Probabilistic Juggling

Arvind Ayyer
(joint work with Jeremie Bouttier, Sylvie Corteel and Francois Nunzi)
arXiv:1402:3752
Conference on STOCHASTIC SYSTEMS AND APPLICATIONS (aka Borkarfest)
Indian Institute of Science Bangalore

September 10, 2014

Outline

(1) Solitary infallible juggler
(2) Markov chain on set partitions
(3) Superhuman juggler
(9) Errant juggler with a partner

Multivariate Juggling Markov Chain (MJMC)

- Data: Siteswap notation
- h : the maximum height the juggler can throw.
- ℓ : the number of balls he juggles.
- $k=h-\ell$: the number of empty spaces he has to throw the balls in
- $x-a$ probability distribution on $\{0, \ldots, k\}$.
- State space: $S t_{h, k} \subsetneq\{\bullet, \circ\}^{h}$
- Configurations $B=\left(b_{1}, b_{2}, \ldots, b_{h}\right) \in S t_{h, k}$

Example: $h=8, k=\ell=4$

Example: $h=8, k=\ell=4$

Example: $h=8, k=\ell=4$

Example: $h=8, k=\ell=4$

\bullet	0	0	
\bigcirc	-	\bigcirc	\bigcirc
-	\bigcirc	-	\bigcirc
-		\bigcirc	-
-	0	\bullet	-
\bigcirc	\bullet	0	-
\bigcirc	\bigcirc	\bullet	\bigcirc

Example: $h=8, k=\ell=4$

1994 Juggling sequences Buhler, Eisenbud, Graham and Wright (AMM)
1996- Connections to other combinatorial structures
2005 Juggling probabilities Warrington (AMM) x_{i} uniform
2012 Juggler's exclusion process on \mathbb{Z}, Leskelä and Varpanen

MJMC on $S t_{4,2}$

MJMC on $S t_{4,2}$

Basis: (gravity $\longleftarrow)$

$$
(\bullet \bullet \circ \circ, \bullet \circ \bullet \circ, \bullet \circ \circ \bullet, \circ \bullet \bullet \circ, \circ \bullet \circ \bullet, \circ \circ \bullet \bullet)
$$

Transition matrix:

$$
\left(\begin{array}{cccccc}
x_{0} & x_{1} & x_{2} & 0 & 0 & 0 \\
x_{0} & 0 & 0 & x_{1} & x_{2} & 0 \\
0 & x_{0} & 0 & x_{1} & 0 & x_{2} \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Unnormalised Stationary distribution:

$\bullet \bullet \circ \circ$	$\bullet \circ \bullet \circ$	$\bullet \circ \circ \bullet$	$\circ \bullet \bullet \circ$	$\circ \bullet \circ \bullet$	$\circ \circ \bullet \bullet$
1	$x_{1}+x_{2}$	x_{2}	$\left(x_{1}+x_{2}\right)^{2}$	$x_{2}\left(x_{1}+x_{2}\right)$	x_{2}^{2}

Results about the MJMC

Proposition (A, Bouttier, Corteel, Nunzi, '14)

If $x_{i}>0$ for all $i \in\{0, \ldots, k\}$, then the MJMC is irreducible and aperiodic.

Warrington's proof of this was incomplete!

Results about the MJMC

For $B \in S t_{h, k}$, define $e_{i}(B)=\#\left\{j>i: b_{j}=0\right\}$ and

$$
\Delta(B)=\prod_{\substack{i \in\{1, \ldots, h\} \\ b_{i}=\bullet}}\left(1+e_{i}(B)\right)
$$

Theorem (Warrington '05)
If x is uniform, the stationary probability distribution of $B \in S t_{h, k}$ is

$$
\pi(B)=\frac{\Delta(B)}{\left\{\begin{array}{c}
h+1 \\
k+1
\end{array}\right\}}
$$

Stirling Numbers of the Second Kind

- $\left\{\begin{array}{l}n \\ j\end{array}\right\}$ is the number of ways to partition an n-set into j parts.

$$
\left\{\begin{array}{c}
n+1 \\
j
\end{array}\right\}=j\left\{\begin{array}{l}
n \\
j
\end{array}\right\}+\left\{\begin{array}{c}
n \\
j-1
\end{array}\right\} ; \quad\left\{\begin{array}{l}
n \\
0
\end{array}\right\}=\delta_{n, 0}
$$

- For example $\left\{\begin{array}{l}4 \\ 2\end{array}\right\}=7$, since $\{1,2,3,4\}$ can be partitioned as

$$
123|4,3| 124,2|134,1| 234,12|34,13| 24,23 \mid 14
$$

- The stationary probability distribution on $S t_{4,2}$ becomes

Stationary distribution of the MJMC

Theorem (A, Bouttier, Corteel, Nunzi, '14)

The stationary distribution π of the MJMC is given by

$$
\pi(B)=\frac{1}{Z_{h, k}} \prod_{\substack{i \in\{1, \ldots, h\} \\ b_{i}=\bullet}}\left(x_{E_{i}(B)}+\cdots+x_{k}\right)
$$

where $E_{i}(B)=\#\left\{j<i \mid b_{j}=0\right\}$, and
$Z_{h, k} \equiv Z_{h, k}\left(x_{0}, \ldots, x_{k}\right)$ is the normalisation factor.
Back to example

$\bullet \bullet \circ \circ$	$\bullet \circ \bullet \circ$	$\bullet \circ \circ \bullet$
$\left(x_{0}+x_{1}+x_{2}\right)^{2}$	$\left(x_{0}+x_{1}+x_{2}\right)\left(x_{1}+x_{2}\right)$	$\left(x_{0}+x_{1}+x_{2}\right) x_{2}$
$\circ \bullet \bullet \circ$	$\circ \bullet \circ \bullet$	$\circ \circ \bullet \bullet$
$\left(x_{1}+x_{2}\right)^{2}$	$x_{2}\left(x_{1}+x_{2}\right)$	x_{2}^{2}

Normalisation factor $Z_{h, k}$

- Let $y_{m}=\sum_{j=m}^{k} x_{j}$ for $m=0, \ldots, k$.
- Let $h_{n}\left(z_{0}, \ldots, z_{k}\right)$ be the complete homogeneous symmetric polynomial of degree n, e.g.,

$$
h_{2}\left(z_{0}, z_{1}, z_{2}\right)=z_{0}^{2}+z_{0} z_{1}+z_{0} z_{2}+z_{1}^{2}+z_{1} z_{2}+z_{2}^{2} .
$$

Lemma (A, Bouttier, Corteel, Nunzi, '14)

The normalisation factor can be written as

$$
Z_{h, k}=h_{\ell}\left(y_{0}, y_{1}, \ldots, y_{k}\right)
$$

Special cases

Corollary (A, Bouttier, Corteel, Nunzi, '14)

$$
\begin{aligned}
& Z_{h, k}(1,1, \ldots, 1,1)=\left\{\begin{array}{l}
h+1 \\
k+1
\end{array}\right\} \\
& Z_{h, k}\left(q^{k}, q^{k-1}, \ldots, q, 1\right)=\left\{\begin{array}{l}
h+1 \\
k+1
\end{array}\right\}_{q} \\
& Z_{h, k}\left(1, q, \ldots, q^{k-1}, q^{k}\right)=q^{k(h-k)}\left\{\begin{array}{l}
h+1 \\
k+1
\end{array}\right\}_{1 / q} \\
& Z_{h, k}\left((1-q),(1-q) q, \ldots,(1-q) q^{k-1}, q^{k}\right)=\binom{h}{k}_{q}
\end{aligned}
$$

Enriched Multivariate Juggling Markov Chain (EMJMC)

- Data:
- $H=h+1$: Cardinality of the set $\{1, \ldots, H\}$
- $K=k+1$: Number of parts of the H-set
- x - a probability distribution on $\{0, \ldots, K-1\}$.
- State space: $\mathcal{S}(H, K)$
- $\sigma \in \mathcal{S}(H, K)$ written in increasing order of block maxima, e.g.,

$$
24|156| 37 \in \mathcal{S}(7,3) .
$$

Example:

$1|2| 4|57| 3689 \rightarrow 1|3| 46|2578| 9 \rightarrow 2|35| 1467|8| 9 \rightarrow$?

Example:

$1|2| 4|57| 3689 \rightarrow 1|3| 46|2578| 9 \rightarrow 2|35| 1467|8| 9 \rightarrow$?

Example:

$1|2| 4|57| 3689 \rightarrow 1|3| 46|2578| 9 \rightarrow 2|35| 1467|8| 9 \rightarrow$?

Example:

$1|2| 4|57| 3689 \rightarrow 1|3| 46|2578| 9 \rightarrow 2|35| 1467|8| 9 \rightarrow$?
(1)

(9)

Example:

$1|2| 4|57| 3689 \rightarrow 1|3| 46|2578| 9 \rightarrow 2|35| 1467|8| 9 \rightarrow$?

Example:

$1|2| 4|57| 3689 \rightarrow 1|3| 46|2578| 9 \rightarrow 2|35| 1467|8| 9 \rightarrow$?

(2) (3) (4) (5) (6) 7 (8)
 9

Example:

$1|2| 4|57| 3689 \rightarrow 1|3| 46|2578| 9 \rightarrow 2|35| 1467|8| 9 \rightarrow$?

Example:

$1|2| 4|57| 3689 \rightarrow 1|3| 46|2578| 9 \rightarrow 2|35| 1467|8| 9 \rightarrow$?

Results about the EMJMC

Proposition (A, Bouttier, Corteel, Nunzi, '14)

If $x_{i}>0$ for all $i \in\{0, \ldots, k\}$, then the EMJMC is irreducible and aperiodic.

Arches

- (s, t) is an arch of $\sigma \in \mathcal{S}(H, K)$ if s and t are nearest neighbours in a block.
- $C_{\sigma}(s, t)$ be the number of blocks containing at least one element in $\{s, s+1, \ldots, t-1, t\}$.
- Example with $4|1356| 27 \in \mathcal{S}(7,3)$

Results about the EMJMC

Theorem (A, Bouttier, Corteel, Nunzi, '14)

The stationary distribution π of the EMJMC is given by

$$
\hat{\pi}(\sigma)=\frac{1}{\hat{Z}_{H, K}} \prod_{(s, t)}{ }_{\text {arch of } \sigma} x_{K-c_{\sigma}(s, t)}
$$

where $\hat{Z}_{H, K}=Z_{h, k}\left(x_{0}, \ldots, x_{k}\right)$ is the normalisation factor.

Corollary (Warrington, '05)

When x is uniform, the stationary distribution on $\mathcal{S}(H, K)$ is uniform.

- Proof for EMJMC by verifying the master equation
- Proof for MJMC by lumping/projection from EMJMC as follows:
- Proof for EMJMC by verifying the master equation
- Proof for MJMC by lumping/projection from EMJMC as follows:
- Define $\psi: \mathcal{S}(H, K) \rightarrow S t_{h, k}$ so that $b_{i}=0$ iff i is a block maximum in σ.

Full chain on $\mathcal{S}(4,2)$

Red arrows and arches have probability x_{0}
Green arrows and arches have probability
Gray arrows have probability $\rightarrow x_{0}+x_{1}=1$

Unbounded Multivariate Juggling Markov Chain (UMJMC)

- ℓ balls, which can be thrown to arbitrary heights.

Unbounded Multivariate Juggling Markov Chain (UMJMC)

- ℓ balls, which can be thrown to arbitrary heights.
- State space $S t^{(\ell)} \subsetneq\{\bullet, \circ\}^{\mathbb{N}}$
- x - a probability distribution on \mathbb{N}

Unbounded Multivariate Juggling Markov Chain (UMJMC)

- ℓ balls, which can be thrown to arbitrary heights.
- State space $S t^{(\ell)} \subsetneq\{\bullet, \circ\}^{\mathbb{N}}$
- x - a probability distribution on \mathbb{N}
- Formally, states are infinite words in • and \circ with exactly ℓ occurences of \bullet.
- $T_{i}(A) \in S t^{(\ell)}$ is the word obtained by replacing the $(i+1)$-th occurrence of o in A by \bullet.
- The transition probability from $A=a_{1} a_{2} a_{3} \cdots$ to B is

$$
P_{A, B}= \begin{cases}1 & \text { if } a_{1}=0 \text { and } B=a_{2} a_{3} \cdots \\ x_{i} & \text { if } a_{1}=\bullet \text { and } B=T_{i}\left(a_{2} a_{3} \cdots\right) \\ 0 & \text { otherwise }\end{cases}
$$

Results about UMJMC

Proposition (A, Bouttier, Corteel, Nunzi, '14)

If x_{0} and infinitely many x_{i} 's are nonzero, then the UMJMC is irreducible and aperiodic.

Theorem (A, Bouttier, Corteel, Nunzi, '14)

The unique invariant measure (up to constant of proportionality) of the UMJMC is given by

$$
w(B)=\prod_{i \in \mathbb{N}, b_{i}=\bullet} y_{E_{i}(B)}
$$

where $B=b_{1} b_{2} b_{3} \cdots \in \mathrm{St}^{(\ell)}, E_{i}(B)=\#\left\{j<i \mid b_{j}=0\right\}$ and $y_{m}=\sum_{j=m}^{\infty} x_{j}$.

More about the invariant measure

Theorem

The invariant measure of the UMJMC is finite if and only if

$$
\sum_{i=0}^{\infty} i x_{i}<\infty
$$

in which case its total mass reads

$$
Z^{(\ell)}=h_{\ell}\left(y_{0}, y_{1}, y_{2}, \ldots\right)
$$

Further, the UMJMC is positive recurrent if and only if the above holds. In that case, there is a unique stationary probability distribution, and the chain started from any initial state converges to it in total variation as time tends to infinity.

Remarks

- Both the solitary and superhuman juggling chains can be interpreted in terms of natural Markov chains on integer partitions.
- The superhuman juggling chain can also be naturally generalised to have an infinite number of balls (IMJMC).
- The conditions for the existence of a probability measure and positive recurrence in the IMJMC are identical to the UMJMC.

Multivariate Annihilation Juggling Markov Chain (MAJMC)

- Data:
- h : the maximum height the juggler can throw.
- z - a probability distribution on $\{0, \ldots, h\}$, with $a \equiv z_{0}$.
- State space: $S t_{h}=\{\bullet, \circ\}^{h}$

Example: $h=8$

Example: $h=8$

Example: $h=8$

Transition matrix in the basis $(\bullet \bullet, \infty \bullet \bullet, \infty)$

$$
P=\left(\begin{array}{cccc}
z_{1} & 0 & z_{2}+a & 0 \\
z_{1} & 0 & z_{2}+a & 0 \\
0 & z_{1} & z_{2} & a \\
0 & z_{1} & z_{2} & a
\end{array}\right),
$$

Stationary probability distribution

$$
\left(z_{1}^{2}, z_{1}\left(z_{2}+a\right),\left(z_{1}+z_{2}\right)\left(z_{2}+a\right), a\left(z_{2}+a\right)\right)
$$

Results for the MAJMC

Theorem (A, Bouttier, Corteel, Nunzi, '14)

The stationary probability distribution of the annihilation model is

$$
\Pi(B)=\prod_{\substack{i=1 \\ b_{i}=\bullet}}^{h}\left(z_{1}+\cdots+z_{e_{i}(B)+1}\right) \prod_{j=1}^{k}\left(z_{j+1}+\cdots+z_{h}+a\right),
$$

where $e_{i}(B)=\#\left\{j: i<j \leq h, b_{j}=0\right\}$. Moreover,

$$
\sum_{B} \Pi(B)=\left(z_{1}+\cdots+z_{h}+a\right)^{h}=1
$$

Convergence to stationarity

Theorem

For any initial probability distribution η over $S t_{h}$, the distribution at time h is equal to the stationary distribution, namely

$$
\eta P^{h}=\Pi .
$$

In particular, the only eigenvalues of the transition matrix P are 1 (with multiplicity 1) and 0.

Thank you for your attention!

