Superhuman 0000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Probabilistic Juggling

Arvind Ayyer (joint work with Jeremie Bouttier, Sylvie Corteel and Francois Nunzi) arXiv:1402:3752

Conference on STOCHASTIC SYSTEMS AND APPLICATIONS (aka Borkarfest)

Indian Institute of Science Bangalore

September 10, 2014

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Outline

- Solitary infallible juggler
- Ø Markov chain on set partitions
- Superhuman juggler
- Errant juggler with a partner

Solitary	Set partitions	Superhuman	Errant
●000000000	0000000	0000	000000

Multivariate Juggling Markov Chain (MJMC)

• Data: Siteswap notation

- h: the maximum height the juggler can throw.
- ℓ : the number of balls he juggles.
- k = h − ℓ: the number of empty spaces he has to throw the balls in

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- x a probability distribution on $\{0, \ldots, k\}$.
- State space: $St_{h,k} \subsetneq \{\bullet,\circ\}^h$
- Configurations $B = (b_1, b_2, \dots, b_h) \in St_{h,k}$

 Solitary
 Set partitions
 Superhuman
 Errant

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0
 0 0 0 0 0

Example: h = 8, $k = \ell = 4$

- •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •<
- 0

 Solitary
 Set partitions
 Superhuman
 Errant

 000000000
 000000
 000000
 000000

Example: $h = 8, k = \ell = 4$

 Solitary
 Set partitions
 Superhuman
 Errant

 0
 0000000
 0000
 0000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example: $h = 8, k = \ell = 4$

 Solitary
 Set partitions
 Superhuman
 Erra

 000000000
 0000000
 0000
 000
 000

Example: $h = 8, k = \ell = 4$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Solitary Set partitions Superhuman Errant

Example: $h = 8, k = \ell = 4$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

- 1994 Juggling sequences Buhler, Eisenbud, Graham and Wright (AMM)
- 1996- Connections to other combinatorial structures
- 2005 Juggling probabilities Warrington (AMM) x_i uniform
- 2012 Juggler's exclusion process on \mathbb{Z} , Leskelä and Varpanen

Solitary 000●000000	Set partitions 0000000	Superhuman 0000	Errant 000000
MJMC on <i>St</i> _{4,2}			
	x_0 x_1 x_2 x_1 x_2 x_1 x_2 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_3 x_2 x_2 x_3 x_2 x_3 x_2 x_3 x_2 x_3 x_2 x_3 x_2 x_3 x_3 x_4 x_5		

・ロト ・ 理 ・ ・ ヨ ・ ・ 日 ・ うへの

Solitary 0000000000	Set partitions 0000000	Superhuman 0000	Errant 000000
MJMC on S	t _{4,2}		
Basis: (grav	rity ←)		
	(●●○○, ●○●○, ●○○●,	○ ● ●○, ○ ● ○●, ○ ○ ●●)	

Transition matrix:

$$\begin{pmatrix} x_0 & x_1 & x_2 & 0 & 0 & 0 \\ x_0 & 0 & 0 & x_1 & x_2 & 0 \\ 0 & x_0 & 0 & x_1 & 0 & x_2 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Unnormalised Stationary distribution:

Solitary	Set partitions	Superhuman	Errant
00000●00000	0000000	0000	000000
Results abou	it the MIMC		

Proposition (A, Bouttier, Corteel, Nunzi, '14)

If $x_i > 0$ for all $i \in \{0, ..., k\}$, then the MJMC is irreducible and aperiodic.

Warrington's proof of this was incomplete!

Solitary	Set partitions	Superhuman	Errant
000000●0000	0000000	0000	000000
Results about th	ne MJMC		

For
$$B \in St_{h,k}$$
, define $e_i(B) = \#\{j > i : b_j = \circ\}$ and

$$\Delta(B) = \prod_{\substack{i \in \{1,...,h\} \ b_i = ullet}} (1 + e_i(B))$$

Theorem (Warrington '05)

If x is uniform, the stationary probability distribution of $B \in St_{h,k}$ is $\pi(B) = \Delta(B)$

$$\pi(B) = \frac{\Delta(B)}{\binom{h+1}{k+1}}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Solitary	Set partitions	Superhuman	Errant
0000000●000	0000000	0000	000000
Stirling Numbe	rs of the Second	Kind	

• $\binom{n}{j}$ is the number of ways to partition an *n*-set into *j* parts.

$$\binom{n+1}{j} = j \binom{n}{j} + \binom{n}{j-1}; \quad \binom{n}{0} = \delta_{n,0}.$$

• For example ${4 \choose 2} = 7$, since $\{1, 2, 3, 4\}$ can be partitioned as

 $123|4,\ 3|124,\ 2|134,\ 1|234,\ 12|34,\ 13|24,\ 23|14$

• The stationary probability distribution on St_{4,2} becomes

$\bullet \bullet \circ \circ$	$\bullet \circ \bullet \circ$	$\bullet \circ \circ \bullet$	$\circ \bullet \bullet \circ$	$\circ \bullet \circ \bullet$	$\circ \circ \bullet \bullet$
9	6	3	4	2	1
25	25	25	25	25	25

Stationary di	stribution of the I	МЈМС	
00000000000			000000
Solitary	Set partitions	Superhuman	Errant

Theorem (A, Bouttier, Corteel, Nunzi, '14)

The stationary distribution π of the MJMC is given by

$$\pi(B) = \frac{1}{Z_{h,k}} \prod_{\substack{i \in \{1,\ldots,h\}\\b_i = \bullet}} \left(x_{E_i(B)} + \cdots + x_k \right),$$

where
$$E_i(B) = \#\{j < i | b_j = \circ\}$$
, and
 $Z_{h,k} \equiv Z_{h,k}(x_0, \dots, x_k)$ is the normalisation factor.

Back to example

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ のへで

00000000000 0000000 000000 0000000000

• Let
$$y_m = \sum_{j=m}^k x_j$$
 for $m = 0, ..., k$.

• Let $h_n(z_0, ..., z_k)$ be the complete homogeneous symmetric polynomial of degree n, e.g.,

$$h_2(z_0, z_1, z_2) = z_0^2 + z_0 z_1 + z_0 z_2 + z_1^2 + z_1 z_2 + z_2^2.$$

Lemma (A, Bouttier, Corteel, Nunzi, '14)

The normalisation factor can be written as

$$Z_{h,k} = h_\ell(y_0, y_1, \ldots, y_k).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Solitary 0000000000

Special cases

Set partition: 0000000 Superhuman 0000

Corollary (A, Bouttier, Corteel, <u>Nunzi, '14)</u>

$$Z_{h,k}(1,1,\ldots,1,1) = \begin{cases} h+1\\ k+1 \end{cases},$$

$$Z_{h,k}(q^{k},q^{k-1},\ldots,q,1) = \begin{cases} h+1\\ k+1 \end{cases}_{q},$$

$$Z_{h,k}(1,q,\ldots,q^{k-1},q^{k}) = q^{k(h-k)} \begin{cases} h+1\\ k+1 \end{cases}_{1/q},$$

$$Z_{h,k}((1-q),(1-q)q,\ldots,(1-q)q^{k-1},q^{k}) = \binom{h}{k}_{q}.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

Enriched	Multivariate Iuggling	Markov Chain (F	M M (M C)
	000000		
Solitary	Set partitions	Superhuman	

- Data:
 - H = h + 1: Cardinality of the set $\{1, \dots, H\}$
 - K = k + 1: Number of parts of the *H*-set
 - x a probability distribution on $\{0, \dots, K 1\}$.
- State space: $\mathcal{S}(H, K)$
- $\sigma \in \mathcal{S}(H, K)$ written in increasing order of block maxima, e.g.,

 $24|156|37 \in \mathcal{S}(7,3).$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $\begin{array}{c|c} \mbox{Solitary} & \mbox{Set partitions} & \mbox{Superhuman} & \mbox{Err} \\ \mbox{cocc} & \mbox{coccc} & \mbox{cocc} & \$

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

 $\begin{array}{c|c} \mbox{Solitary} & \mbox{Set partitions} & \mbox{Superhuman} & \mbox{Err} \\ \mbox{cocc} & \mbox{coccc} & \mbox{cocc} & \$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ 三 ○○○○

Solitary Set partitions Superhuman Er ocoo

$1|2|4|57|3689 \rightarrow 1|3|46|2578|9 \rightarrow 2|35|1467|8|9 \rightarrow ?$

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

 $\begin{array}{c|c} \mbox{Solitary} & \mbox{Set partitions} & \mbox{Superhuman} & \mbox{Errations} & \mbox{Superhuman} & \mbox{Errations} & \mbox{Solitary} & \mbox{Superhuman} & \mbox{Errations} & \mbox{Solitary} & \mbox{Superhuman} & \m$

◆□ > ◆□ > ◆臣 > ◆臣 > □ = ○ ○ ○ ○

 $\begin{array}{c|c} \mbox{Solitary} & \mbox{Set partitions} & \mbox{Superhuman} & \mbox{Err} \\ \mbox{occo} & \mbox{occ} & \mbox{Superhuman} & \mbox{Corr} & \mbox{occ} & \mbox{OC} \\ \hline \mbox{Example:} & \mbox{1}|2|4|57|3689 \rightarrow 1|3|46|2578|9 \rightarrow 2|35|1467|8|9 \rightarrow ? \end{array}$

◆□ > ◆□ > ◆臣 > ◆臣 > □ = ○ ○ ○ ○

 Solitary
 Set partitions
 Superhuman

 0000000000
 000000
 00000

 Example:
 000000

$1|2|4|57|3689 \rightarrow 1|3|46|2578|9 \rightarrow 2|35|1467|8|9 \rightarrow ?$

◆□ > ◆□ > ◆臣 > ◆臣 > □ = ○ ○ ○ ○

Solitary Set partitions Superhuman occord

Errant 000000

◆□ > ◆□ > ◆臣 > ◆臣 > □ = ○ ○ ○ ○

$1|2|4|57|3689 \rightarrow 1|3|46|2578|9 \rightarrow 2|35|1467|8|9 \rightarrow ?$

Solitary 00000000000 Set partitions

Superhuman 0000 Errant 000000

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Example: $1|2|4|57|3689 \rightarrow 1|3|46|2578|9 \rightarrow 2|35|1467|8|9 \rightarrow ?$

0000000000	000000	0000	00
Solitary	Set partitions Superhuman		Er

Results about the EMJMC

Proposition (A, Bouttier, Corteel, Nunzi, '14)

If $x_i > 0$ for all $i \in \{0, ..., k\}$, then the EMJMC is irreducible and aperiodic.

rant

Solitary	Set partitions	Superhuman	Errant
0000000000	000●000	0000	000000
Arches			

- (s, t) is an arch of σ ∈ S(H, K) if s and t are nearest neighbours in a block.
- C_σ(s, t) be the number of blocks containing at least one element in {s, s + 1,..., t − 1, t}.
- Example with $4|1356|27 \in \mathcal{S}(7,3)$

Results about the EMIMC		
Solitary Set partitions 0000000000 0000000	Superhuman 0000	Errant 000000

Results about the EIVIJIVIC

Theorem (A, Bouttier, Corteel, Nunzi, '14)

The stationary distribution π of the EMJMC is given by

$$\hat{\pi}(\sigma) = rac{1}{\hat{Z}_{H,K}} \prod_{(s,t) \text{ arch of } \sigma} x_{K-C_{\sigma}(s,t)}$$

where $\hat{Z}_{H,K} = Z_{h,k}(x_0, \ldots, x_k)$ is the normalisation factor.

Corollary (Warrington, '05)

When x is uniform, the stationary distribution on $\mathcal{S}(H, K)$ is uniform.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

*ロ * * ● * * ● * * ● * ● * ● * ●

- Proof for EMJMC by verifying the master equation
- Proof for MJMC by lumping/projection from EMJMC as follows:

- Proof for EMJMC by verifying the master equation
- Proof for MJMC by lumping/projection from EMJMC as follows:
- Define $\psi : \mathcal{S}(H, K) \to St_{h,k}$ so that $b_i = \circ$ iff *i* is a block maximum in σ .

Solitary	Set partitions	Superhuman	Errant
0000000000		0000	000000
Full chain or	n $\mathcal{S}(4,2)$		

Red arrows and arches have probability x_0 Green arrows and arches have probability x_1 Gray arrows have probability $\rightarrow x_0 + x_1 = 1$

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

• ℓ balls, which can be thrown to arbitrary heights.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

- ℓ balls, which can be thrown to arbitrary heights.
- State space $St^{(\ell)} \subsetneq \{\bullet, \circ\}^{\mathbb{N}}$
- x a probability distribution on \mathbb{N}

- ℓ balls, which can be thrown to arbitrary heights.
- State space $St^{(\ell)} \subsetneq \{ullet, \circ\}^{\mathbb{N}}$
- x a probability distribution on \mathbb{N}
- \bullet Formally, states are infinite words in \bullet and \circ with exactly ℓ occurences of $\bullet.$
- *T_i(A)* ∈ *St^(ℓ)* is the word obtained by replacing the (*i* + 1)-th occurrence of ∘ in *A* by ●.
- The transition probability from $A = a_1 a_2 a_3 \cdots$ to B is

$$P_{A,B} = \begin{cases} 1 & \text{if } a_1 = \circ \text{ and } B = a_2 a_3 \cdots, \\ x_i & \text{if } a_1 = \bullet \text{ and } B = T_i(a_2 a_3 \cdots), \\ 0 & \text{otherwise.} \end{cases}$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Results about LIM IMC		
Solitary Set partitions	Superhuman	Errant
0000000000 0000000	0●00	000000

Proposition (A, Bouttier, Corteel, Nunzi, '14)

If x_0 and infinitely many x_i 's are nonzero, then the UMJMC is irreducible and aperiodic.

Theorem (A, Bouttier, Corteel, Nunzi, '14)

The unique invariant measure (up to constant of proportionality) of the UMJMC is given by

$$w(B) = \prod_{i \in \mathbb{N}, b_i = \bullet} y_{E_i(B)}$$

where $B = b_1 b_2 b_3 \dots \in St^{(\ell)}$, $E_i(B) = \#\{j < i | b_j = \circ\}$ and $y_m = \sum_{j=m}^{\infty} x_j$.

・ロト ・ 理ト ・ モト ・ モー ・ つへぐ

Mara about	the inveriant mea	curo	
		0000	
Solitary	Set partitions	Superhuman	

Theorem

The invariant measure of the UMJMC is finite if and only if

$$\sum_{i=0}^{\infty} i \, x_i < \infty,$$

in which case its total mass reads

$$Z^{(\ell)} = h_{\ell}(y_0, y_1, y_2, \ldots).$$

Further, the UMJMC is positive recurrent if and only if the above holds. In that case, there is a unique stationary probability distribution, and the chain started from any initial state converges to it in total variation as time tends to infinity.

- Both the solitary and superhuman juggling chains can be interpreted in terms of natural Markov chains on **integer partitions**.
- The superhuman juggling chain can also be naturally generalised to have an infinite number of balls (IMJMC).
- The conditions for the existence of a probability measure and positive recurrence in the IMJMC are **identical** to the UMJMC.

Solitary
coccoccoSet partitions
coccoccoSuperhuman
coccoccoErrant
•occoccoMultivariate Annihilation Juggling Markov Chain
(MAJMC)(Markov Chain

Data:

- *h*: the maximum height the juggler can throw.
- z a probability distribution on $\{0, \ldots, h\}$, with $a \equiv z_0$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

• State space:
$$St_h = \{\bullet, \circ\}^h$$

Solitary	Set partitions	Superhuman	Errant
0000000000	0000000	0000	0●0000
Example: $h = 8$			

Solitary	Set partitions	Superhuman	Errant
0000000000	0000000	0000	0●0000
Example: $h = 8$			

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 の�?

Solitary	Set partitions	Superhuman	Errant
0000000000	0000000	0000	0●0000
Example: $h = 8$			

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ へ ○

Solitary	Set partitions	Superhuman	Errant
0000000000	0000000	0000	00●000
MAJMC for $h =$	= 2		

Transition matrix in the basis ($\bullet \bullet$, $\circ \bullet$, $\bullet \circ$, $\circ \circ$)

$$P=\left(egin{array}{ccccc} z_1 & 0 & z_2+a & 0 \ z_1 & 0 & z_2+a & 0 \ 0 & z_1 & z_2 & a \ 0 & z_1 & z_2 & a \end{array}
ight),$$

Stationary probability distribution

$$(z_1^2, z_1(z_2+a), (z_1+z_2)(z_2+a), a(z_2+a))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Solitary 00000000000 Set partitions

Superhuman 0000 Errant 000●00

Results for the MAJMC

Theorem (A, Bouttier, Corteel, Nunzi, '14)

The stationary probability distribution of the annihilation model is

$$\Pi(B) = \prod_{\substack{i=1\\b_i=\bullet}}^{h} (z_1 + \cdots + z_{e_i(B)+1}) \prod_{j=1}^{k} (z_{j+1} + \cdots + z_h + a),$$

where $e_i(B) = \#\{j : i < j \le h, b_j = 0\}$. Moreover,

$$\sum_{B} \Pi(B) = (z_1 + \cdots + z_h + a)^h = 1$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Solitary	Set partitions	Superhuman	Errant
			000000

Convergence to stationarity

Theorem

For any initial probability distribution η over St_h , the distribution at time h is equal to the stationary distribution, namely

$$\eta P^h = \Pi.$$

In particular, the only eigenvalues of the transition matrix P are 1 (with multiplicity 1) and 0.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Thank you for your attention!