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A set function f  is modular if it satisfies: 

Modularity

f(S) + f(T ) = f(S [ T ) + f(S \ T ) 8S, T ✓ [n]

• Modular functions can be succinctly represented as 
linear functions: 

• It is thus very easy to optimize them  
even though the search space can be huge

f(S) = w0 +
X
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Independent Clicks Model

In practice, clicks are not independent, but…
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Approximate Modularity

• In our case, the domain is composed of the vertices 
of the hypercube - so it is not closed, nor convex. 
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• How “close” are these functions to modularity?
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• Let f be an   -approximately modular function on [n].  
We show that: 

• there exists a modular function g such that 

✏

Thus, if we drop the poly-time reconstruction 
requirement, we can approximate f 

with a modular g in an exponentially better way

Our Results 
Closeness to Modularity
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wi = avgk2[n]avgS2([n]�{i}
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…but the approximate modularity condition 
allows us to approximate       with 

only                  many random samples
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Poly-time Approximation

• Our algorithm produces a modular function which 
approximates f to within an additive                 value 
with a total of                    queries to f.

O
�
✏ ·

p
n
�

O
�
n2

log n
�



Inapproximability
• We also show that no algorithm querying an  

  -approximately modular f at most q times can 
distinguish WHP whether: 

• f is the constant 0 function; or 

• the maximum value of f is at least 

• Hence, the approximation of our poly-time 
algorithm is almost optimal.

✏

⌦

⇣
✏ ·

p
n/ log q

⌘
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Our two Questions

• How well can we optimize   -a.m. functions in 
polynomial time? 

• How “close” are   -a.m. functions to modularity?

⇡ ✏ ·
p
n (by a modular approximation)
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Closeness to Modularity

Let f be an   -approximately modular function on [n].  
Then, there exists a modular function g such that

8S ✓ [n] |f(S)� g(S)|  O(✏ · log n)
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• Let f be a   -a.m. function, and suppose that g is the best 
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• Then, 

• the distance from modularity of f equals the distance 
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• the distance from modularity of F is equal to the 
maximum value M of F.
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• the distance from modularity of f equals the distance 
from modularity of F = f-g, and 
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maximum value M of F.

The Approach

Thus, bounding the distance from modularity of 
functions F that are best approximated by z is sufficient
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Figure 1: A striped tree of height h = 3, with stripes [([(\)).

[

[

\

· ·

\

· ·

[

\

· ·

\

· ·

Figure 2: A striped tree of height h = 3, with stripes [([(\)).
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To formalize these arguments, we first need to show that Fh(·) is close to its stationary distribution
(which, we will show, is the uniform distribution in (0, 1)). We will employ machinery from random
iterated systems [33] for this purpose. We say that a process Fh(x) is attractive if F1(x) = limh!1 Fh(x)
exists and if for each x 2 (0, 1), we have that F1(x) equals the same distribution F1, i.e., if the limit
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are identical. The value r that we use in the the following Corollary 12 is equal to 2+
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Theorem 14. For each f 2 fMn there exists a g 2 Mn such that

|f � g|  log

1/r n+O(log log n) < 4.3774 · lg n+O(log log n).

Proof: Recall that if g(S) = w
0

+

P

i2S wi is an optimal modular approximation to f , then the
all-zeros function z is an optimal modular approximation to F (S) = f(S) � g(S), and the distance to
modularity of f equals the distance to modularity of F . Since F has z as its best modular approximation,
by Lemma 10 its maximum value M is the opposite of its minimum value �M . Therefore M is the
distance to modularity of both F and f . Moreover, by Lemma 10, there exist a probability distribution
P+ over the sets where F achieves value M , and a probability distribution P� over the sets where F
achieves value �M , such that for each i 2 [n], if X+ ⇠ P+ and X� ⇠ P� are independent, then
Pr[i 2 X+

] = Pr[i 2 X�
].

We now create two striped networks N+ and N� of height h =

l

2 log

1/r n+ 4 log

1/r log n
m

each.
We seed the leaves of N+ with iid samples of P+ and we seed the leaves of N� with an iid samples
of P�. Suppose that X+

0,i, . . . , X
+

2

h�1,i are the sets that end up in the ith level of N+.
Then, for each 0  i  h� 1, there exist a matching Mi between the indices in {0, . . . , 2h � 1} and

a matching M0
i between the indices in {0, . . . , 2h � 1}, such that for each (j, j0) 2 Mi there exists a

unique (j00, j000) 2 M0
i such that X+

j00,i+1

= X+

j,i \X+

j0,i and X+

j000,i+1

= X+

j,i [X+

j0,i.

Let ⌃

+

i =

P

2

h�1

j=0

F
⇣

X+

j,i

⌘

. By the upper-approximately modular inequality (i.e., F (S) + F (T ) 
F (S \ T ) + F (S [ T ) + 1), we have for each i = 0, . . . , h� 1 that

⌃

+

i  ⌃

+

i+1

+ 2

h�1.

Striped networks contain all the striped trees of a given height
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We now mirror our analysis of the N+ network to the case of the N� network. As before, we have
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Bounding M
We use striped networks to bound the maximum value M of 

the   -approximately modular functions F that are best approximated by z✏
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Figure 4: The striped network N3 of height h = 3. Some of the copies of N0, N1 and N2 that make up N3 are enclosed in
dashed rectangles. The highlighted nodes make up the striped tree in Figure 1. The bottom level’s nodes will contain the random
sets. In each level, each edge color corresponds to a distinct rule application. The number of rule applications shown in this
figure is equal to 2h�1 · h = 4 · 3 = 12.

We unwind the inequalities to get:

⌃
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+ ⌃

+
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+

2

h�1

X

j=0

F
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X+

j,h

⌘

.

By the definition of P+, we have for each j = 0, . . . , 2h � 1 that F
⇣

X+

j,0

⌘

= M . Therefore:

M2

h  h2h�1

+

2

h�1

X

j=0

F
⇣

X+

j,h

⌘

. (15)

We now mirror our analysis of the N+ network to the case of the N� network. As before, we have
that for each i, there exist two matchings Mi,M0

i such that for each {j, j0} 2 Mi there exists a unique
{j00, j000} 2 M0

i such that X�
j00,i+1

= X�
j,i \X�

j0,i and X�
j000,i+1

= X�
j,i [X�

j0,i.

We define ⌃

�
i =

P

2

h�1

j=0

F
⇣

X�
j,i

⌘

. This time, we use the lower-approximately modular inequality (i.e.,
F (S) + F (T ) � F (S \ T ) + F (S [ T )� 1) to get that for each i = 0, . . . , h� 1:
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.

We use this to obtain
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Closeness to Modularity
• …thus, the maximum value of an   -approximately 

modular function F on [n] (that is best approximated 
by the all-0 function z) is                   . 

• Thus, if f is an   -approximately modular function on 
[n], there exists a modular function g such that 

✏

O(✏ · log n)



Closeness to Modularity
• …thus, the maximum value of an   -approximately 

modular function F on [n] (that is best approximated 
by the all-0 function z) is                   . 

• It follows that, if f is an   -approximately modular 
function on [n], there exists a modular function g 
such that 

8S ✓ [n] |f(S)� g(S)|  O(✏ · log n)

✏

✏

O(✏ · log n)



Conclusion
• We have studied 

• the polynomial-time approximability, and 
• the Borsuk-Ulam approximability, 

• of approximately modular functions. 
• Open questions: 

• is our logarithmic upper bound on the distance to 
modularity tight? 

• What happens for functions that are (additively) 
approximately sub-modular?
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