq O(\epsilon \cdot \log n)$

$$g(S) = w_0 + \sum_{i \in S} w_i$$
$$(w_0 = \frac{1}{4}, w_1 = \frac{1}{2}, w_2 = \frac{3}{2})$$

$$g(S) = w_0 + \sum_{i \in S} w_i$$
$$(w_0 = \frac{1}{4}, w_1 = \frac{1}{2}, w_2 = \frac{3}{2})$$

$$g(S) = w_0 + \sum_{i \in S} w_i$$
$$(w_0 = \frac{1}{4}, w_1 = \frac{1}{2}, w_2 = \frac{3}{2})$$

$$F = f - g$$

	Ø	$\{1\}$	$\{2\}$	$\{1,2\}$	
f	0	1	2	2	$\epsilon = 1$
g	1/4	3/4	7/4	9/4	
F	-1/4	1/4	1/4	-1/4	$\epsilon = 1$

$$g(S) = w_0 + \sum_{i \in S} w_i$$
$$(w_0 = \frac{1}{4}, w_1 = \frac{1}{2}, w_2 = \frac{3}{2})$$

$$F = f - g$$

- Let f be a ϵ -a.m. function, and suppose that g is the best modular approximation of f.
- Then,
 - the distance from modularity of f equals the distance from modularity of $F = f \cdot g$

• Let f be a ϵ -a.m. function, and suppose that g is the best modular approximation of f.

• Then,

- the distance from modularity of f equals the distance from modularity of $F = f \cdot g$
- the best modular approximation of F is the 0-function z

• Let f be a ϵ -a.m. function, and suppose that g is the best modular approximation of f.

• Then,

- the distance from modularity of f equals the distance from modularity of $F = f \cdot g$
- the best modular approximation of F is the 0-function z

Thus, bounding the distance from modularity of functions *F* that are best approximated by *z* is sufficient

• Let f be a ϵ -a.m. function, and suppose that g is the best modular approximation of f.

• Then,

- the distance from modularity of f equals the distance from modularity of $F = f \cdot g$
- the best modular approximation of F is the 0-function z
- the distance from modularity of *F* is equal to the maximum value *M* of *F*.

• We would like to prove that the maximum value of F is small ($O(\epsilon \log n)$).

• We would like to prove that the maximum value of F is small ($O(\epsilon \log n)$).

Lemma

• We would like to prove that the maximum value of F is small ($O(\epsilon \log n)$).

Lemma

There exist probability distributions P^+ and P^- , supported respectively on the *maximum* and the *minimum* sets of *F*, such that $\forall i : \Pr[i \in P^+] = \Pr[i \in P^-]$.

 P^+ : RD on the *F*-maximum sets

• We would like to prove that the maximum value of F is small ($O(\epsilon \log n)$).

Lemma

• We would like to prove that the maximum value of F is small ($O(\epsilon \log n)$).

Lemma

 We would like to prove that the maximum value of F is small (O(ε log n)).

Lemma

• We use the approximately modular rule to create a random system of unions/intersections

• We use the approximately modular rule to create a random system of unions/intersections that, using any random distribution over sets that contain all the elements with a marginal (oughly) smaller than a UAR 7

• We use the approximately modular rule to create a random system of unions/intersections that, using any random distribution over sets, produces sets that contain all the elements with a marginal (roughly) smaller than a UAR *T*

• We use the approximately modular rule to create a random system of unions/intersections that, using any random distribution over sets, produces sets that contain all the elements with a marginal (roughly) smaller than a UAR *T*

• We use the approximately modular rule to create a random system of unions/intersections that, using any random distribution over sets, produces sets that contain all the elements with a marginal (roughly) smaller than a UAR *T*

We prove (using the *random iterated systems*' framework) that choosing the levels' actions this way makes the tree act in a way "close to" a UAR threshold in [0,1]

We prove (using the *random iterated systems*' framework) that choosing the levels' actions this way makes the tree act in a way "close to" a UAR threshold in [0, 1]

Thus, if we use the *same* random tree, once with input sets selected from P^+ and once from P^- , w.h.p. we will reach the same output set from both the **maximum** and the **minimum** sides

Rule Output(s)

Approximately modular rules have *two* outputs $f(S) + f(T) = f(S \cup T) + f(S \cap T) \pm \epsilon$

Approximately modular rules have *two* outputs $f(S) + f(T) = f(S \cup T) + f(S \cap T) \pm \epsilon$

Striped networks contain all the striped trees of a given height

Striped networks contain all the striped trees of a given height

Striped networks contain all the striped trees of a given height

 $\Sigma_0 = \Sigma_1 \pm \epsilon \cdot t/2$

 $\Sigma_0 = \Sigma_1 \pm \epsilon \cdot t/2$ $\Sigma_1 = \Sigma_2 \pm \epsilon \cdot t/2$

Striped networks "lose" an additive $\epsilon/2$ average term per level

 $\Sigma_0 = \Sigma_1 \pm \epsilon \cdot t/2$ $\Sigma_1 = \Sigma_2 \pm \epsilon \cdot t/2$ \cdots $\Sigma_{h-1} = \Sigma_h \pm \epsilon \cdot t/2$

We use striped networks to bound the maximum value M of the ϵ -approximately modular functions F that are best approximated by z

Closeness to Modularity

• ...thus, the maximum value of an ϵ -approximately modular function F on [n] (that is best approximated by the all-0 function z) is $O(\epsilon \cdot \log n)$.

Closeness to Modularity

• ...thus, the maximum value of an ϵ -approximately modular function F on [n] (that is best approximated by the all-0 function z) is $O(\epsilon \cdot \log n)$.

 It follows that, if *f* is an *ε*-approximately modular function on [*n*], there exists a modular function *g* such that

$$\forall S \subseteq [n] \quad |f(S) - g(S)| \le O(\epsilon \cdot \log n)$$

Conclusion

- We have studied
 - the polynomial-time approximability, and
 - the Borsuk-Ulam approximability,

of approximately modular functions.

Conclusion

- We have studied
 - the polynomial-time approximability, and
 - the Borsuk-Ulam approximability,

of approximately modular functions.

Open questions

- Is our logarithmic upper bound on the distance to modularity tight?
- What happens for functions that are (additively) approximately sub-modular?

Thanks!