
Balanced implementability of Sequencing

Rules

Parikshit De

Manipushpak Mitra

Indian Statistical Institute

Kolkata

IISc
January, 2016.

1



Examples

• Students wanting to use copier machine or

computer in a department.

• Amateur astronomers willing to use public

telescope.

• Cars in a repair and maintenance store for

servicing.

• Patients in a doctor’s clinic for treatment.

• People from a locality arriving to a minister

to report and resolve their problems.
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Sequencing Problem

• Set of agents N = {1, . . . , n} and a single

facility.

• Let ∀i ∈ N, si ∈ <++ where si denotes the

processing time of ith agent.

• θi ∈ <++, the cost of waiting per unit of

time.

• A profile is denoted by θ = (θ1, . . . ,θn) ∈
<n
++.
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• An allocation rule is a mapping σ : <n
++ →

Σ(N) that specifies for each θ ∈ <n
++ an al-

location(rank) vector σ(θ) ∈ Σ(N).

• Agent i’s position is denoted by σi(θ) which

is an input of the vector σ(θ).

• Given σ(θ) ∈ Σ(N), ∀i ∈ N,
Pi(σ(θ)) = { j ∈ N|σ j(θ) < σi(θ)} denotes the

set of predecessors of i and similarly

P′i (σ(θ)) = { j ∈ N|σ j(θ) > σi(θ)} denotes the

set of successors of i.
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• Utility function of each agent i ∈ N is quasi-

liner and is of the form Ui(σ(θ), τi(θ);θi) =

−Si(σ(θ))θi +τi(θ) where the job completion

time is Si(σ(θ)) = si + ∑ j∈Pi(σ(θ))
s j.

• A transfer rule is a mapping τ : <n
++ →

<n that specifies for each profile θ ∈ <n
++

a transfer vector τ(θ) = (τ1(θ), . . . , τn(θ)) ∈
<n.

• A direct mechanism (σ , τ) constitutes of an

allocation rule σ and a transfer rule τ.
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Allocation Rules

• Outcome Efficiency:

σ e(θ) ∈ arg min
σ∈Σ(N)

∑
i∈N

θiSi(σ)

θi/si > θ j/s j i f f σ e
i (θ) < σ e

j (θ)

• Rawlsian Fairness:

σr(θ) ∈ arg min
σ∈Σ(N)

max{θiSi(σ)}i∈N

I f θi > θ j, then σr
i (θ) < σr

j(θ).
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Implementability Criterion

Definition 1 A mechanism (σ , τ) implements the
sequencing rule σ in dominant strategies if the trans-
fer rule τ : Θn → Rn is such that for any i ∈ N, any
θi,θ′i ∈ Θ and any θ−i ∈ Θ|N\{i}|,

Ui(σ(θ), τi(θ);θi) ≥ Ui(σ(θ
′
i,θ−i), τi(θ

′
i,θ−i);θi).

(1)

−Si(σ(θ))θi + τi(θ) ≥ −Si(σ(θ
′
i,θ−i))θi + τi(θ

′
i,θ−i)

7



Definition 2 A ruleσ satisfies non-increasingness

(or NI) if for any i ∈ N and any θ−i ∈ Θ|N\{i}|, the
chosen orderσ(θi,θ−i) for eachθi ∈ Θ is such that the
job completion time Si(σ(θi,θ−i)) is non-increasing in
θi.

Proposition 1 A sequencing ruleσ is implementable
if and only if it is an NI sequencing rule.

The outcome efficient rule and the Rawlsian

Fairness rule are implementable.
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Robert’s Affine Maximization Theorem

• A classic result in mechanism design in a

quasi-linear set-up is the Roberts’ affine

maximizer theorem (see Roberts (1979))

for multidimensional type spaces with fi-

nite set of alternatives.

• Roberts (1979) showed that if there are at

least three alternatives and the type space

is unrestricted, then every onto implementable

allocation rule is an affine maximizer.
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Affine cost minimization sequencing rules

Definition 3 A sequencing rule σw,κ : Θn → Σ(N)

is an affine cost minimizer (ACM) if for each θ ∈
Θn,

σw,κ(θ) ∈ arg min
σ∈Σ′(N)

κ(σ) + ∑
j∈N

w jθ jS j(σ)

 ,

where Σ′(N) ⊆ Σ(N), w j ≥ 0 for all j ∈ N and κ :
Σ′(N)→ R.

Proposition 2 For any Ωs
N,

ACM(Ωs
N) ⊆ NI(Ωs

N) and ACM(Ωs
N) 6= NI(Ωs

N).
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Example 1 Consider any sequencing problem Ωs
N

with |N| = 2. Define the sequencing rule σV that,
given any two positive numbers a1 and a2 satisfies the
following:

1. For any profile θ = (θ1,θ2) such that θ1 < a1 and
θ2 > a2, σV(θ) = (σV

1 (θ) = 2,σV
2 (θ) = 1).

2. For all other profiles θ′ = (θ′1,θ′2) such that ei-
ther θ′1 ≥ a1 or θ′2 ≤ a2, σV(θ′) = (σV

1 (θ′) =

1,σV
2 (θ′) = 2).
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Example 2 Consider any sequencing problem Ωs
N

with |N| ≥ 3. Define σNA that satisfies the following
properties:

1. For any θ s.t. θ1/s1 ≥ min j∈N\{1}(θ j/s j). Then

σNA(θ) specifies that 1 = σNA
1 (θ) < σNA

j (θ)

for any j ∈ N \ {1}, and, for any j, k ∈ N \
{1}, σNA

j (θ) ≤ σNA
j (θ) if and only if (θ j/s j) ≥

(θk/sk).

2. For any θ′ s.t. θ′1/s1 < min j∈N\{1}(θ
′
j/s j). Then

σNA(θ′) specifies that n = σNA
1 (θ′) > σNA

j (θ′)
for any j ∈ N \ {1}, and, for any j, k ∈ N \
{1}, σNA

j (θ′) ≤ σNA
k (θ′) if and only if (θ′j/s j) ≥

(θ′k/sk).

It is quite easy to see that the sequencing rule σNA

satisfies NI. That σNA is not an affine cost minimizer
will be established in the next theorem.
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Affine cost minimization:Continued

Consider the special case where Σ′(N) = Σ(N)

and κ(σ) = 0 for all σ ∈ Σ(N).

Definition 4 A sequencing ruleσw : Θn → Σ(N) is
a strong affine cost minimizer (SACM) if for each
θ ∈ Θn,

σw(θ) ∈ arg min
σ∈Σ(N)

∑
j∈N

w jθ jS j(σ),

where w j ≥ 0 for all j ∈ N.

(wiθi)/si > (w jθ j)/s j i f f σw
i (θ) < σw

j (θ)

1. If wi = 1 for all i ∈ N, then we have outcome

efficiency.

2. If wi = si for all i ∈ N, then we have Rawl-

sian Fairness.
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Cut-off based transfers

For each i ∈ N, we first select any function hi : Θ|N\{i}| →
R and then, given any θ−i ∈ Θ|N\{i}|, we consider the cut-

off vector (θ(0)i ,θ(1)i (θ−i), . . . ,θ(T−1)
i (θ−i),θ

(T)
i ) where 0 := θ

(T)
i <

θ
(T−1)
i (θ−i) < . . . < θ

(2)
i (θ−i) < θ

(1)
i (θ−i) < θ

(0)
i := ∞. Given

the selected function hi : Θ|N\{i}| → R, for any profile

θ−i of all but agent i and the associated cut-off vector

(θ
(0)
i ,θ(1)i (θ−i), . . . ,θ(T−1)

i (θ−i),θ
(T)
i ), the transfer of agent i

is the following:
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(PI1) For any θi ∈ Θ \ {θ(1)i (θ−i), . . . ,θ(T−1)
i (θ−i)}, τi(θi,θ−i) =

hi(θ−i)− Ii(θi,θ−i) where

Ii(θi,θ−i) =

 0 if θi ∈ (θ
(T)
i ,θ(T−1)

i ),
T−1
∑

r=t
θ
(r)
i Dr if θi ∈ (θ

(t)
i ,θ(t−1)

i ), t < T, T ≥ 2.

(2)

(PI2) For T ≥ 2, any t ∈ {1, . . . , T − 1} and cut-off point

θ
(t)
i (θ−i), τi(θ

(t)
i (θ−i),θ−i) = hi(θ−i) − Ii(θ

(t)
i ,θ−i) where

the incentive payment is

Ii(θ
(t)
i ,θ−i) = Ii(θ

t
i ,θ−i) − θ

(t)
i (θ−i)Dt + θ

(t)
i Dt and θt

i ∈
(θ

(t)
i ,θ(t−1)

i ).

Transfer of any i ∈ N for the profile θ is

τi(θi,θ−i) = hi(θ−i)− Ii(θi,θ−i),

where Ii(θi,θ−i) is the incentive payment and

hi(θ−i) is the agent specific constant.
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1. Outcome efficiency: For any i ∈ N for the

profile θ is

τ e
i (θi,θ−i) = he

i (θ−i)− ∑
j∈P′i (σ

e(θ))

θ jsi,

where the incentive payment is given by

Ie
i (θi,θ−i) = ∑

j∈P′i (σ
e(θ))

θ jsi.

2. Rawlsian Fairness: For any i ∈ N for the

profile θ is

τr
i (θi,θ−i) = hr

i (θ−i)− ∑
j∈P′i (σ

r(θ))

θ js j,

where the incentive payment is given by

Ir
i (θi,θ−i) = ∑

j∈P′i (σ
r(θ))

θ js j.
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Balanced Implementability

Definition 5 A ruleσ is implementable with bal-

anced transfers if there exists a mechanism (σ , τ)
that implements it with budget balancing transfers,
that is, for all θ ∈ Θn, ∑ j∈N τ j(θ) = 0.

τi(θi,θ−i) = hi(θ−i)− Ii(θi,θ−i),

∑
j∈N

τ j(θ) = ∑
j∈N

h j(θ− j)− ∑
j∈N

I j(θ) = 0.

For each rofile θ, aggregate incentive payment

is (n− 1) type separable.

I(θ) = ∑
j∈N

h j(θ− j), where I(θ) := ∑
j∈N

I j(θ).

17



Existing Results on Balanced Implementation

1. The outcome efficient rule is implementable

with balanced transfers for |N| ≥ 3.

2. The Rawlsian Fairness rule is implementable

with balanced transfers for |N| ≥ 3.

3. When |N| = 2, neither outcome efficiency

nor Rawlsian Fairness is implementable with

balanced transfers.
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Two-agents case

Definition 6 Let Ω
(s1,s2)
{1,2} be a two-agent sequenc-

ing problem. A sequencing rule σTx is a two agent
balancing (TAB) sequencing rule if there exists an
agent k ∈ {1, 2} such that any one of the following
conditions hold.

(T1) There exists ak > 0 such that al = (aksl)/sk > 0
and either Ak(σ

T1a) = {θ ∈ Θ2 | either θk ≥
ak orθl ≤ al} or Ak(σ

T1b) = {θ ∈ Θ2 | eitherθk >
ak or θl < al} (see Figure 1 where we have (T1a)
and (T1b) for k = 1).

(T2) There exists a real number ak > 0 such that either
Ak(σ

T2a) = {θ ∈ Θ2 | θk ≥ ak} or Ak(σ
T2b) =

{θ ∈ Θ2 | θk > ak} (See Figure 2 where we have
(T2a) and (T2b) for k = 1).

Theorem 1 A non-constant σ ∈ NI(Ω(s1,s2){1,2})
is implementable with balanced transfers if and
only if it is a TAB sequencing rule σTx.
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y2

y1O
(T1a)

P ∈ A1(σT1a)
a2

a1
θ tan(θ) = s2

s1

y2

y1O
(T1b)

P ∈ A2(σT1b)
a2

a1
θ

Figure 1: (T1)
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y2

y1O
(T2a)

P ∈ A1(σT2a)

a1

y2

y1O
(T2b)

P ∈ A2(σT2b)

a1

Figure 2: (T2)
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More than two agents case

Consider any sequencing problem Ωs
N with more

than two agents and let ΠN be the set of all

possible priority partitions of the agents where

the order of representing the partition is impor-

tant in terms of priority. Let π(N) = (π1, . . . , πK)

∈ ΠN be any priority partition of the set of

agents. The set of π(N) induced orders is

Σ(π(N)). Therefore, the set of priority parti-

tion π(N) induced orders Σ(π(N)) are those or-

ders where agents in π1 are always served first,

agents in π2 are always served after agents in

π1 but before agents in π3 (if any) and so on.

If K = 1 so that π(N) = (π1 = πK = {N}), then

Σ(π(N)) = Σ(N) which is the set of all possible

ordering on the set of agents N.
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For example, for Π{1,2,3}, there are four types

of priority partitions. These are πc = (π1 =

{i}, π2 = { j}, π3 = {k}), π21 = (π1 = {i, j}, π2 =

{k}), π12 = (π1 = {i}, π12
2 = { j, k}) and π̄ = (π1 =

{1, 2, 3}) where i 6= j 6= k 6= i. For πc, Σ(πc) =

{(σi = 1,σ j = 2,σk = 3)}, for π21, Σ(π21) =

{{(σi = 1,σ j = 2,σk = 3)} ∪ {(σi = 2,σ j = 1,σk =

3)}}, for π12, Σ(π12) = {{(σi = 1,σ j = 2,σk =

3)} ∪ {(σi = 1,σ j = 3,σk = 2)}} and finally for π̄,

we have the set of all possible orders on the

set of agents, that is, Σ(π̄) = Σ({1, 2, 3}).
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Definition 7 Consider any priority partition π(N)

∈ ΠN and let f = { f1, . . . , fn} be a set of agent specific
increasing and one-to-one functions f j : Θ → R+.

The sequencing rule σπ(N), f : Θn → Σ(N) satisfies
group priority based cost minimization (GP-CM)
if for each θ ∈ Θn,

σπ(N), f (θ) ∈ arg min
σ∈Σ(π(N))

∑
j∈N

f j(θ j)S j(σ).
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• For any π(N) ∈ ΠN, any GP-CM sequencing

rule σπ(N), f with the property that there

exists an agent j ∈ N such that f j(.) is non-

linear is an NI sequencing rule which is not

an ACM.

• For any π(N) ∈ ΠN, the GP-CM sequencing

rule σπ(N), f where f j(.) is linear for all j ∈ N
is an ACM sequencing rule. Specifically,

any ACM sequencing rule σw,κ such that

w j > 0 for all j ∈ N and κ(σ) = 0 for all σ ∈
Σ′(N) and there exists a priority partition

π(N) ∈ ΠN such that Σ′(N) = Σ(π(N)) is a

GP-CM sequencing rule.

• The GP-CM sequencing rule is not onto

for any π(N) = (π1, . . . , πK) ∈ ΠN such that

K ≥ 2 since, in that case, Σ(N) \Σ(π(N)) 6= ∅
and any order σ ∈ Σ(N) \ Σ(π(N)) is never

chosen.
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• For π(N) ∈ ΠN such that K = 1 so that the

π(N) = (π1 = πK = {N}) is the grand coali-

tion, Σ(π(N)) = Σ(N) and any such GP-CM

σπ(N), f is onto.

• A GP-CM sequencing rule σπ(N), f is a con-

stant sequencing rule if π(N) = (π1, . . . , πK)

is such that K = n.

• A GP-CM sequencing rule σπ(N), f gives the

outcome efficient sequencing rule σ∗ if π(N) =

({N}) and f j(θ j) = θ j for all j ∈ N.

• A GP-CM sequencing rule σπ(N), f gives the

Rawlsian Fairness sequencing rule σ̃ if π(N) =

({N}) and f j(θ j) = s jθ j for all j ∈ N.
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For any GP-CM sequencing rule σπ(N), f with

the priority partition π(N) ∈ ΠN, modified ur-

gency index f j(θ j)/s j is used to determine the

profile contingent order of serving the agents.

Specifically, like Smith’s (1956) rule for out-

come efficient sequencing rule σ∗, for any GP-

CM σπ(N), f , the selected order σπ(N), f (θ) satis-

fies the following condition.

(GP-CM) For any i, j ∈ πk ∈ π(N),

( fi(θi)/si) ≥ ( f j(θ j)/s j)⇔ σ
π(N), f
i (θ) ≤ σ

π(N), f
j (θ).

Given the tie-breaking rule, this profile contin-

gent selection σπ(N), f (θ) is unique.
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Theorem 2 Consider any sequencing problem Ωs
N

with more than two agents. For any priority parti-
tion π(N) = (π1, . . . , πK) ∈ ΠN and for any given
set of functions f = { f1, . . . , fn} that are increasing
and onto, the GP-CM sequencing rule σπ(N), f is im-
plementable with balanced transfers.
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