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Moaularity

| A set function f Is modular If it satisfies:

f(SuT+f(SmT) VST |

 Modular functions can be succinctly represented as
linear functions: f(9) = wo + Z w;

» Itis thus very easy to optimize them (O(n))
even though the search space can be huge (O (2") )
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' and the approximability, of
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The set functlon fls €- approxmately modular |f _
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Our definition resembles the approximate linearity definition of the
Borsuk-Ulam theory of approximate functions on convex domains
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One of the original B-U theory’s goals IS to approximate an
approximately linear function with a truly linear function
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The set function fIS €- approxmately modulér |f

S+ ST =FSUT)+ f(SNT)-

* |n our case, the domain is composed of the vertices
of the hypercube - so it is not closed, nor convex.

« How well can we optimize these functions in
polynomial time”

 How “close” are these functions to modularity”
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e |et fbe an e-approximately modular function on [n]
We show that:

» there exists an algorithm that performs O(n*logn)

queries to f, and returns a modular function g
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» an algorithm performing n?) queries to f, cannot
additively approximate / (nor the maximum value
of f) to better than Q(e - /n/logn)
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Our Results
Closeness to Modularity

e |et fbe an e-approximately modular function on [n]
We show that:

* there exists a modular function g such that

VS Cnl [f(S) —g(S)] < O(e-logn)

- Thus, if we drop the poly-time reconstruction
requirement, we can approximate f li
with a modular g in an exponentially better way |
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Poly-time Approximation

e Qur goalis to “quickly” produce a modular function

g(S) = wy + Z w;
that is close to f . €S

* Thatis, our algorithm has to choose wg, w1, ..., w,,
while querying f at most n®Ytimes, so to
guarantee that |g(S) — f(.5)| is small for each S C |n]
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* First, we choose z = f(9)

e [Then, we choose;

The average Is taken over
exponentially many values of f...
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Poly-time Approximation

e First, we choose z = f(9)

e [Then, we choose;

|

. ...but the approximate modularity condition |
| allows us to approximate w; with
only O(nlogn) many random samples
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e First, we choose z = f(9)

e [Then, we choose;
wi = avegeqavgse - (F(S U {i}) - £(5))

1

With these weights, we can prove that
f(S) —g(S)] <4-e-/min(|S|,n —[S]) VS C [n]
by studying the duals of a number of LPs
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.~ Observe that the weights, and thus g, are ]‘
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Poly-time Approximation

e First, we choose z = f(9)

e Then, we choose;

Wi = aVErefmavgse (- (S(S Ui} = £(S))

1

With these weights, we can prove that
F(S) —g(S)| <4-e-y/min(|S[,n—[S]) VS C [n]
by studying the duals of a number of LPs:

max g(S) — f(b;) subject to

| XY e () —e<S(XUY)+f(XNY) = f(X) = f(Y) < ¢

=




Poly-time Approximation

e Our algorithm produces a modular function which
approximates fto within an additive O (e - v/n) value
with a total of O (n”logn)queries to f.



Inapproximabillity

* We also show that no algorithm querying an

e-approximately modular f at most g times can
distinguish WHP whether:

e fis the constant O function: or

 the maximum value of fis at least (2 (e : \/n/ log Q)

* Hence, the approximation of our poly-time
algorithm is almost optimal.
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 How well can we optimize e-a.m. functions Iin
oolynomial time? = e-+/n (by a modular approximation)

 How “close” are e-a.m. functions to modularity?




Closeness to Modularity

MLét fbe an e-approximately m.olfnc;io o n. 1
~ Then, there exists a modular function g such that
VS Cln| [f(S)—g(S)| < O(e-logn
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The Approach

et fbe a e-a.m. function, and suppose that g is the best

modular approximation of f.
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The Approach

et fbe a e-a.m. function, and suppose that g is the best
modular approximation of f.

e Then,

e the distance from modularity of fequals the distance
from modularity of F = f-g

e the best modular approximation of Fis the O-function z
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The Approach

et fbe a e-a.m. function, and suppose that g is the best
modular approximation of f.

e Then,

e the distance from modularity of fequals the distance
from modularity of F = f-g

e the best modular approximation of Fis the O-function z

* the distance from modularity of Fis equal to the
maximum value Mot F
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Marginals of F

 We would like to prove that the maximum value of F
is small (O(elogn)).

| There e><|st probab|llty dlstrlbunons P+and P supported
respectively on the maximum and the m/n/mum sets of F |
“such that Vz Pr [z < Pﬂ

P™-RD on the F-maximum sets
P1 P2 P3 P4 Pn—1 Dn

P1P2 P3 P4 "o Pn—1 DPn
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* We use the approximately modular rule to create a
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We prove (using the random iterated systems’ framework)
that choosing the levels” actions this way makes the tree act
in a way “close to” a UAR threshold in [0, 7]
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We prove (using the random iterated systems’ framework)
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Random System of U/N
Striped Tree

@(log n) Output Set
A U
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Thus, It we use the same random tree, once with input sets
selected from P and once from P, w.h.p. we will reach the
same output set from both the maximum and the minimum sides
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F(51N8)+ f(SiUS) +--- o+ f(Se—1 N Sy) + F(Si—1USy) =

7 T N N 7 N N
N U N U N U N U

+e

(1) + f(S2) + £(S3) + - - (S + f(S) =%

£(So
f(SUT) fSNT) —e< f(S)+ f(T) < fF(SUT)+ f(SNT) + ¢



Striped Networks

AN A X

F(S1NS2) + f(S1USs) + - ot (SN S) + f(Si—1US) =54

o d N— N /4 v N
N U N U N U N U

+e +e +e€ +e
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Striped Networks
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Striped Networks

Striped networks “lose” an additive 6/ 2 average term per level

NOO) | (L) | [nEO) | (@) | [nW) ] [U00) | [0UW) | ULL)

) o) (L) 5 ) () (L) U

Zgzzlzze-t/Z 21222::€-t/2 Zh_lth::e-t/z

N(

(V) N(

(V)

U U




Bounding M

We use striped networks to bound the maximum value M of
the e-approximately modular functions F that are best approximated by z
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Bounding M
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Bounding M
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Closeness to Modularity

e ...thus, the maximum value of an e-approximately
modular function Fon [n] (that is best approximated
by the all-0 function 2) is O(e - logn).



Closeness to Modularity

e ...thus, the maximum value of an e-approximately
modular function Fon [n] (that is best approximated
by the all-0 function 2) is O(e - logn).

e |t follows that, if fis an e-approximately modular
function on [n/, there exists a modular function g
such that

VS Cnl [f(S) —g(S)] < O(e-logn)




Conclusion

 We have studied
* the polynomial-time approximability, and
e the Borsuk-Ulam approximability,

of approximately modular functions.
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Open questions

e |s our logarithmic upper bound on the distance to
modularity tight?

 \What happens for functions that are (additively)
approximately sub-modular?
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