Generation of semi-discrete integrable systems including defect models

Anjan Kundu
Theory Division, Saha Institute of Nuclear Physics Calcutta, INDIA anjan.kundusaha.ac.in

June 10, 2014

DIS-Bangalore: June 9-13, 2014

- Discrete Integrable Models: Rational \& Trigonometric class
- Unifying Origin: Ancestor model
- Underlying unified algebra
- Alternative appoach- Future direction
- Integrable models with defect: Defect Toda chain

Examples of Discrete Integrable Models

(satisfying Yang-Baxter Equation (YBE))

I. Rational class

1. Isotropic $X X X$ spin chain (quantum)
2. Toda chain
3. Several Exact-Lattice versions of NLS model

$$
i \psi(x, t)_{t}-\psi(x, t)_{x x}+2\left(\psi^{\dagger}(x . t) \psi(x, t)\right) \psi(x, t)=0
$$

4. $t-j$ Model (two component fermionic model) (quantum)
5. Hubbard model (Electron model with spin) (quantum)
etc.
II. Trigonometric class (q-deformed)
6. Anisotropic $X X Z$ spin chain (quantum)
7. Exact lattice versions of
2.i). Sine-Gordon model

$$
u(x, t)_{t t}-u(x, t)_{x x}=m^{2} \sin u(x, t)
$$

2.ii) Liouville model

$$
u(x, t)_{t t}-u(x, t)_{x x}=e^{2 \alpha u(x, t)}
$$

2.iii) Derivative $N L S$ model (DNLS)

$$
i \psi(x, t)_{t}-\psi(x, t)_{x x}+4 i\left(\psi^{\dagger}(x . t) \psi(x, t)\right) \psi_{x}(x, t)=0
$$

3. Massive Thirring model (bosonic)
(2-component field $\psi=\left(\psi^{1}, \psi^{2}\right)$

$$
\mathrm{L}=\int d x \bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi-\frac{1}{2} g j^{\mu} j_{\mu} \quad j^{\mu}=\bar{\psi} \gamma^{\mu} \psi
$$

4. Relativistic Toda chain
5. Ablowitz-Ladik model

Beautiful common properties of Integrability

1) Hamiltonian and higher conserved operators:

$$
H, C_{n} n=1,2, \ldots,\left\{C_{n}, C_{m}\right\}=0
$$

Secret behind Liouville Integrability
2) Models linked to a representative Lax operator: $U^{j}(\lambda), j=[1, N]$
(2×2-matrix), at each lattice site,λ - spectral parameter.
Definining a global operator

$$
T_{N}(\lambda)=\prod_{j=1}^{N} U^{j}(\lambda)
$$

gives Lax Equation

$$
T_{j+1}(\lambda)=U^{j}(\lambda) T_{j}(\lambda)
$$

Then for

$$
\tau(\lambda)=\left(\operatorname{tr} T_{N}(\lambda)\right), \ln \tau(\lambda)=\sum_{n} C_{n} \lambda^{-n}
$$

3) U^{j} must satisfy classical Yang-Baxter equation(YBE) (by defining a PB: $\{,\} \rightarrow$)

$$
\left\{U^{j}(\lambda), \otimes U^{k}(\mu)\right\}=\delta_{j k}\left[r(\lambda-\mu), U^{j}(\lambda), \otimes U^{k}(\mu)\right]
$$

while Commuting at different sites $j \neq k$, (Ultralocality!) 1) $r(\lambda)$ matrix (4×4 matrix (rational or Trigonometric functions of λ,)) fixed

$$
r(\lambda)=\left(\begin{array}{lll}
a(\lambda) & & \\
& b(\lambda) & \\
& & a(\lambda)
\end{array}\right)
$$

where $a(\lambda)=b(\lambda)=\frac{1}{\lambda}$ - for $r_{r a t}$,
$a(\lambda)=\cot (\lambda), b(\lambda)=\frac{1}{\sin (\lambda)}$ - for $r_{\text {trig }}$
Then same YBE is satisfied also by the global operator
(Hopf algebra property):

$$
\left\{T_{N}(\lambda), \otimes T_{N}(\mu)\right\}=\left[r(\lambda-\mu), T_{N}(\lambda), \otimes T_{N}(\mu)\right]
$$

4) Hence (since RHS is a commutator!)

$$
\left\{\operatorname{tr}\left(T_{N}(\lambda)\right), \otimes \operatorname{tr}\left(T_{N}(\mu)\right)\right\}=0
$$

and since

$$
\ln \left(\operatorname{tr} T_{N}(\lambda)\right)=\sum_{n} C_{n} \lambda^{-n}
$$

generates Conserved Charges, we get Liouville Integrability condition:

$$
\left\{C_{n}, C_{m}\right\}=0
$$

Therefore, for given Lax operator

- $U^{j}(\lambda)$
$\longrightarrow T_{N}(\lambda) \longrightarrow \tau(\lambda)=\left(\operatorname{tr} T_{N}(\lambda)\right) \longrightarrow \ln \tau(\lambda)=\sum_{n} C_{n} \lambda^{-n}, n=$ $1,2, \ldots$

All conserved charges C_{n} (including Hamiltonian) are known!

- Integrable Hierarchy of semi-discrete equations (for all models):

$$
q_{t_{n}}^{j}=\left\{q^{j}, H\right\}, H=C_{n}, n=1,2, \ldots
$$

Note: higher time t_{n} with higher scaling dimention n !
Each integrable model can be given by its own Lax operator $U^{j}(\lambda)$ like $U_{\text {Toda }}^{j}(\lambda), U_{l N L S}^{j}(\lambda), U_{X X X}^{j}(\lambda), U_{A L}^{j}(\lambda)$ etc.
(Apparantly all Different!).

- Different Lax operators satisfy the same YBE

$$
\left\{U^{j}(\lambda), \otimes U^{k}(\mu)\right\}=\delta_{j k}\left[r(\lambda-\mu), U^{j}(\lambda), \otimes U^{k}(\mu)\right]
$$

with same r-matrix of Rational $r_{\text {rat }}(\lambda)$ or Trigonometric $r_{\text {trig }}(\lambda)$ type.
Examples of representative Lax operators (associated with $r_{\text {rat }}(\lambda)$)
Rational Class:
I.

$$
U_{X X X}^{j}(\lambda)=\left(\begin{array}{cc}
\left(\lambda+\sigma_{j}^{3}\right) & \sigma_{j}^{-} \tag{1}\\
\sigma_{j}^{+} & \left(\lambda-\sigma_{j}^{3}\right)
\end{array}\right)
$$

Giving the Hamiltonian :

$$
\begin{equation*}
H=\sum_{n}^{N}\left(\sigma_{n}^{1} \sigma_{n+1}^{1}+\sigma_{n}^{2} \sigma_{n+1}^{2}+\sigma_{n}^{3} \sigma_{n+1}^{3}\right) \tag{2}
\end{equation*}
$$

II.

$$
U_{\text {Toda-chain }}^{j}(\lambda)=\left(\begin{array}{cc}
\lambda+p_{j} & -e^{q_{j}} \\
e^{-q_{j}} & 0
\end{array}\right)
$$

giving the Model Hamiltonian:

$$
H=\sum_{i}\left(\frac{1}{2} p_{i}^{2}+e^{\left(q_{i}-q_{i+1}\right)}\right)
$$

Using $\mathrm{PB}\left\{q_{i}, p_{j}\right\}=\delta_{i j}$ derive the Toda chain equation III. Lattice NLS model (not AL !)

$$
U_{l N L S}^{j}(\lambda)=\left(\begin{array}{cc}
\left(\lambda+s+N_{j}\right) & q_{j}^{*} N_{j}^{1 / 2} \tag{3}\\
N_{j}^{1 / 2} q_{j} & \left(\lambda-\left(s+N_{j}\right)\right)
\end{array}\right), \quad N=\left(s-q_{j}^{*} q_{j}\right)
$$

IV. Simple lattice NLS model (SlNLS) (Kundu-Ragnisco) Lax operator

$$
\begin{gathered}
U_{n}(\lambda)=\left(\begin{array}{cc}
-\frac{i}{\lambda}+N(n) & -i \psi^{*}(n) \\
i \psi(n) & 1
\end{array}\right), N(n)=1+\psi^{*}(n) \psi(n) \\
H=\sum_{k}\left(\psi^{*}(k+1) \psi(k-1)-(N(k)+N(k+1)) \phi(k+1) \psi(k)+3 N(k)^{3}\right)
\end{gathered}
$$

Using $\mathrm{PB}\left\{\psi(k), \psi^{*}(j)\right\}=\delta_{k j}$ derive the lattice NLS equation
Trigonometric Class ($q=$ eio models- with $r_{\text {trig }}(\lambda)$):
I. XXZ-spin chain (quantum)

$$
U_{X X Z}^{j}(\xi)=i\left[\sin \left(\lambda+\frac{\alpha}{2} \sigma^{3} \sigma_{j}^{3}\right)+\sin \alpha\left(\sigma^{+} \sigma_{j}^{-}+\sigma^{-} \sigma_{j}^{+}\right)\right] .
$$

generating the Hamiltonian

$$
H=J \sum_{n}^{N}\left(\sigma_{n}^{1} \sigma_{n+1}^{1}+\sigma_{n}^{2} \sigma_{n+1}^{2}+\cos \alpha \sigma_{n}^{3} \sigma_{n+1}^{3}\right)
$$

II. Lattice sine-Gordon model

$$
U_{l S G}^{j}(\lambda)=\left(\begin{array}{cc}
g\left(u_{j}\right) e^{i p_{j} \Delta} & m \Delta \sin \left(\lambda-\alpha u_{n}\right) \tag{4}\\
m \Delta \sin \left(\lambda+\alpha u_{n}\right) & \left.e^{-i p_{n} \Delta} g\left(u_{n}\right)\right)
\end{array}\right),
$$

where $g\left(u_{j}\right)$ - trigonometric function of u_{j}
III. Lattice Liouville model (LLM)

$$
U_{L L M}^{j}(\lambda)=\left(\begin{array}{cc}
e^{p_{j} \Delta} f\left(u_{j}\right) & \Delta e^{\alpha\left(\lambda+u_{j}\right)} \tag{5}\\
\Delta e^{\alpha\left(-\lambda+u_{j}\right)} & f\left(u_{j}\right) e^{-p_{j} \Delta}
\end{array}\right)
$$

IV. Lattice DNLS model (lDNLS) [Kundu-Basumallick]

$$
U_{n}^{(l d n l s)}(\xi)==\left(\begin{array}{crr}
\left.\frac{1}{\xi} q^{-N_{n}}-\frac{i \xi \Delta}{4} q^{N_{n}+1}\right) & A_{n}^{\dagger} \tag{6}\\
A_{n} & \frac{1}{\xi} q^{N_{n}}+\frac{i \xi \Delta}{4} q^{-\left(N_{n}+1\right)}
\end{array}\right)
$$

where A_{n}, A_{n}^{\dagger} are q-bosons
(bosonized as $A_{n}=\psi_{n} \sqrt{\frac{\sin \left(\alpha N_{n}\right)}{N_{n} \sin \alpha}}, \quad N_{n}=\psi_{n}^{\dagger} \psi_{n}$
IV. Lattice massive Thirring model (lMTM) [Kundu-Basumallick]

$$
U_{n}^{(l M T M)}(\xi)=U_{n}^{(l d n l s)}\left(\xi, A^{(1)}\right) U_{n}^{(l d n l s)}\left(\xi, A^{(2)}\right)
$$

$A^{(1)}, A^{(2)}$ two-component MTM field.
V. Relativistic Toda chain ($q=e^{i \alpha}$-deformed Toda)

$$
U_{r t o d a}^{j}(\lambda)=\left(\begin{array}{cc}
q^{(p-\lambda)}-q^{-\left(p_{j}-\lambda\right)} & \alpha e^{q_{j}} \tag{7}\\
-\alpha e^{-q_{j}} & 0
\end{array}\right)
$$

yielding Hamiltonian

$$
\begin{equation*}
H=\sum_{i}\left(\cosh 2 \alpha p_{i}+\alpha^{2} \cosh \alpha\left(p_{i}+p_{i+1}\right) e^{\left(q_{i}-q_{i+1}\right)}\right) \tag{8}
\end{equation*}
$$

using canonical $\mathrm{PB}\left\{q_{i}, p_{j}\right\}=\delta_{i j}$ the Equation for RTC is derived. IV. Ablowitz-Ladik model:

$$
U_{A L}^{j}(\xi)=\left(\begin{array}{cc}
\xi^{-1} & \tilde{b}_{q j}^{\dagger} \\
\tilde{b}_{q j} & \xi
\end{array}\right), \quad \xi=e^{i \alpha \lambda}
$$

yielding Hamiltonian (discrete NLS equation).

$$
\begin{equation*}
H=\sum_{n} b_{n}^{\dagger}\left(b_{n+1}-b_{n-1}\right)+\ln \left(1+b_{n}^{\dagger} b_{n}\right), \tag{9}
\end{equation*}
$$

with q-bosonic type operators:

$$
\left\{b_{m}, b_{n}^{\dagger}\right\}=\hbar\left(1-b_{n}^{\dagger} b_{n}\right) \delta_{m, n}
$$

producing a discrete-NLS equation (But Trig class!)

Note

Different Integrable discrete models have diffrent representative Lax operators U^{j}
However is it really true?
A closer look shows:
Known Lax operators are only different Reductions , Realizations, Reprsentations of an Ancestor Lax operator (or its (trigonometric) q-deformation)!
Ancestor Lax operator (rational) [Kundu'PRL]

$$
U_{r}^{j}(\lambda)=\left(\begin{array}{cc}
c_{1}\left(\lambda+S_{j}^{3}\right)+c_{2} & S_{j}^{-} \tag{10}\\
S_{j}^{+} & c_{3}\left(\lambda-S_{j}^{3}\right)-c_{4}
\end{array}\right)
$$

\mathbf{S}_{j} satisfy Ancestor-algebra (spin-like algebra):

$$
\left[S_{j}^{-}, S_{j}^{+}\right]=m^{+} S_{j}^{3}+m^{-},\left[S_{j}^{ \pm}, S_{j}^{3}\right]= \pm S_{j}^{ \pm}
$$

$m^{ \pm}\left(c_{i}\right)$ dependent (independent) arbitrary parameters including zerovalues.
Note: 1) $U_{r}^{j}(\lambda)$ dependent linearly on λ ($*$-this fact will be important!)
2) Ancestor algebra algebra is derived from YBE, hence Integrability guaranteed!
Generation of Known rational models from $U_{r}^{j}(\lambda)$:

1) $X X X$-spin chain:
$c_{1}=c_{3}=1, \quad c_{2}=c_{4}=0$, gives $m^{+}=2, m^{-}=0$ with spin $-\frac{1}{2}$ reprsnt.
$\mathbf{S}_{j} \rightarrow \sigma_{j}$ with Anc-algebra \rightarrow spin-algebra and generates
$U_{r}^{j}(\lambda) \rightarrow U_{X X X}^{j}(\lambda)$
2) Discrete NLS model (Korepin)

Reduction as above, but spin fields \mathbf{S}_{j} realised through Bosons $\left[q_{j}, q_{k}^{\dagger}\right]=\delta_{j k}$ as HPT:

$$
S_{j}^{+}=q_{j}\left(s-q_{j}^{\dagger} q_{j}\right)^{1 / 2}, S_{j}^{3}=2 s-q_{j}^{\dagger} q_{j}
$$

gives $U_{r}^{j}(\lambda) \rightarrow U_{l N L S}^{j}(\lambda)$
2a) NLS field model obtained at $q_{j} \rightarrow \Delta q(x), / \Delta \rightarrow 0$ gives: $U_{l N L S}^{j}(\lambda)=$ $1+\Delta U_{N L S}(\lambda)$

$$
U_{N L S}(\lambda)=\left(\begin{array}{cc}
\lambda & q(x) \\
q^{\dagger}(x) & -\lambda
\end{array}\right),
$$

AKNS form!
3) Simple lattice NLS model (Kundu-Ragnisco)

Degenerate reduction $c_{2}=c_{3}=0$ with $m^{+}=0, m^{-}=1$ realization

$$
S_{n}^{3}=s-N(n), S_{n}^{+}=-i \psi^{*}(n), S_{n}^{-}=-i \psi(n)
$$

Note: However Lax operator of AL model (more popular lNLS) does not give above $U_{N L S}(\lambda)$
4) t-J model

A similar reduction as $X X X$ but with Higher-rank Representation ($s u(3)$), (realized through fermions: $\left(c, c^{\dagger}\right)$ with constraint) gives $U_{r}^{j}(\lambda) \rightarrow$ $U_{t, J}^{j}(\lambda)$
Similar construction also for Hubbard model 5) Toda chain:
$c_{1}=1, c_{2}=c_{3}=c_{4}=0 \rightarrow m^{+}=m^{-}=0 \quad$ Anc. field Realized through canonical oprs. $\left[q_{j}, p_{k}\right]=\delta_{j k}$ as

$$
S^{ \pm}{ }_{j}=e^{ \pm q_{j}}, S_{j}^{3}=p_{j},
$$

generates $U_{r}^{j}(\lambda) \rightarrow U_{\text {Toda-chain }}^{j}(\lambda)$
Trigonometric Ancestor Lax operator $U_{t}^{j}(\lambda)\left(q=e^{i \alpha}\right.$ deformation of rational $\left.U_{r}^{j}(\lambda)\right)$ (Kundu'PRL)

$$
U_{t}^{j}(\lambda)=\left(\begin{array}{cc}
c_{1}^{+} q^{\left(S_{j}^{3}+\lambda\right)}+c_{1}^{-} q^{-\left(S_{j}^{3}-\lambda\right)} & 2 \sin \alpha S q_{j}^{-} \tag{11}\\
2 \sin \alpha S q_{j}^{+} & c_{2}^{+} q^{-\left(S_{j}^{3}-\lambda\right)}+c_{2}^{-} q^{\left(S_{j}^{3}-\lambda\right)}
\end{array}\right)
$$

with $S q_{j}^{ \pm}$satisfying quantum-deformed Ancestor algebra (generalized quantum algebra)

$$
\begin{equation*}
\left[S^{3}, S q^{ \pm}\right]= \pm S q^{ \pm}, \quad\left[S q^{+}, S q^{-}\right]=\frac{1}{2 \sin \alpha}\left(M^{+} \sin \left(2 \alpha S^{3}\right)-i M^{-} \cos \left(2 \alpha S^{3}\right)\right) \tag{12}
\end{equation*}
$$

$c_{1}^{ \pm}, c_{2}^{ \pm}$arbitrary parameters (including 0 -values) and $M^{ \pm}$dependent on them.
bf Generation of known trigonometric class of models

1) Reduction $M^{-}=0, M^{+}=2$ gives known quantum algebra $U_{q}(s u(2))$

$$
\begin{equation*}
\left[S^{3}, S_{q}^{ \pm}\right]= \pm S^{ \pm},\left[S_{q}^{+}, S_{q}^{-}\right]=\frac{1}{2 \sin \alpha} \sin \left(2 \alpha S^{3}\right)[\tag{13}
\end{equation*}
$$

For 1.i) spin $\frac{1}{2}$ representation through Pauli matrices: $U_{t}^{j}(\lambda) \rightarrow U_{X X Z}^{j}(\lambda)-$ xxz spin chain and
1.ii) Lattice sine-Gordon model (LSG)
with canonical: $\left\{u_{j}, p_{k}\right\}=\delta_{j k}$, realization of Anc. field:

$$
S_{j}^{+}=g\left(u_{j}\right) e^{i p_{j} \alpha}, S_{j}^{3}=u_{j}
$$

with

$$
g\left(u_{j}\right)=\left[1+\frac{1}{2} m^{2} \Delta^{2} \cos 2 \alpha\left(u_{j}+\frac{1}{2}\right)\right]^{\frac{1}{2}}
$$

satisfying known quantum algebra gives $\sigma^{1} U_{t}^{j}(\lambda) \rightarrow U_{l S G}^{j}(\lambda)$ of Lattice sine-Gordon model .
3) Lattice Liouville model: For $M^{+}=i, M^{-}=1$ and a similar bosonic realization:

$$
S q_{j}^{+}=f\left(u_{j}\right) e^{i p_{j} \alpha}, S_{j}^{3}=u_{j}
$$

with

$$
f\left(u_{j}\right)=\left[1+\Delta^{2} e^{\alpha\left(2 u_{j}+i\right)}\right]^{\frac{1}{2}}
$$

an exponential function of u_{j}. satisfying an algebra

$$
\left[S^{3}, S q_{j}^{ \pm}\right]= \pm S q_{j}^{ \pm}, \quad\left[S q_{j}^{+}, S q_{j}^{-}\right]=\frac{1}{2 \sin \alpha} e^{2 \alpha u_{j}} . \text { weget }
$$

$\sigma^{1} U_{t}^{j}(\lambda) \rightarrow U_{L L M}^{j}(\lambda)$
4) Relativistic Toda chain: at $M^{ \pm}=0$ reducing algebra to

$$
\left[S^{3}, S q_{j}^{ \pm}\right]= \pm S q_{j}^{ \pm}, \quad\left[S q_{j}^{+}, S q_{j}^{-}\right]=0
$$

and bosonic realization

$$
\begin{equation*}
S q_{j}^{ \pm}=\alpha e^{ \pm q_{j}}, S_{j}^{3}=e^{\left(\alpha p_{j}\right.} \tag{14}
\end{equation*}
$$

reduces $U_{t}^{j}(\lambda) \rightarrow U_{\text {rtoda }}(\lambda)$
5. Ablowitz-Ladik model Through a q-boson type realization (Macfarlane):

$$
\left[\tilde{b}_{q j}, \tilde{b}_{q k}^{\dagger}\right]=\hbar\left(1-\tilde{b}_{q j}^{\dagger} \tilde{b}_{q j}\right) \delta_{j, k}, \quad \hbar=1-q^{-2}
$$

reduces to $U_{t}^{j}(\lambda) \rightarrow U_{A L}^{j}(\xi)$,
6) Derivative lNLS model:

For $M^{+}=2 \sin \alpha, M^{-}=2 i \cos \alpha$ and q-boson realization

$$
\begin{equation*}
S_{q}^{+}=-A, S_{q}^{-}=A^{\dagger}, S^{3}=-N \tag{15}
\end{equation*}
$$

q -Ancestor algebra reduces to q -boson algebra

$$
\begin{equation*}
[A, N]=A, \quad\left[A^{\dagger}, N\right]=-A^{\dagger}, \quad\left[A, A^{\dagger}\right]=\frac{\cos (\alpha(2 N+1}{\cos \alpha} \tag{16}
\end{equation*}
$$

with $U_{t}^{j} \rightarrow U_{l D N L S}^{j}$ gives wellknown Derivative NLS equation at the continuum limit
7) Discrete Massive Thirring model :

Fusion of two $U_{l D N L S}^{j}$ yiels $U_{l M T M}^{j}$ etc.
Conclusion All known integrable models satisfying YBE (including quantum models) are only different realizations (representaions) of an Ancestor rational model with Lax operator: $U_{r}^{j}(\lambda)$ having linear dependence on λ.
Or its q-deformation: $U_{t}^{j}(\lambda)$.
)RIGIN of INTEGGABLE MODELS from ANCESTOR MODEL

Question

Can one go beyond this Lax operator for constructing New Models?
Seems to have No answer in the literature!!
bf Challenging problem
Use discretized Lax operators of higher powers in λ (with higher scaling dimension!
possibly: time t_{n} - Lax operator $V_{n}(x, t, \lambda) \rightarrow V_{i}^{j}(\lambda)$ for $\left(t_{n}, n=2,3, \ldots\right)$
Do we known any of them?

- find correponding new Ancestor Lax matrix $V_{i}^{j}{ }_{r}, V_{i}^{j}{ }_{t}$
- producing new families of models (similar to U_{r}^{j}, U_{t}^{j})

Note Our successful so far!
NLS field model and Landau Lifshits equation Known (1+1)-dim NLS model:

$$
U_{N L S}(\lambda)=\left(\begin{array}{cc}
\lambda & q(x) \\
q^{\dagger}(x) & -\lambda
\end{array}\right)
$$

linear in λ (with scaling dim 1) Hence We can generate infinite number
of conserved charges $C_{n}, n=1,2, \ldots$:

$$
\begin{gathered}
C_{1}=\int d x\left(q^{*} q\right) \\
C_{2}=i \int d x\left(q_{x}^{*} q-q^{*} q_{x}\right) \\
C_{3}=\int d x\left(q_{x}^{*} q_{x}+|q|^{4}\right)
\end{gathered}
$$

$C_{3}=H$ gives known NLS Equation

$$
i q_{t}+q_{x x}+2|q|^{2} q=0, \quad t=t_{2}
$$

Same Eq can be obtained by NLS Lax pair: (U, V) :

$$
U_{t}-V_{x}+[U, V]=0
$$

Hence we know an alternative Lax operator with higher scaling dimention $U^{(2)}(\lambda)=V$!
WE define Lax equation (adding another space y)

$$
\Phi_{y}(y, x, t, \lambda)=U^{(2)}(\lambda) \Phi(y, x, t, \lambda)
$$

$$
U^{(2)}(\lambda)=i\left(\begin{array}{cc}
2 \lambda^{2}-q^{*} q & 2 \lambda q-i q_{x} \tag{17}\\
-2 \lambda q^{*}+i q_{x}^{*}, & -2 \lambda^{2}+q^{*} q
\end{array}\right),
$$

with λ^{2} (scaling dimension 2)
Hence We can generate New infinite number of conserved charges $C_{n}^{(2)}, n=$ $1,2, \ldots$

$$
\begin{gathered}
C_{1}^{(2)}=i \int d y\left(q_{x}^{*} q-q^{*} q_{x}\right) \\
\left.C_{2}^{(2)}=\int d y i q_{y}^{*} q+q_{x}^{*} q_{x}+\left(q^{*} q\right)^{2}+c c\right), \\
C_{3}^{(2)}=\int d y q_{y}^{*} q_{x} \\
C_{4}^{(2)}=\int d y\left(i q_{x y}^{*} q_{x}+q_{y}^{*} q_{y}-i|q|^{2}\left(q^{*} q_{y}-q_{y}^{*} q\right)\right. \\
\left.-2|q|^{2} q_{x}^{*} q_{x}+\left(q^{* 2} q_{x}^{2}+q_{x}^{* 2} q^{2}\right)\right)
\end{gathered}
$$

Note :

1) $U^{(2)}(\lambda)$ satisfies YBE with rational $r_{r a t}(\lambda)$ matrix
2) Novel PB: (not like NLS!)

$$
\left\{q(y), q_{x}^{*}\left(y^{\prime}\right)\right\}_{(2)}=\delta\left(y-y^{\prime}\right), \quad\left\{q(y), q^{*}\left(y^{\prime}\right)\right\}_{(2)}=0
$$

3) Using $H=C_{4}^{(2)}$ and above PB we derive New integrable quasi-(2+1)-dim NLS:

$$
i q_{t}+q_{x x}-q_{y y}+2 i q\left(j^{x}-j^{y}\right)=0
$$

with $j^{x}=q_{x}^{*} q-q^{*} q_{x}, j^{y}=q_{y}^{*} q-q^{*} q_{y}$,
Aim: 1) To find discretised $U^{(2)}(x, y, \lambda) \rightarrow U^{(2)}(i, j, \lambda)$
2) Find corresponding Ancestor model $U^{(2)}(i, j, \lambda)_{r a t}, U^{(2)}(i, j, \lambda)_{\text {trig }}$,
3) Generate new ancestor algebras (new quantum algebra) and new Integrable models (like 2D spin model) satisfying YBE)
New 2D Landau-Lifshits eqaution : 1) Standard

$$
i \mathbf{S}_{t}=\left[\mathbf{S}, \mathbf{S}_{x x}\right], \mathbf{S}=\vec{S} \cdot \vec{\sigma}
$$

standard Lax opr (scaling dim 1)

$$
U(\lambda)=i \lambda \mathbf{S}
$$

2) Scal dim 2 Lax opr:

$$
U^{(2)}(\lambda)=i\left(2 \lambda^{2} \mathbf{S}+\lambda \mathbf{S S}_{x}\right)
$$

New LL eqn.

$$
\left.i \mathbf{S}_{t}=\left[\mathbf{S}_{x}, \mathbf{S}_{y}\right]+\mathbf{S} \mathbf{S}_{x y}\right]
$$

(without further details)

II. Integrable Toda chain

1. Standard 2. With defect site (New!)

Generation of infinite Charges from Lax operator Global Lax operator (Monodromy matrix)

$$
\begin{gathered}
T_{N}(\lambda)=\prod_{n}^{N} U_{n}(\lambda) \\
T_{n+1}(\lambda)=U_{n}(\lambda) T_{n}(\lambda), T_{n}=\binom{\Psi_{n}^{1},}{\Psi_{n}^{2}, \Psi_{n}^{2 *}}
\end{gathered}
$$

Lax equation

$$
\Psi_{n+1}^{a}=\sum_{a} U_{n}^{a b} \Psi_{n}^{a}, a, b=1,2
$$

Conserved charges: $\operatorname{tr} T_{N}(\lambda)=\tau(\lambda) \sim$
Hence $\ln \tau(\lambda) \sim \ln \left(\frac{\Psi_{N}^{1}}{\Psi_{1}^{1}}(\lambda)\right)=I(\lambda)$ generates conserved charges! Defining

$$
\psi_{n}(\lambda)=\frac{\Psi_{n+1}^{1}}{\Psi_{n}^{1}}(\lambda)
$$

get generating function:

$$
I(\lambda) \equiv \ln \prod_{n}^{N} \psi_{n}(\lambda)=\sum_{n}^{N} \ln \psi_{n}(\lambda)=-\sum_{j=1} c_{j} \lambda^{-j}
$$

Therefore obtain $c_{j}, j=1,2, \ldots N$ for any model Knowing Lax opereator U^{j}
Toda chain

$$
U_{n}^{11}=\left(\lambda+p_{n}\right), U_{n}^{12}=-e^{q_{n}}, U_{n}^{21}=e^{-q_{n}}, \quad U_{n}^{22}=0
$$

Hence obtain

$$
\psi_{n}(\lambda)=\lambda+p_{n}+-e^{q_{n}} \sum_{j=1} \Gamma_{n}^{-j} \lambda^{-j}
$$

where

$$
\Gamma_{n}(\lambda)=\frac{\Psi_{n}^{2}}{\Psi_{n}^{1}}(\lambda)
$$

determined from discrete Riccati eqn.

$$
\Gamma_{n+1}(\lambda)=\frac{U_{n}^{21}+U_{n}^{22} \Gamma_{n}(\lambda)}{U_{n}^{11}+U_{n}^{12} \Gamma_{n}(\lambda)}
$$

We get

$$
\begin{equation*}
\Gamma_{n}^{-1}=e^{-q_{n-1}}, \Gamma_{n}^{-2}=-e^{-q_{n-1}} p_{n-1}, \tag{18}
\end{equation*}
$$

From explicit above solutions of Γ_{n}^{-j} and conserved quantities for Toda chain:

$$
\begin{align*}
c_{1} & =-\sum_{-N}^{N} p_{n}, \quad c_{2}=\sum_{-N}^{N} \frac{1}{2} p_{n}^{2}+\sum_{-N+1}^{N} e^{q_{n}-q_{n-1}} \\
c_{3} & =-\sum_{-N}^{N} \frac{1}{3} p_{n}^{3}+\sum_{-N+1}^{N} p_{n-1} e^{q_{n}-q_{n-1}} \tag{19}
\end{align*}
$$

Using PB relations

$$
\begin{equation*}
\left\{q_{j}(t), p_{k}(t)\right\}=\delta_{j k},\left\{q_{j}(t), q_{k}(t)\right\}=\left\{p_{j}(t), p_{k}(t)\right\}=0 \tag{20}
\end{equation*}
$$

from $c_{2}=H$ obtain the Toda chain Eq.:

$$
\dot{q}_{n}=e^{q_{n+1}-q_{n}}-e^{q_{n}-q_{n-1}}
$$

and from c_{3} etc. the Toda chain Hierarchy!

Integrable Toda chain with a defect point

- Real crystals show defects
- However defects in general spoil Integrability
- Aim therefore is to treat defects preserving Integrability We are able to formulate Toda chain with a at site $n_{0}=0$
Our approach
at $n<n_{0}$ Toda chain described by U^{n},
while at $n>n_{0}$ by another copy \widetilde{U}_{n}
bridged by a Bäcklund transformation (BT) $L_{0}(t, \lambda)$ frozen at n_{0}

$$
\begin{equation*}
\widetilde{\Psi}_{n_{0}}(t, \lambda)=L_{0}(t, \lambda) \Psi_{n_{0}}(t, \lambda) \tag{21}
\end{equation*}
$$

depending on Lax pair across the defect point $n_{0}=0$

$$
\begin{equation*}
L_{n+1}=\widetilde{U}^{n} L_{n} U^{n-1} \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\dot{L}_{n}=\widetilde{V}_{n} L_{n}-L_{n} V_{n} \tag{23}
\end{equation*}
$$

- The generating functions for Toda charges (as shown above)

$$
I_{b u l k}^{\text {right }}(\lambda)=\sum_{n} c_{n} \lambda^{-n}, \quad I_{b u l k}^{l e f t}(\lambda) \sum_{n} \tilde{c}_{n} \lambda^{-n}
$$

nolonger conserved

$$
\partial_{t}\left(I_{b u l k}^{l e f t}(\lambda)+I_{b u l k}^{\text {right }}(\lambda)\right) \neq 0
$$

- Defect contribution needs to be included:

$$
\begin{equation*}
I(\lambda)=I_{\text {bulk }}^{\text {left }}(\lambda)+I_{\text {bulk }}^{\text {right }}(\lambda)+I_{\text {defect }}(\lambda) \tag{24}
\end{equation*}
$$

should give $I_{t}(\lambda)=0$. How to determine $I_{\text {defect }}(\lambda)$
Since defect can be considered as a boundary, using $\dot{\Phi}_{n}=V_{n} \Phi_{n}$ we get

$$
\begin{gathered}
\partial_{t}\left(I_{b u l k}^{\text {left }}(\lambda)+I_{b u l k}^{\text {right }}(\lambda)\right)-\left(\widetilde{V}_{n_{0}}^{11}+\widetilde{V}_{n_{0}}^{12} \widetilde{\Gamma}_{n_{0}}(\lambda)\right)+\left(V_{n_{0}}^{11}+V_{n_{0}}^{12} \Gamma_{n_{0}}(\lambda)\right) \\
=-\left[\ln \left(L_{0}^{11}+L_{0}^{12} \Gamma_{n_{0}}\right)\right]_{t}
\end{gathered}
$$

using BT relation, where $\Gamma_{n}(\lambda)$ already determined And hence

$$
I_{\text {defect }}(\lambda)=\left[\ln \left(L_{0}^{11}+L_{0}^{12} \Gamma_{n_{0}}(\lambda)\right]\right.
$$

Representing BT as

$$
L_{n}=\left(\begin{array}{cc}
\lambda+\alpha_{n} & \beta_{n} \tag{25}\\
\gamma_{n} & 1
\end{array}\right)
$$

using $U_{\text {Toda }}^{n}$ solve from BT relation for the matrix elements

$$
\begin{align*}
& \beta_{n}=-e^{q_{n}}, \quad \gamma_{n}=e^{-\widetilde{q}_{n-1}} \\
& \alpha_{n}=p_{n}+e^{\widetilde{q}_{n}-q_{n}}, \quad \alpha_{n+1}=\widetilde{p}_{n}+e^{\widetilde{q}_{n}-q_{n}} \tag{26}
\end{align*}
$$

Hence we can derive defect contribution $I_{\text {defect }}(k), k=1,2, \ldots$ to all conserved charges:

$$
I_{\text {defect }}(\lambda)=-\sum_{k} I_{\text {defect }}(k) \lambda^{-k}=\left.\ln \left(L^{11}{ }_{n}+L^{12}{ }_{n} \Gamma_{n}(\lambda)\right)\right|_{n=0}(27)
$$

$L^{12}{ }_{n}=\beta_{n}, L^{11}{ }_{n}=\alpha_{n}, \Gamma_{n}(\lambda)$ solved from Riccati eqn. expanded in powers of λ^{-k}
Explicitly,

$$
\begin{align*}
I_{\text {defect }}(1) & =-\alpha_{0}=-\left(p_{0}+e^{\widetilde{q}_{0}-q_{0}}\right) \\
I_{\text {defect }}(2) & =\frac{1}{2} \alpha_{0}^{2}+e^{q_{0}-q_{-1}} \tag{28}
\end{align*}
$$

etc. Taking

$$
H \equiv C_{2}=c_{2}+\tilde{c}_{2}+I_{\text {defect }}(2)
$$

with

$$
\begin{gathered}
\tilde{c}_{2}=\tilde{H}_{t o d a}=\sum_{n=1}^{N} \frac{1}{2} \tilde{p}_{n}^{2}+\sum_{n=2}^{N} e^{\tilde{q}_{n}-\tilde{q}_{n-1}}, \\
c_{2}=H_{\text {toda }}=\sum_{n=-N}^{-1} \frac{1}{2} p_{n}^{2}+\sum_{n=-N+1}^{-1} e^{q_{n}-q_{n-1}}, \\
I_{\text {defect }}(2)=\alpha_{0}^{2}+e^{\tilde{q}_{1}} \gamma_{0}-e^{-q_{-1}} \beta_{0}
\end{gathered}
$$

using

$$
\left\{q_{0}, p_{0}\right\}=\left\{\tilde{q}_{0}, \tilde{p}_{0}\right\}=1,\left\{\tilde{p}_{0}, q_{0}\right\}=0
$$

etc. we derive Hamilton Eqn

$$
\dot{q}_{j}=\left\{q_{j}, H\right\}, \dot{p}_{j}=\left\{p_{j}, H\right\},
$$

for all $j=1, N$. At defect site $j=0$ we get

$$
\begin{align*}
& \dot{q}_{0}=2 \alpha_{0}, \dot{p}_{0}=2 \alpha_{0} e^{\widetilde{q}_{0}-q_{0}}-e^{q_{0}-q_{-1}} \\
& \dot{\tilde{q}}_{0}=0, \dot{\tilde{p}}_{0}=-2 \alpha_{0} e^{\widetilde{q}_{0}-q_{0}} \tag{29}
\end{align*}
$$

with contributions from both sides.

References:

1. Yu. B. Suris, Variational Formulation of Commuting Hamiltonian flows:
Multi-time Lagrangian 1-forms, arXiv: 1212.3314 [math-ph], v2 (24 Jan. 2013)
2. Anjan Kundu, Unraveling hidden hierarchies and dual structures in an integrable field model, arXiv: 1201.0627 [nlin.SI], 2012

Thank You

