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Introduction
Model
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Overview

Critical but rare events occur in
1 insurance
2 nuclear engineering
3 air traffic control
4 communication networks etc.

Goal
1 Estimate probability of the rare event
2 Estimate conditional probability of the event given certain

thresholds.
Formulation

1 Model the dynamics as a stochastic process.
2 Model the rare event as a hitting event of the process to a

particular critical subset of the state space before a specified
final time.

Evaluation
1 Simulate the trajectories.
2 Find the probability of hitting the critical subset.
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Model

Let X (t) ∈ Rd and θ(t) ∈M = {1, . . . ,m} where (X (t), θ(t))t≥0

is strongly Markov and given by

dX (t) = b(X (t))1θ(t)dt + dW (t)

P[θ(t + h) = j | X (t) = x , θ(t) = i ] = δij + λij(x)h + o(h)

(X (0), θ(0)) ∼ η

where W is a Wiener process on Rd , b : Rd → Rd×m a matrix
valued measurable function, Λ(x) := (λij(x))m×m the rate matrix,
1i the ith unit vector in Rm and η a probability distribution defined
on Rd ×M.
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Simulation

Monte-Carlo Simulation Most of the realizations of the underlying
process never reach the critical set.

Importance Sampling Trajectories are simulated under an
equivalent but different probability measure.

Splitting Method The state space is divided into a sequence of
sub-levels, the particle needs to pass before it reaches
the rare target.

We exploit the special structure of hybrid processes to
improve a standard splitting method by a marginalization
technique.
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Wonham Filter

Wonham Filter: πi (t) := P(θ(t) = i | FX (t)), i = 1, . . . ,m.

THEOREM

The diffusion process (X (t), π(t)) is the solution of

dX (t) = b(X (t))π(t)dt + dW̃ (t), W̃ is a Weiner process on Rd

dπ(t) = Λ(X (t))∗π(t)dt + (D(π(t))− π(t)π∗(t))b(X (t))∗dW̃ (t)

πi (0) =
dη(·, i)

d
∑

i η(·, i)
(X (0))

X (0) ∼
∑
i

η(·, i).

Advantage: There is no need to sample the finite set of modes, which
can be a tricky issue, especially if some modes have very
small probability. Indeed, there are degraded non-nominal
modes under which hitting the critical region is very easy,
but switching to these modes has a small probability.
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Rewriting the probability

Critical set := B = Bn ⊂ Bn−1 ⊂ · · · ⊂ B0 = Rd .

Tk := inf{t ≥ 0 : X (t) ∈ Bk} non decreasing FX -stopping times.

Sk := Tk ∧ T

Xk : [Sk−1,Sk ]→ Rd , by Xk(t) = X (t).

θ̄k := θ(Sk) & π̄k := π(Sk).

Consider gp such that {Tk ≤ T} ≡ {
∏k

p=0 gp(Xp) = 1}.

〈γk , ϕ〉 := E [ϕ(Xk , θ̄k)
∏k

p=0 gp(Xp)], ϕ ∈ L∞(E ×M).

〈Γk ,F 〉 := E [F (Xk , π̄k)
∏k

p=0 gp(Xp)], F ∈ L∞(E × P(M)).

〈γn, 1〉 = 〈Γn, 1〉 = P(Tn ≤ T ) = P(X (t) ∈ B for some t ∈ [0,T ]).
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Variance Reduction

Let U j
k f (e, θ) := E [f (Xj) | Xk = e, θ̄k = θ] and

Ū j
k f (e, π) := E [f (Xj) | Xk = e, π̄k = π]

Lemma

Let A ∈ σ(X0, . . . ,Xk−1,Xk). We have
(i)E [U j

k f (Xk , θ̄k) | Xk ,Xk−1, . . . ,X0] = E [Ū j
k f (Xk , π̄k) |

Xk ,Xk−1, . . . ,X0]
(ii)Var [U j

k f (Xk , θ̄k) | IA] ≥ Var [Ū j
k f (Xk , π̄k) | IA].

Var [U j
k f (Xk , θ̄k) | IA] = E [Var [U j

k f (Xk , θ̄k) | Xk ,Xk−1, . . . ,X0, IA] | IA]

+Var [E [U j
k f (Xk , θ̄k) | Xk ,Xk−1, . . . ,X0, IA] | IA]

Var [Ū j
k f (Xk , π̄k) | IA] = E [Var [Ū j

k f (Xk , π̄k) | Xk ,Xk−1, . . . ,X0, IA] | IA]

+Var [E [Ū j
k f (Xk , π̄k) | Xk ,Xk−1, . . . ,X0, IA] | IA].
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Variance Reduction

N Sample size

ΓN
k Generate iid samples by solving SDE and compute

empirical distributions.

γNk Generate iid samples by simulating hybrid process to
compute.

Sampling Fix any splitting algorithm / particle approximation
scheme

THEOREM

N (a, b) = Normal distribution: mean a and variance b. Then

limN→∞
√

N
(
〈ΓN

n ,1〉
〈Γn,1〉 − 1

)
∼ N (0, V̄n).

limN→∞
√

N
(
〈γN

n ,1〉
〈γn,1〉 − 1

)
∼ N (0,Vn).

Similar to: F. Cérou, P. Del Moral, F. Le Gland and P. Lezaud (2006)

THEOREM

V̄n ≤ Vn.
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Proof

The expressions of V̄n involves Var [P[Tn ≤ T | Xk , π̄k ] | Tk ≤ T ]
for k = 0, 1, . . . , n.
And the expressions of Vn involves
Var [P[Tn ≤ T | Xk , θ̄k ] | Tk ≤ T ] for k = 0, 1, . . . , n.
We rewrite
P[Tn ≤ T | Xk , π̄k ] = E [I[0,T ] ◦ α(Xn) | Xk , π̄k ] = Ūn

k f (Xk , π̄k),
where f = I[0,T ] ◦ α, a bounded measurable map.

Similarly, we rewrite P[Tn ≤ T | Xk , θ̄k ] = Un
k f (Xk , θ̄k)

Thus by using the Lemma we get the result.
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Conclusion

There are some schemes leading a less asymptotic variance. But
the use of Wonham filter does not restrict one from using those
schemes. In fact the use of Wonham filter enables further
reduction in asymptotic variance for any choice of particle
approximation scheme.

Thank you!
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