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Outline

• Large dimensional time series model.

• Random matrices.

• All partitions. Classical independence.

• Non-crossing partitions. Free independence.

• Application to time series models.
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Time series

εt ,p’s: i.i.d. with mean 0 and variance-covariance matrix Ip.

A(n)
j,p , j ≥ 0: p × p coefficient matrices (parameters).

n→∞, p = p(n)→∞ such that p
n → y ∈ (0,∞).

Observations: X (n)
t ,p , 1 ≤ t ≤ n satisfy

X (n)
t ,p =

q∑
j=0

A(n)
j,p εt−j,p t ,n ≥ 1 (almost surely). (1)

Linear process (large dimensional version of linear processes
such as ARMA etc.) q can also be∞.
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Autocovariance matrix sequence

• The sample autocovariance matrix of order i is defined as

Γ̂i,p :=
1
n

n∑
t=i+1

Xt ,pX ′(t−i),p, i = 1,2,3, . . . (n − 1).

• Symmetrized autocovariances:

Γ̂0, Γ̂i Γ̂
′
i , Γ̂i + Γ̂′i

Does there exist limiting spectral distribution (LSD) for the
above symmetric matrices, more generally for any polynomial
which is symmetrics?

How can the limits be described?

How to use them for statistical purposes?
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Distribution, independence and moments

Assume all variables have compact support.

Moments
mn = E(X n)

determine the distribution (the probability measure) uniquely.

Moment generating function

M(z) =
∑

mn
zn

n!
.
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Cumulants

Cumulant generating function

log M(z) =
∑

kn
zn

n!
.

Example:
k1 = m1, k2 = m2 −m2

1.

Also
m1 = k1, m2 = k2 + k2

1 .

Standard Gaussian law, k2(G) = 1, other cumulants are zero.
[Using this derive all the moments].

Constant function c, k1(c) = c, other cumulants are zero.

In general what is the relation between moments and
cumulants and can this relation be generalised?
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All partitions

Fix n. Consider P, the set of ALL partitions of {1,2, . . .n}.

Define the REVERSE REFINEMENT PARTIAL ordering:

1n = {1,2, . . .n} is the largest partition

0n = {{1}, {2}, .....{n}} is the smallest.
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Multiplicative extension

Consider any partition π. Consider any block V of π.

Extend the sequence kn and mn to kπ and mπ in a multiplicative
way.

kπ =
∏
V∈π

k|V | and mπ =
∏
V∈π

m|V |.

Then
mn = m1n =

∑
π∈P

kπ =
∑
π≤1n

kπ.

Indeed

mτ =
∑
π≤τ

kπ for all τ.

What about the reverse relation?
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Moments in terms of cumulants

P is a lattice (max and min operations are defined).
Consider

P(2) = {(π, σ) : π ≤ σ}.

Define the IDENTITY FUNCTION

δ : P(2) → R as Iπ=σ.

Define
ζ(π, σ) = 1 for all π ≤ σ.

Then we can write the moment-cumulant formula as

mπ =
∑
σ≤π

kσζ(σ, π).
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Mobius function

There exists µ(π, σ) on P(2) which is the INVERSE of ζ with
respect to a convolution:

(ζ ∗ µ)(π, σ) =
∑

π≤τ≤σ
ζ(π, τ)µ(τ, σ) = δ(π, σ).

Equivalently,
ζ ∗ µ = δ,

or ∑
π≤τ≤σ

µ(τ, σ) = Iπ=σ.

µ is called the MOBIUS FUNCTION.
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Cumulants in terms of moments

m = k ∗ ζ.

Applying Mobius inversion µ,

m ∗ ζ = k ,

or ∑
σ≤π

mσµ(σ, π) = kπ.

In particular

kn = k1n =
∑
σ

mσµ(σ, 1n).
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Mixed moments and mixed cumulants

mn(X1, . . .Xn) = E(X1 . . .Xn).

Extend multiplicatively.

Define cumulants by Mobius inversion function.

If Xi = X for all i , we get back the earlier single sequence of
moments and cumulants.
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(Classical) independence, moments and cumulants

Random variables X1, . . . ,Xn are (classical) independent

if and only if ALL mixed moments factorize:

E(X i
1X j

2....) = E(X i
1)E(X j

2)....

if and only if ALL mixed cumulants are 0:

k(Xi ,Xj , ...) = 0 whenever at least two indices are different.
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Enter the non-commutative world

Random variables are elements of a C∗ algebra where a linear
function φ (called a STATE) is defined such that φ(1) = 1. The
first 1 is the unity of the algebra.

Examples:

All n × n matrices with constant entries and φ=normalized
trace. The identity matrix is the unity 1.

All n× n matrices with random variable entries with φ=expected
normalized trace.
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Three types of independence

Suppose we wish to define a notion of independence between
sub-algebras (NOT sigma-algebras). In a general sense there
are only three possibilities:

Classical independence (a necessarily commutative notion).

Boolean independence (limited).

FREE INDEPENDENCE (non-commutative, rich).
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Non-crossing partitions

Arrange the n points on a circle. Join the points that are in the
same partition block.

If arcs of different partition blocks do not cross, then the
partition is NON-CROSSING.

Let NC be the set of all non-crossing partitions.

Then NC inherits the ordering of P and it also has the lattice
structure (closed under max and min operations).
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Free cumulants

Now take variables a1, . . .an. Define

mn(a1 . . . an) = φ(a1 . . . an).

These may or may not define a probability distribution.

Extend in a multiplicative way (preserve the order of the
non-commuting variables) on NC.

Mobius function exists on NC (always does on a POSET).

Define cumulants via this new Mobius function. Call them
FREE CUMULANTS.

We can of course recover the moments from the cumulants.
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Examples of free cumulants

1. Semi-circle law:

1
2π

√
4− t2, |t | ≤ 2.

k2(s, s) = 1. Other (free) cumulants are zero. Compare with
standard Gaussian law: same thing happened with usual
cumulants.

2. µ = 1
2(δ−1 + δ1). All odd cumulants are zero. Even (free)

cumulants are

kn(µ, . . . , µ) = (−1)k−1Ck−1 if n = 2k

where Cj = 1
j+1

(2j
j

)
is the Catalan number.
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FREE INDEPENDENCE

Declare variables a1, . . . ,an to be FREE INDEPENDENT if and
only if all mixed free cumulants are zero.

Algebras (not sigma-algebras) of free variables are free.

If a,b are free, then cumulants add:

kn(a + b, . . .a + b) = kn(a, . . . ,a) + kn(b, . . . ,b).

The free ADDITIVE CONVOLUTION µ� ν , of two probability
distributions µ and ν is again a probability distribution. Its free
cumulants are the sum of the free cumulants of µ and ν. If a
and b are free with distributions µ and ν then the distribution of
a + b is µ� ν.

Free product convolution is a bit more tricky..
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Example of free additive convolution

1. µ = ν = 1
2(δ−1 + δ1). Then γ = µ� ν is the arc sine law with

density
1

π
√

4− t2
, |t | ≤ 2.

So if a and b are two symmetric Bernoulii and are free then the
distribution of a + b is arc sine. In general, free additive
convolution of discrete measures can be continuous.

2. s1, s2 two free semi-circle variables (such a combination
does exist). Then s1+s2√

2
is again semi circle. So semi-circle

(which has compact support) is free infinitely divisible.
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Asymptotic free

(AN , φN). Say that (a1,N , . . . ,ak ,N) converges JOINTLY if and
only if all their moments converge if and only if all their
cumulants converge.

Define a limit algebra of k indeterminates and a state via this
limit φ:

φ(a1, . . . ,ak ) = lim
N→∞

φN(a1,N , . . . ,ak ,N).

(a1,N , . . . ,ak ,N) are said to be ASYMPTOTICALLY free if the
corresponding limits are free (with respect to φ).
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Wigner matrices and asymptotic freeness

Wigner matrix: N × N symmetric matrix with (clasical)
independent and identically distributed variance one entries. As
N →∞

1 (a) Its (scaled) spectral distribution (random distribution of
eigen values) converges weakly almost surely to the semicircle
law. Such limits are usually called LSD.

(b) If all moments are assumed finite then all its moments
converge (almost surely) to the moments of the semi-circle law.

2. Independent Wigner matrices converge jointly and are
asymptotically free (with marginals as semi-circle).

3. Such matrices are also free of non-random norm bounded
matrices (which may not be free between themselves) which
converge jointly.
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Recall: the sample autocovariance matrices:

Γ̂i,p :=
1
n

n∑
t=i+1

Xt ,pX ′(t−i),p =

q∑
j=0

q∑
j ′=0

Aj Γ̂j ′−j+i(ε)A′j ′ .

Note that approximately

Γ̂k (ε) = WPkW

where W is a Wigner matrix and Pk is a non-random matrix
whose k th diagonal equals 1.

Let (ai ,1 ≤ i ≤ q) = joint limit of (Ai ,1 ≤ i ≤ q),

Let (ci ,1 ≤ i ≤ q) = joint limit of Pi .

Let s be standard semi-circular and

(ai ,ai∗,1 ≤ i ≤ q) s and (ci , ci∗,1 ≤ i ≤ q) be free.
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Theorem

Define (involves non-cummutative products)

γi,q :=

q∑
j=0

q∑
j ′=0

aj s cj ′−j+i s a∗j ′ ∀i = 0,1,2, . . .

Now we are ready to write our main result.
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Theorem

• Under finiteness of all moments, there is joint convergence of
the random and non-random matrices. In particular Γ̂i converge
to γi (other than some scaling and masses at zero).

• Under enough moments, LSD for any symmetric polynomial,
say P(Γ̂i , Γ̂

∗
i : i ≥ 0) exists.

No closed form expression for the distribution, except in special
cases. Can calculate moments of any order recursively.

Suppose Xt = εt ∀t . Then

• Γ̂0(ε) is the usual sample variance-covariance matrix and its
LSD is a Marčenko-Pastur law.

• The LSD of Γ̂i(ε)Γ̂i(ε)′ is the Bessel(2, y−1) law.
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Jin, Wang, Bai, Nair and Harding (2014): existence of LSD of
1
2(Γ̂i + Γ̂′i) when Xt = εt ∀t , via Stieltjes transform.

Liu, Ahn and Paul (2013): LSD of Γ̂0 and 1
2(Γ̂i + Γ̂′i) for MA(q)

under strong conditions on the coefficient matrices via Stieltjes
transform.

Jin, Wang, Miao and Lo Huang (2009): existence of LSD for
sample covariance matrix of Xt when it has i.i.d. rows and each
row is a VARMA.

All these results become special cases of our result.
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Diagnosis

When Xt is MA(q), the LSD of Γ̂i Γ̂
′
i are identical for i > q and

are different for 0 ≤ i ≤ q.
Consider

Xt =

q∑
k=0

εt−k , q = 0,1.

We also let y = 1. For each fixed q = 0,1 and r = 1,2,3, we
plot the r-th order moments of Γ̂i Γ̂

′
i for i = 1,2, . . . ,8. Observe

that, for each r = 1,2,3, the r -th order moments are more or
less same for each i = q + 1,q + 2, . . . ,8 under MA(q)
process, q = 0,1.

Also, the 1st, 2nd and 3rd order moments when Xt is MA(0),
are near about 1, 3 and 12 respectively, which are indeed the
1st , 2nd and 3rd order moments of Bessel(2,1) law.



Time ser. Moment Cumulant Partitions P Mult.extn. Mom.-cum. Mobius Class. indep Algebra NC Results Diagnosis

●

●

●

●
●

●

●

●

1 2 3 4 5 6 7 8

0.
98

2
0.

98
4

0.
98

6
0.

98
8

0.
99

0
0.

99
2

Index

va
lu

es

●

● ●

● ● ● ●

●

1 2 3 4 5 6 7 8

6.
0

6.
2

6.
4

6.
6

6.
8

7.
0

Index
va

lu
es

F igure 1: MA(0) and MA(1) processes: 1st moment of Γ̂i Γ̂
′
i



Time ser. Moment Cumulant Partitions P Mult.extn. Mom.-cum. Mobius Class. indep Algebra NC Results Diagnosis

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

2.
94

2.
96

2.
98

3.
00

Index

va
lu

es

●

● ● ●
● ● ● ●

1 2 3 4 5 6 7 8

14
0

16
0

18
0

20
0

22
0

Index
va

lu
es

F igure 2: MA(0) and MA(1) processes: 2nd moment of Γ̂i Γ̂
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F igure 3: MA(0) and MA(1) processes: 3rd moment of Γ̂i Γ̂
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Bessel law

Moments are given by:

βh =
h∑

k=1

1
k

(
h − 1
k − 1

)(
2h

k − 1

)
y−k .
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