
Section 0:

Hybrid particle-Kalman filter method for
high-dimensional data assimilation problems

Amit Apte
International Centre for Theoretical Sciences (ICTS-TIFR)

Bangalore, India

Joint work with Laura Slivinski, Elaine Spiller, Bjorn Sandstede

Conference on stochastic systems and applications, 08 September
2014, IISc, Bangalore

Amit Apte (ICTS-TIFR, Bangalore) Bayesian inverse problems ( apte@icts.res.in ) page 1 of 27



Section 0:

Outline

Lagrangian data assimilation is the problem of using data from
Lagrangian/passive instruments (e.g. drifters and gliders)

Particle filtering and Kalman filtering are two complementary data
assimilation methods which are

ineffective in high dimensional and nonlinear problems, respectively, but
effective in nonlinear problems and high dimensions, respectively.

Hybrid particle-Kalman filter that I will discuss combines the
strengths of both, for the Lagrangian data assimilation problem.

1 Lagrangian observations of the ocean

2 Two important methods of data assimilation - particle and Kalman filter

3 Hybrid Kalman-particle filter: a few results with model problems

4 Outlook
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Section 1: Lagrangian observations of the ocean

Most of the ocean data are skin-deep1

Sources of surface data: ships; buoys; drifters; and satellites (which
give the largest quantity of data)

Sources of subsurface data: Special instruments deployed for this
specific purpose

Measurements from ship: an array of instruments, sometimes reaching
the sea floor is dropped to take measurements – very time and resource
consuming and hence sparse temporal and spatial coverage
Floats; Autonomous underwater vehicles (gliders): described in detail
later – depth is limited but vast temporal(?) and spatial coverage

1E.g. http://ewoce.org/ for non-satellite data from 1988-1998
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Section 1: Lagrangian observations of the ocean

Most of the ocean data are skin-deep1

Left:four months of ship measurements; Right: satellite observations are
much more numerous than other types

1E.g. http://ewoce.org/ for non-satellite data from 1988-1998
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Section 1: Lagrangian observations of the ocean

Floats drift and drifters float2, and they are Lagrangian

Drifters are essentially rafts - they float at the surface and move with
the flow, collecting data and transmitting them to the satellites.

Floats have an ability to control their density, and thus their depth,
but subsurface location measurements are difficult - they need sonars
for acoustic communication and the uncertainty can be large

Most currently deployed floats do not measure subsurface location -
they move around at a fixed depth and take measurements with the
position being unknown.

2Courtesy Chris Jones
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Section 1: Lagrangian observations of the ocean

Lagrangian floats move in a dynamic velocity field

Given a velocity field v(x, t), the position xd of Lagrangian floats can
be described by the following ODE:

ẋd = v(xd, t)

The velocity field itself evolves in time and could be coupled to other
variables such as temperature, etc.

Denote xf to be all these variables – “f” stands for “flow” variables –
and their evolution by ẋf = mf (xf )

E.g. if we have a spectral model for solving Navier-Stokes equations,
xf would consist of the Fourier components, so that
v(xd, t) = md(xf (t), xd) where the right hand side is linear in xd but
nonlinear in xf , e.g., v(xd, t) = xf1(t) sin(xd) + xf2 cos(xd) + . . .
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Section 1: Lagrangian observations of the ocean

Augmented model for Lagrangian data assimilation

Recall the equations for the flow and drifter variables:

ẋf = mf (xf ) and ẋd = md(xf (t), xd)

Combining these together, we obtain the dynamical model for the
“augmented” state space x = (xf , xd):

ẋ =

(
ẋf
ẋd

)
=

(
mf (xf )

md(xf , xd)

)
= m(x)

Lagrangian data assimilation = using measurements of drifter positions xd
to “predict” the flow variables xf
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Section 2: Particle and Kalman filter

Nonlinear filtering ≡ data assimilation

Consider a stochastic dynamical model

xt+1 = m(xt) + ζt with x0 unknown

Thus we assume a probability density pa(x0) for the initial condition.

We will consider the problem of “estimating” the state x at some
time t given observations at times 1, 2, . . . , N .
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Nonlinear filtering ≡ data assimilation

Consider a stochastic dynamical model

xt+1 = m(xt) + ζt with x0 unknown

Thus we assume a probability density pa(x0) for the initial condition.

We will consider the problem of “estimating” the state x at some
time t given observations at times 1, 2, . . . , N .

Smoothing: Obtain a state estimate xt for t < N using all the
observations up to time N ; In particular, determine x0

Filtering: Obtain a state estimate xN using observations up to time N

Prediction: Obtain a state estimate xt for t > N (the time horizon of
prediction is important).
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Section 2: Particle and Kalman filter

Nonlinear filtering ≡ data assimilation

Consider a stochastic dynamical model

xt+1 = m(xt) + ζt with x0 unknown

Thus we assume a probability density pa(x0) for the initial condition.

We will consider the problem of “estimating” the state x at some
time t given observations at times 1, 2, . . . , N .

In most applications in earth sciences, data is collected “all the time”
so the most relevant problem is of filtering.

Predictions are obtained by using the filtering solution as “initial
conditions” for the appropriate PDE of interest (hence the common
view that data assimilation is the problem of finding initial
conditions).
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Section 2: Particle and Kalman filter

Or data assimilation ≡ determination of posterior i.e.
conditional distribution given the observations

Observations yt at time t depend on the state at that time.

yt = h(xt) + ηt t = 1, . . . , N

h is called the observation operator. ηt is observational noise. Eventually
we will assume independence between ηt and ζt.

Probabilistic statement of Data assimilation problem: find the posterior
distribution of the state conditioned on the observations

Smoothing: p(xt|y1, y2, . . . , yN ) for t < N

Filtering: p(xN |y1, y2, . . . , yN )

Prediction: p(xt|y1, y2, . . . , yN ) for t > N
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Section 2: Particle and Kalman filter

Filtering density: obtained in a two step process

A notation: y1:t = {y1, y2, . . . , yt} and x1:t = {x1, x2, . . . , xt}
The first step is “prediction”

Suppose we have the probability pa(x1:t|y1:t) of states x1:t up to time
t conditioned on observations y1:t up to time t, and recalling that
xt+1 = m(xt) + ζt (which is a Markov chain, with transition kernel
pm(xt+1|xt))
→ Then the probability pf (x1:t+1|y1:t) of the states x1:t+1 up to time
t+ 1 conditioned on observations y1:t up to time t, is obtained by:

pf (x1:t, xt+1|y1:t) = p(x1:t|y1:t) · p(xt+1|x1:t, y1:t)
↓ ↓

= pa(x1:t|y1:t) · pm(xt+1|xt)
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Section 2: Particle and Kalman filter

Filtering density: obtained in a two step process

A notation: y1:t = {y1, y2, . . . , yt} and x1:t = {x1, x2, . . . , xt}
The next step is “update”

Given the above probability pf (x1:t+1|y1:t) of the states x1:t+1 up to
time t+ 1 conditioned on observations y1:t up to time t, and recalling
yt+1 = h(xt+1) + ηt+1

→ Then the probability pa(x1:t+1|y1:t+1) of the states x1:t+1 up to
time t+ 1 conditioned on observations y1:t+1 up to time t+ 1 is given
by Bayes’ theorem:

pa(x1:t+1|y1:t, yt+1) = p(x1:t+1|y1:t) · p(yt+1|x1:t+1, y1:t)
1

p(yt+1|y1:t)
↓ ↓
∝ pf (x1:t+1|y1:t) · pη(yt+1|xt+1)
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Section 2: Particle and Kalman filter

Filtering density satisfies a recursion relation

Putting together the two relations from previous slide:

“prediction” given by

pf (x1:t, xt+1|y1:t) = pa(x1:t|y1:t) · pm(xt+1|xt)

“update” given by

pa(x1:t+1|y1:t, yt+1) ∝ pf (x1:t+1|y1:t) · pη(yt+1|xt+1)

we obtain the following recursive relation for the posterior distribution

pa(x1:t+1|y1:t+1) ∝ pa(x1:t|y1:t) · pm(xt+1|xt) · pη(yt+1|xt+1)

where pη(yt+1|xt+1) is the observational noise and pm(xt+1|xt) is the
Markov transition Kernel for the dynamical model.
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Section 2: Particle and Kalman filter

Particle filter: a “weighted sample” representation of the
filtering recursion

pa(x1:t+1|y1:t+1) ∝ pa(x1:t|y1:t) · pm(xt+1|xt) · pη(yt+1|xt+1)

Suppose we have a weighted sample {xit, wit}, i = 1, . . . , N from
pa(xt|y1:t), i.e., we approximate pa(xt|y1:t) ≈

∑N
i=1w

i
tδ(xt − xit).

If xit+1 is a sample from a “importance sampling density” q(x1+1|xit),
then the weighted sample {xit+1, w

i
t+1}, i = 1, . . . , N approximates

the posterior at time t+ 1 if we choose

wit+1 ∝ wit ·
pm(xit+1|xit) · pη(yt+1|xit+1)

q(xi1+1|xit)

This is the main idea behind particle filtering
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Section 2: Particle and Kalman filter

Kalman filter: a “two moment” representation of the
Gaussian posterior in case of linear model

Suppose the model is linear m(x) = Mx, the observation operator is
linear h(x) = Hx, the initial distribution for x0 is Gaussian, as are the
stochasticity in the observations ηt and in the dynamical model ζt.

Kalman filter gives a recursion relation for the mean and covariance:

(xat , C
a
t ) for pa(xt|y1:t) and (xft+1, C

f
t+1) for pf (xt+1|y1:t):

“Update step” given by

xat = xft +K(yt −Hxft ) and Ca
t = (I −KH)Cf

t

Here K = P f
t H

T (HP f
t H

T +R)−1 is the Kalman gain matrix
“Prediction step” given by

xft+1 = Mxat and Cf
t+1 = MCa

t M
T

Ensemble Kalman filter is the Monte Carlo version of this filter, where
the Gaussian distributions are represented using samples.
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Section 2: Particle and Kalman filter

Ensemble based methods make use of an ensemble of
states to represent the uncertainty.

/EPQER
*MPXIV�QIXLSH
JSV
(EXE�%WWMQMPEXMSR
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Section 3: Hybrid Kalman-particle filter

Contrasting the properties of particle and Kalman filters

On one hand,

Ensemble Kalman filter is obviously designed for linear systems - for
highly nonlinear systems, it fails to represent the true posterior
distribution,

but it seems to work well even in high (103 − 106) dimensional
systems with very small ensembles (∼ 100) [no theoretical
understanding of this phenomena].

On the other hand,

Particle filter is a sampling method, and its errors grow exponentially
with the dimension of the state space,

but clearly, it does not have any restrictions about the dynamics being
linear (or even stochastic)
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Section 3: Hybrid Kalman-particle filter

Some features of the augmented dynamical system for
Lagrangian data assimilation

ẋ =

(
ẋf
ẋd

)
=

(
mf (xf )

md(xf , xd)

)
= m(x)

xf is typically very high dimensional (its an approximation of an
infinite dimensional dynamical system) – computationally “expensive”
and large sampling errors – whereas xd is 2-3 dimensional –
computationally “cheap” and small sampling errors

The dynamics of the drifters xd is highly nonlinear – large errors with
a linear approximation – whereas that of the flow xf is not so
nonlinear (on the time scale of interest) – smaller errors with a linear
approximation

It is natural to use EnKF for xf while using a particle filter for xd!

Q.: How do we consistently update weights and the mean and covariance
to obtain a good approximation of the posterior?
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Section 3: Hybrid Kalman-particle filter

The samples in the hybrid particle-Kalman filter scheme

The weighted sample consists of multiple drifters for each flow field:
{(xif , x

i,j
d ), wi,j} for i = 1, . . . , Nf and j = 1, . . . , Nd

The area of the circle is
proportional to its weight

The shaded circles
represent the marginal
for xf after integrating
out (i.e., summing it)
the other variables xd.

Thus, the full distribution is approximated by

p(xf , xd) ≈
Nf ,Nd∑
i,j=1

wi,jδ(xf − xif )δ(xd − xi,jd )
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Section 3: Hybrid Kalman-particle filter

Filtering update in the hybrid scheme

1 Update the flow ensemble members xif using the observation y with
the EnKF update step given earlier.

2 Update the weights wi,j associated to each drifter sample xi,jd .

3 “Resample” the flow and drifter variables and set their weights to be
constant w = 1/(NfNd)

We have compared this method with the standard particle filter and with
ensemble Kalman filter in two model problems: a low-dimensional linear
velocity field, and a high-dimensional nonlinear velocity flow
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Section 3: Hybrid Kalman-particle filter

Some results using linear shallow water equations

For two dimensional velocity (u, v) and
height h fields:

∂u

∂t
= v − ∂h

∂s1
,

∂v

∂t
= −u− ∂h

∂s2
,

∂h

∂t
= − ∂u

∂s1
− ∂v

∂s2
,

We seek periodic solutions on R2 in u, h,
specifically, the following Fourier modes:

Height and velocity fields

u(s1, s2, t) = −2πl sin(2πks1) cos(2πls2)u0 + cos(2πms2)u1(t)

v(s1, s2, t) = 2πk cos(2πks1) sin(2πls2)u0 + cos(2πms2)v1(t)

h(s1, s2, t) = sin(2πks1) sin(2πls2)u0 + sin(2πms2)h1(t)
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Section 3: Hybrid Kalman-particle filter

Linear shallow water equations with Lagrangian data

The amplitudes satisfy the following:

u̇0 = 0, u̇1 = v1,

v̇1 = −u1 −2πmh1, ḣ1 = 2πmv1

The observations are the positions of the
drifters that satisfy:

ṡ1(t) = u(s1(t), s2(t), t), ṡ2(t) = v(s1(t), s2(t), t)

Numerical experiments consisted of the following:

Generate noisy observations from a long trajectory of the drifter
Assimilate these observations with

A hybrid filter
An Ensemble Kalman filter
A particle filter with a large number of samples

Compare the posterior mean with the true values
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Section 3: Hybrid Kalman-particle filter

Hybrid filter performs almost as well as particle filter
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Section 3: Hybrid Kalman-particle filter

High-dimensional model problem

Quasi-geostrophic shallow water equations
for the velocity field[

∂

∂t
− ∂η

∂y

∂

∂x
+
∂η

∂x

∂

∂y

]
∆η = F (x, y, t)

u(x, y, t) = −∂η
∂y

, v(x, y, t) =
∂η

∂x

The observations are again the positions of
the drifters that satisfy:

ṡ1(t) = u(s1(t), s2(t), t), ṡ2(t) = v(s1(t), s2(t), t)
x (km)

y
 (

k
m

)

A few drifter trajectories and snapshot of height (shading) and velocity fields

1000 2000 3000

500

1000

1500

Numerical experiments again consisted of

A hybrid filter
An Ensemble Kalman filter
A “free run” without any filtering
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Section 3: Hybrid Kalman-particle filter

Hybrid filter is effective in tracking the “truth”

True height and velocity fields
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Section 3: Hybrid Kalman-particle filter

Hybrid filter is effective in tracking the “truth”
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Section 4: Outlook
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Section 4: Outlook

Summary:

Lagrangian data assimilation is the problem of using data from
Lagrangian/passive instruments (e.g. drifters and gliders)

Particle filtering and Kalman filtering are two complementary data
assimilation methods which are

ineffective in high dimensional and nonlinear problems, respectively, but
effective in nonlinear problems and high dimensions, respectively.

Hybrid particle-Kalman filter that I discussed combines the strengths
of both, for the Lagrangian data assimilation problem.

Some questions:

high (infinite) dimensional methods for resampling velocity field

Use of dynamical information, e.g., unstable manifolds; Lyapunov
exponents and vectors; etc. for improving filter performance

1 A. Doucet and A.M. Johansen. “Tutorial on Particle Filtering and Smoothing: Fifteen Years Later”. In: Handbook on
Nonlinear Filtering. Ed. by Dan Crisan and Boris Rozovskii. Oxford University Press, 2011, pp. 656–704

2 Laura Slivinski et al. “A Hybrid Particle-Ensemble Kalman Filter for Lagrangian Data Assimilation”. In: Tellus ??
(2014), ??

3 Laura Slivinski, Elaine Spiller, and Amit Apte. “A hybrid particle-ensemble Kalman filter for high dimensional
Lagrangian data assimilation”. In: (). submitted
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