Approximate Modularity

Flavio Chierichetti $\left.\begin{array}{c}\text { Abhimanyu Das } \\ \text { Sapopienza University } \\ \text { Google MTV }\end{array} \begin{array}{c}\text { Anirban Dasgupta } \\ \text { IIT Gandhinagar }\end{array} \begin{array}{c}\text { Ravi Kumar } \\ \text { Google MTV }\end{array}\right]$

Modularity

A set function f is modular if it satisfies:

$$
f(S)+f(T)=f(S \cup T)+f(S \cap T) \quad \forall S, T \subseteq[n]
$$

Modularity

$$
\begin{aligned}
& \text { A set function } f \text { is modular if it satisfies: } \\
& f(S)+f(T)=f(S \cup T)+f(S \cap T) \quad \forall S, T \subseteq[n]
\end{aligned}
$$

- Modular functions can be succinctly represented as linear functions: $f(S)=w_{0}+\sum_{i \in S} w_{i}$
- It is thus very easy to optimize them

Modularity

A set function f is modular if it satisfies:

$$
f(S)+f(T)=f(S \cup T)+f(S \cap T) \quad \forall S, T \subseteq[n]
$$

- Modular functions can be succinctly represented as linear functions: $f(S)=w_{0}+\sum_{i \in S} w_{i}$
- It is thus very easy to optimize them

$$
\arg \max _{S \subseteq[n]} f(S)=\left\{i \mid w_{i}>0\right\}
$$

Modularity

A set function f is modular if it satisfies:

$$
f(S)+f(T)=f(S \cup T)+f(S \cap T) \quad \forall S, T \subseteq[n]
$$

- Modular functions can be succinctly represented as linear functions: $f(S)=w_{0}+\sum_{i \in S} w_{i}$
- It is thus very easy to optimize them

$$
\arg \max _{S \subseteq[n]} f(S)=\left\{i \mid w_{i}>0\right\}
$$

$\arg \max _{S \in\binom{[n]}{k}} f(S)=\left\{w_{\pi(1)}, \ldots, w_{\pi(k)}\right\} \quad\left(w_{\pi(1)} \geq \cdots \geq w_{\pi(n)}\right)$

Modularity

A set function f is modular if it satisfies:

$$
f(S)+f(T)=f(S \cup T)+f(S \cap T) \quad \forall S, T \subseteq[n]
$$

- Modular functions can be succinctly represented as linear functions: $f(S)=w_{0}+\sum_{i \in S} w_{i}$
- It is thus very easy to optimize them $(O(n))$ even though the search space can be huge $\left(O\left(2^{n}\right)\right)$

An example: Ads

rent a car

Web Maps Shopping News Images More * Search tools

About 439,000,000 results (0.61 seconds)

Lowest Cost Rent-a-car - Guaranteed! Book Online Today
56 www.rentalcars.com/Cheap-Rent-a-Car *
$4.0 \star \star \star \star \star$ rating for rentalcars.com
Worldwide Car Rental Here.
Includes CDW - Includes Theft Protection - Includes Free Amendments rentalcars.com has 4,468 followers on Googlet

Best Car Rental Prices - Priceline.com
tad www.priceline.com/ *
Best Rates With No Hidden Charges. Book Online to get the Best Deals.
No Hidden Fees - Best Prices Online - Theft Protection Included
No Credit Card Fees - Free Booking Amendments - Lowest Prices Guaranteed

Rent a Car Economico - autoeurope.it
(80) www.autoeurope.it *

Rent a Car senza spese per stomo e km ilimitati. Tariffe online - 25%

An example: Ads

rent a car
Web Maps Shopping News Images More * Search tools
Lowest Cost Rent-a-car - Guaranteed! Book Online Today
www.rentalcars.com/Cheap-Rent-a-Car *
Worldwide Car Rental Here.
Includes CDW - Includes Theft Protection - Includes Free Amendments
rentalcars.com has 4,468 followers on Google+
Best Car Rental Prices - Priceline.com
mww.priceline.com/ *
Best Rates With No Hidden Charges. Book Online to get the Best Deals.
No Hidden Fees - Best Prices Online - Theft Protection Included
No Credit Card Fees - Free Booking Amendments - Lowest Prices Guaranteed
Rent a Car Economico - autoeurope.it
Ren ww.autoeurope.it/ *
Rent a Car senza spese per stomo e km illimitati. Tariffe online -25\%!

Independent Clicks Model

Independent Clicks Model

Select a set S of k ads that maximizes $f(S)=\sum_{a \in S}(\operatorname{cpc}(a) \cdot \operatorname{ctr}(a))$

Independent Clicks Model

Select a set S of k ads that maximizes $f(S)=\sum_{a \in S}(\operatorname{cpc}(a) \cdot \operatorname{ctr}(a))$

In practice, clicks are not independent, but...

Approximate Modularity
...fsatisfies the ϵ-approximate modularity condition

$$
f(S)+f(T)=f(S \cup T)+f(S \cap T) \pm \epsilon \quad \forall S, T \subseteq[n]
$$

for some small constant $\epsilon>0$.

Approximate Modularity

...f satisfies the ϵ-approximate modularity condition

$$
f(S)+f(T)=f(S \cup T)+f(S \cap T) \pm \epsilon \quad \forall S, T \subseteq[n]
$$

for some small constant $\epsilon>0$.
$|(f(S)+f(T))-(f(S \cup T)+f(S \cap T))| \leq \epsilon$

Approximate Modularity

...f satisfies the ϵ-approximate modularity condition

$$
f(S)+f(T)=f(S \cup T)+f(S \cap T) \pm \epsilon \quad \forall S, T \subseteq[n]
$$

for some small constant $\epsilon>0$.

In our paper we analyze the nature, and the approximability, of approximately modular functions

Approximate Properties

> The set function f is ϵ-approximately modular if $f(S)+f(T)=f(S \cup T)+f(S \cap T) \pm \epsilon \quad \forall S, T \subseteq[n]$

Approximate Properties

The set function f is ϵ-approximately modular if

$$
f(S)+f(T)=f(S \cup T)+f(S \cap T) \pm \epsilon \quad \forall S, T \subseteq[n]
$$

Our definition resembles the approximate linearity definition of the Borsuk-Ulam theory of approximate functions on convex domains

If D is a convex domain, f is ϵ-approximately linear on D if

$$
\begin{aligned}
& f(x)+f(y)=f(w)+f(z) \pm \epsilon \\
& \quad \forall x, y, w, z \in D \text { such that } x+y=w+z
\end{aligned}
$$

Approximate Properties

> The set function f is ϵ-approximately modular if $f(S)+f(T)=f(U)+f(V) \pm O(\epsilon)$ whenever $S \cap T=U \cap V \wedge S \cup T=U \cup V$

Our definition resembles the approximate linearity definition of the Borsuk-Ulam theory of approximate functions on convex domains

If D is a convex domain, f is ϵ-approximately linear on D if

$$
\begin{aligned}
& f(x)+f(y)=f(w)+f(z) \pm \epsilon \\
& \quad \forall x, y, w, z \in D \text { such that } x+y=w+z
\end{aligned}
$$

Approximate Properties

> The set function f is ϵ-approximately modular if $f(S)+f(T)=f(U)+f(V) \pm O(\epsilon)$ whenever $S \cap T=U \cap V \wedge S \cup T=U \cup V$

Our definition resembles the approximate linearity definition of the Borsuk-Ulam theory of approximate functions on convex domains

$$
\begin{aligned}
& \text { If } D \text { is a convex domain, } f \text { is } \epsilon \text {-approximately linear on } D \text { if } \\
& \qquad \begin{array}{l}
f(x)+f(y)=f(w)+f(z) \pm \epsilon \\
\forall x, y, w, z \in D \text { such that } x+y=w+z
\end{array}
\end{aligned}
$$

One of the original $B-\cup$ theory's goals is to approximate an approximately linear function with a truly linear function

Approximate Modularity

The set function f is ϵ-approximately modular if $f(S)+f(T)=f(S \cup T)+f(S \cap T) \pm \epsilon \quad \forall S, T \subseteq[n]$

- In our case, the domain is composed of the vertices of the hypercube - so it is not closed, nor convex.

Approximate Modularity

The set function f is ϵ-approximately modular if

$$
f(S)+f(T)=f(S \cup T)+f(S \cap T) \pm \epsilon \quad \forall S, T \subseteq[n]
$$

- In our case, the domain is composed of the vertices of the hypercube - so it is not closed, nor convex.
- How well can we optimize these functions in polynomial time?
- How "close" are these functions to modularity?

Our Results

Polynomial-time Optimization

- Let f be an ϵ-approximately modular function on [n]. We show that:
- there exists an algorithm that performs $O\left(n^{2} \log n\right)$ queries to f, and returns a modular function g such that $\forall S \subseteq[n] \quad|f(S)-g(S)| \leq O(\epsilon \cdot \sqrt{n})$

Our Results

Polynomial-time Optimization

- Let f be an ϵ-approximately modular function on [n]. We show that:
- there exists an algorithm that performs $O\left(n^{2} \log n\right)$ queries to f, and returns a modular function g such that $\forall S \subseteq[n] \quad|f(S)-g(S)| \leq O(\epsilon \cdot \sqrt{n})$

Thus we can, say, approximate our ads problem to an additive $O(\epsilon \sqrt{n})$ error.

Our Results

Polynomial-time Optimization

- Let f be an ϵ-approximately modular function on [n]. We show that:
- there exists an algorithm that performs $O\left(n^{2} \log n\right)$ queries to f, and returns a modular function g such that $\forall S \subseteq[n] \quad|f(S)-g(S)| \leq O(\epsilon \cdot \sqrt{n})$
- an algorithm performing $n^{O(1)}$ queries to f, cannot additively approximate f
to better than $\Omega(\epsilon \cdot \sqrt{n / \log n})$

Our Results

Polynomial-time Optimization

- Let f be an ϵ-approximately modular function on [n]. We show that:
- there exists an algorithm that performs $O\left(n^{2} \log n\right)$ queries to f, and returns a modular function g such that $\forall S \subseteq[n] \quad|f(S)-g(S)| \leq O(\epsilon \cdot \sqrt{n})$
- an algorithm performing $n^{O(1)}$ queries to f, cannot additively approximate f (nor the maximum value of f) to better than $\Omega(\epsilon \cdot \sqrt{n / \log n})$

Our Results Closeness to Modularity

- Let f be an ϵ-approximately modular function on [n]. We show that:
- there exists a modular function g such that

$$
\forall S \subseteq[n] \quad|f(S)-g(S)| \leq O(\epsilon \cdot \log n)
$$

Our Results Closeness to Modularity

- Let f be an ϵ-approximately modular function on [n]. We show that:
- there exists a modular function g such that

$$
\forall S \subseteq[n] \quad|f(S)-g(S)| \leq O(\epsilon \cdot \log n)
$$

Thus, if we drop the poly-time reconstruction requirement, we can approximate f with a modular g in an exponentially better way

Poly-time Approximation

- Our goal is to "quickly" produce a modular function

$$
g(S)=w_{0}+\sum_{i \in S} w_{i}
$$

that is close to f.

Poly-time Approximation

- Our goal is to "quickly" produce a modular function

$$
g(S)=w_{0}+\sum_{i \in S} w_{i}
$$

that is close to f.

- That is, our algorithm has to choose $w_{0}, w_{1}, \ldots, w_{n}$, while querying f at most $n^{O(1)}$ times, so to guarantee that $|g(S)-f(S)|$ is small for each $S \subseteq[n]$

Poly-time Approximation

- First, we choose $z=f(\varnothing)$
- Then, we choose:

$$
w_{i}=\operatorname{avg}_{k \in[n]} \operatorname{avg}_{S \in\binom{[n]-\{i\}}{k-1}}(f(S \cup\{i\})-f(S))
$$

Poly-time Approximation

- First, we choose $z=f(\varnothing)$
- Then, we choose:

$$
w_{i}=\operatorname{avg}_{k \in[n]} \operatorname{avg}_{S \in\binom{[n]-\{i\}}{k-1}}(f(S \cup\{i\})-f(S))
$$

The average is taken over exponentially many values of f

Poly-time Approximation

- First, we choose $z=f(\varnothing)$
- Then, we choose:

$$
w_{i}=\operatorname{avg}_{k \in[n]} \operatorname{avg}_{S \in\binom{[n]-\{i\}}{k-1}}(f(S \cup\{i\})-f(S))
$$

The average is taken over exponentially many values of f
...but the approximate modularity condition allows us to approximate w_{i} with only $O(n \log n)$ many random samples

Poly-time Approximation

- First, we choose $z=f(\varnothing)$
- Then, we choose:

$$
w_{i}=\operatorname{avg}_{k \in[n]} \operatorname{avg}_{S \in\binom{[n]-\{i\}}{k-1}}(f(S \cup\{i\})-f(S))
$$

- With these weights, we can prove that

$$
|f(S)-g(S)| \leq 4 \cdot \epsilon \cdot \sqrt{\min (|S|, n-|S|)} \quad \forall S \subseteq[n]
$$ by studying the duals of a number of LPs

Poly-time Approximation

- First, we choose $z=f(\varnothing)$
- Then, we choose:

$$
w_{i}=\operatorname{avg}_{k \in[n]} \operatorname{avg}_{S \in\binom{[n]-\{i\}}{k-1}}(f(S \cup\{i\})-f(S))
$$

- With these weights, we can prove that

$$
|f(S)-g(S)| \leq 4 \cdot \epsilon \cdot \sqrt{\min (|S|, n-|S|)} \quad \forall S \subseteq[n]
$$ by studying the duals of a number of LPs

Observe that the weights, and thus g, are linear combinations of the values of f

Poly-time Approximation

- First, we choose $z=f(\varnothing)$
- Then, we choose:

$$
w_{i}=\operatorname{avg}_{k \in[n]} \operatorname{avg}_{S \in\binom{[n]-\{i\}}{k-1}}(f(S \cup\{i\})-f(S))
$$

- With these weights, we can prove that

$$
|f(S)-g(S)| \leq 4 \cdot \epsilon \cdot \sqrt{\min (|S|, n-|S|)} \quad \forall S \subseteq[n]
$$ by studying the duals of a number of LPs:

$$
\begin{array}{ll}
& \max g(S)-f(S) \text { subject to } \\
\forall\{X, Y\} \in\binom{2^{[n]}}{2}: & -\epsilon \leq f(X \cup Y)+f(X \cap Y)-f(X)-f(Y) \leq \epsilon
\end{array}
$$

Poly-time Approximation

- Our algorithm produces a modular function which approximates f to within an additive $O(\epsilon \cdot \sqrt{n})$ value with a total of $O\left(n^{2} \log n\right)$ queries to f.

Inapproximability

- We also show that no algorithm querying an ϵ-approximately modular f at most q times can distinguish WHP whether:
- f is the constant 0 function; or
- the maximum value of f is at least $\Omega(\epsilon \cdot \sqrt{n / \log q})$
- Hence, the approximation of our poly-time algorithm is almost optimal.

Our two Questions

- How well can we optimize ϵ-a.m. functions in polynomial time?
- How "close" are ϵ-a.m. functions to modularity?

Our two Questions

- How well can we optimize ϵ-a.m. functions in polynomial time? $\approx \epsilon \cdot \sqrt{n}$ (by a modular approximation)
- How "close" are ϵ-a.m. functions to modularity?

Closeness to Modularity

Let f be an ϵ-approximately modular function on [n]. Then, there exists a modular function g such that

$$
\forall S \subseteq[n] \quad|f(S)-g(S)| \leq O(\epsilon \cdot \log n)
$$

The Rough Idea

sets of f-maximum
value

sets of f-minimum value

The Rough Idea

sets of f-maximum
value

S
S^{\prime}
$S^{\prime \prime}$
$S^{\prime \prime \prime}$
\cdots
$\left(f(S)=f\left(S^{\prime}\right)=\cdots=\max _{X} f(X)\right)$

sets of f -minimum
value
$\left(\begin{array}{c}T \\ T^{\prime} \\ T^{\prime \prime} \\ T^{\prime \prime \prime} \\ \cdots\end{array}\right]$
$\left(f(T)=f\left(T^{\prime}\right)=\cdots=\min _{X} f(X)\right)$

The Rough Idea

sets of f-maximum value

sets of f-minimum value

The Rough Idea

sets of f-maximum value

$\left(f(S)=f\left(S^{\prime}\right)=\cdots=\max _{X} f(X)\right)$
sets of f-minimum value

$$
\left(f(T)=f\left(T^{\prime}\right)=\cdots=\min _{X} f(X)\right)
$$

The Approach

- Let f be a ϵ-a.m. function, and suppose that g is the best modular approximation of f.

The Approach

- Let f be a ϵ-a.m. function, and suppose that g is the best modular approximation of f.

	\varnothing	$\{1\}$	$\{2\}$	$\{1,2\}$
f	0	1	2	2

The Approach

- Let f be a ϵ-a.m. function, and suppose that g is the best modular approximation of f.

	\varnothing	$\{1\}$	$\{2\}$	$\{1,2\}$
f	0	1	2	2

$$
\begin{gathered}
g(S)=w_{0}+\sum_{i \in S} w_{i} \\
\left(w_{0}=1 / 4, w_{1}=1 / 2, w_{2}=3 / 2\right)
\end{gathered}
$$

The Approach

- Let f be a ϵ-a.m. function, and suppose that g is the best modular approximation of f.

	\varnothing	$\{1\}$	$\{2\}$	$\{1,2\}$
f	0	1	2	2
g	$1 / 4$	$3 / 4$	$7 / 4$	$9 / 4$

$$
\begin{gathered}
g(S)=w_{0}+\sum_{i \in S} w_{i} \\
\left(w_{0}=1 / 4, w_{1}=1 / 2, w_{2}=3 / 2\right)
\end{gathered}
$$

The Approach

- Let f be a ϵ-a.m. function, and suppose that g is the best modular approximation of f.

$$
\begin{array}{c|cccc}
& \varnothing & \{1\} & \{2\} & \{1,2\} \\
\hline f & 0 & 1 & 2 & 2 \\
g & 1 / 4 & 3 / 4 & 7 / 4 & 9 / 4
\end{array} \epsilon=1
$$

The Approach

- Let f be a ϵ-a.m. function, and suppose that g is the best modular approximation of f.

$$
\begin{aligned}
& \begin{array}{c|ccccl}
& \varnothing & \{1\} & \{2\} & \{1,2\} & \\
\hline f & 0 & 1 & 2 & 2 & \epsilon=1 \\
g & 1 / 4 & 3 / 4 & 7 / 4 & 9 / 4 & \\
F & -1 / 4 & 1 / 4 & 1 / 4 & -1 / 4 & \epsilon=1
\end{array} \\
& F=f-g \\
& g(S)=w_{0}+\sum_{i \in S} w_{i} \\
& \left(w_{0}=1 / 4, w_{1}=1 / 2, w_{2}=3 / 2\right)
\end{aligned}
$$

The Approach

- Let f be a ϵ-a.m. function, and suppose that g is the best modular approximation of f.
- Then,
- the distance from modularity of f equals the distance from modularity of $F=f-g$

The Approach

- Let f be a ϵ-a.m. function, and suppose that g is the best modular approximation of f.
- Then,
- the distance from modularity of f equals the distance from modularity of $F=f-g$
- the best modular approximation of F is the 0 -function z

The Approach

- Let f be a ϵ-a.m. function, and suppose that g is the best modular approximation of f.
- Then,
- the distance from modularity of f equals the distance from modularity of $F=f-g$
- the best modular approximation of F is the 0 -function z

Thus, bounding the distance from modularity of functions F that are best approximated by z is sufficient

The Approach

- Let f be a ϵ-a.m. function, and suppose that g is the best modular approximation of f.
- Then,
- the distance from modularity of f equals the distance from modularity of $F=f-g$
- the best modular approximation of F is the 0 -function z
- the distance from modularity of F is equal to the maximum value M of F.

Marginals of F

- We would like to prove that the maximum value of F is small $(O(\epsilon \log n))$.

Marginals of F

- We would like to prove that the maximum value of F is small $(O(\epsilon \log n))$.

Lemma
There exist probability distributions P^{+}and P^{-}, supported respectively on the maximum and the minimum sets of F, such that $\forall i: \operatorname{Pr}\left[i \in P^{+}\right]=\operatorname{Pr}\left[i \in P^{-}\right]$.

Marginals of F

- We would like to prove that the maximum value of F is small $(O(\epsilon \log n))$.

Lemma
There exist probability distributions P^{+}and P^{-}, supported respectively on the maximum and the minimum sets of F, such that $\forall i: \operatorname{Pr}\left[i \in P^{+}\right]=\operatorname{Pr}\left[i \in P^{-}\right]$.

$$
P^{+}: \text {RD on the } F \text {-maximum sets }
$$

Marginals of F

- We would like to prove that the maximum value of F is small $(O(\epsilon \log n))$.

Lemma
There exist probability distributions P^{+}and P^{-}, supported respectively on the maximum and the minimum sets of F, such that $\forall i: \operatorname{Pr}\left[i \in P^{+}\right]=\operatorname{Pr}\left[i \in P^{-}\right]$.

Marginals of F

- We would like to prove that the maximum value of F is small $(O(\epsilon \log n))$.

Lemma
There exist probability distributions P^{+}and P^{-}, supported respectively on the maximum and the minimum sets of F, such that $\forall i: \operatorname{Pr}\left[i \in P^{+}\right]=\operatorname{Pr}\left[i \in P^{-}\right]$.

Marginals of F

- We would like to prove that the maximum value of F is small $(O(\epsilon \log n))$.

Lemma
There exist probability distributions P^{+}and P^{-}, supported respectively on the maximum and the minimum sets of F, such that $\forall i: \operatorname{Pr}\left[i \in P^{+}\right]=\operatorname{Pr}\left[i \in P^{-}\right]$.

Random Thresholds

- We use the approximately modular rule to create a random system of unions/intersections

Random Thresholds

- We use the approximately modular rule to create a random system of unions/intersections that, using any random distribution over sets

Random Thresholds

- We use the approximately modular rule to create a random system of unions/intersections that, using any random distribution over sets, produces sets that contain all the elements with a marginal (roughly) smaller than a UAR T

Random Thresholds

- We use the approximately modular rule to create a random system of unions/intersections that, using any random distribution over sets, produces sets that contain all the elements with a marginal (roughly) smaller than a UAR T

Random Thresholds

- We use the approximately modular rule to create a random system of unions/intersections that, using any random distribution over sets, produces sets that contain all the elements with a marginal (roughly) smaller than a UAR T

Random System of \cup / \cap Striped Tree

Random System of \cup / \cap Striped Tree

Random System of \cup / \cap Striped Tree

Random System of \cup / \cap Striped Tree

Random System of \cup / \cap Striped Tree

Random System of \cup / \cap Striped Tree

Random System of \cup / \cap Striped Tree

Random System of \cup / \cap Striped Tree

Random System of \cup / \cap Striped Tree

Random System of \cup / \cap Striped Tree

Random System of \cup / \cap Striped Tree

We prove (using the random iterated systems' framework) that choosing the levels' actions this way makes the tree act in a way "close to" a UAR threshold in $[0,1]$

Random System of \cup / \cap Striped Tree

We prove (using the random iterated systems' framework) that choosing the levels' actions this way makes the tree act in a way "close to" a UAR threshold in $[0,1]$

Random System of \cup / \cap Striped Tree

Thus, if we use the same random tree, once with input sets
selected from P^{+}and once from P^{-}, w.h.p. we will reach the same output set from both the maximum and the minimum sides

Rule Output(s)

Rule Output(s)

Approximately modular rules have two outputs

$$
f(S)+f(T)=f(S \cup T)+f(S \cap T) \pm \epsilon
$$

Rule Output(s)

Approximately modular rules have two outputs

$$
f(S)+f(T)=f(S \cup T)+f(S \cap T) \pm \epsilon
$$

Striped Networks

We use striped networks to deal with the 2-outputs issue

Striped Networks

We use striped networks to deal with the 2-outputs issue

Striped Networks

We use striped networks to deal with the 2-outputs issue

Striped Networks

We use striped networks to deal with the 2-outputs issue

Striped Networks

We use striped networks to deal with the 2-outputs issue

Striped Networks

We use striped networks to deal with the 2-outputs issue

Striped Networks

We use striped networks to deal with the 2-outputs issue

Striped Networks

We use striped networks to deal with the 2-outputs issue

Striped Networks

We use striped networks to deal with the 2-outputs issue

Striped Networks

Striped networks contain all the striped trees of a given height

Striped Networks

Striped networks contain all the striped trees of a given height

Striped Networks

Striped networks contain all the striped trees of a given height

Striped Networks

Striped Networks

$\Sigma_{0}=\Sigma_{1} \pm \epsilon \cdot t / 2$

Striped Networks

$\Sigma_{0}=\Sigma_{1} \pm \epsilon \cdot t / 2 \quad \Sigma_{1}=\Sigma_{2} \pm \epsilon \cdot t / 2$

Striped Networks

Striped networks "lose" an additive $\epsilon / 2$ average term per level

Bounding M

We use striped networks to bound the maximum value M of the ϵ-approximately modular functions F that are best approximated by z

Bounding M

Bounding M

Closeness to Modularity

- ...thus, the maximum value of an ϵ-approximately modular function F on [n] (that is best approximated by the all-0 function z) is $O(\epsilon \cdot \log n)$.

Closeness to Modularity

- ...thus, the maximum value of an ϵ-approximately modular function F on [n] (that is best approximated by the all-0 function z) is $O(\epsilon \cdot \log n)$.
- It follows that, if f is an ϵ-approximately modular function on [n], there exists a modular function g such that

$$
\forall S \subseteq[n] \quad|f(S)-g(S)| \leq O(\epsilon \cdot \log n)
$$

Conclusion

- We have studied
- the polynomial-time approximability, and
- the Borsuk-Ulam approximability, of approximately modular functions.

Conclusion

- We have studied
- the polynomial-time approximability, and
- the Borsuk-Ulam approximability,
of approximately modular functions.
- Open questions
- Is our logarithmic upper bound on the distance to modularity tight?
- What happens for functions that are (additively) approximately sub-modular?

Thanks!

