Generation of semi-discrete integrable systems including defect models

> Anjan Kundu Theory Division, Saha Institute of Nuclear Physics Calcutta, INDIA anjan.kundusaha.ac.in

> > June 10, 2014

DIS-Bangalore: June 9-13, 2014

- Discrete Integrable Models: Rational & Trigonometric class
- Unifying Origin: Ancestor model
- Underlying unified algebra
- Alternative appoach- Future direction
- Integrable models with defect: Defect Toda chain

Examples of Discrete Integrable Models

(satisfying Yang-Baxter Equation (YBE))

I. Rational class

- 1. Isotropic XXX spin chain (quantum)
- 2. Toda chain
- 3. Several Exact-Lattice versions of NLS model

 $i\psi(x,t)_t - \psi(x,t)_{xx} + 2(\psi^{\dagger}(x,t))\psi(x,t))\psi(x,t) = 0,$

4. *t-j Model* (two component fermionic model) (quantum)5. Hubbard model (Electron model with spin) (quantum)

etc. II. Trigonometric class (q-deformed)

Anisotropic XXZ spin chain (quantum)
 Exact lattice versions of
 Sine-Gordon model

$$u(x,t)_{tt} - u(x,t)_{xx} = m^2 \sin u(x,t),$$

2.ii) Liouville model

$$u(x,t)_{tt} - u(x,t)_{xx} = e^{2\alpha u(x,t)},$$

2.iii) Derivative NLS model (DNLS)

$$i\psi(x,t)_t - \psi(x,t)_{xx} + 4i(\psi^{\dagger}(x,t)\psi(x,t))\psi_x(x,t) = 0,$$

3. Massive Thirring model (bosonic) (2-component field $\psi = (\psi^1, \psi^2)$

$$\mathsf{L} = \int dx \bar{\psi} (i\gamma^{\mu} \partial_{\mu} - m) \psi - \frac{1}{2} g j^{\mu} j_{\mu} \quad j^{\mu} = \bar{\psi} \gamma^{\mu} \psi,$$

4. Relativistic Toda chain

5. Ablowitz-Ladik model

Beautiful common properties of Integrability

1) Hamiltonian and higher conserved operators:

$$H, C_n n = 1, 2, \dots, \{C_n, C_m\} = 0$$

Secret behind Liouville Integrability

2) Models linked to a representative Lax operator: $U^{j}(\lambda)$, j = [1, N](2 × 2-matrix), at each lattice site , λ - spectral parameter. Definining a global operator

,
$$T_N(\lambda) = \prod_{j=1}^N U^j(\lambda),$$

gives Lax Equation

$$T_{j+1}(\lambda) = U^j(\lambda)T_j(\lambda)$$

Then for

$$\tau(\lambda) = (tr \ T_N(\lambda)), \ \ln \tau(\lambda) = \sum_n C_n \lambda^{-n}$$

3) U^{j} must satisfy classical **Yang-Baxter equation**(YBE) (by defining a PB: $\{, \} \rightarrow$)

$$\{U^{j}(\lambda), \otimes U^{k}(\mu)\} = \delta_{jk}[r(\lambda - \mu), U^{j}(\lambda), \otimes U^{k}(\mu)]$$

while Commuting at different sites $j \neq k$, (Ultralocality!) 1) $r(\lambda)$ matrix (4×4 matrix (rational or Trigonometric functions of λ ,)) fixed

$$r(\lambda) = \begin{pmatrix} a(\lambda) & & \\ b(\lambda) & & \\ & b(\lambda) & & \\ & & a(\lambda) \end{pmatrix},$$

where $a(\lambda) = b(\lambda) = \frac{1}{\lambda}$ - for r_{rat} , $a(\lambda) = \cot(\lambda), b(\lambda) = \frac{1}{\sin(\lambda)}$ - for r_{trig} Then same YBE is satisfied also by the global operator (Hopf algebra property):

$$\{T_N(\lambda), \otimes T_N(\mu)\} = [r(\lambda - \mu), T_N(\lambda), \otimes T_N(\mu)]$$

4) Hence (since RHS is a commutator!)

 $\{tr(T_N(\lambda)), \otimes tr(T_N(\mu))\} = 0$

and since

$$\ln(tr \ T_N(\lambda)) = \sum_n C_n \lambda^{-n}$$

generates Conserved Charges, we get Liouville Integrability condition:

$$\{C_n, C_m\} = 0$$

Therefore, for given Lax operator • $U^{j}(\lambda)$ $\rightarrow T_{N}(\lambda) \rightarrow \tau(\lambda) = (tr T_{N}(\lambda)) \rightarrow \ln \tau(\lambda) = \sum_{n} C_{n} \lambda^{-n}, n = 1, 2, \dots$ All conserved charges C_n (including Hamiltonian) are known!

• Integrable Hierarchy of semi-discrete equations (for all models):

$$q_{t_n}^j = \{q^j, H\}, \ H = C_n, \ n = 1, 2, \dots$$

Note: higher time t_n with higher scaling dimention n ! Each integrable model can be given by its own Lax operator $U^j(\lambda)$ like $U^j_{Toda}(\lambda), U^j_{INLS}(\lambda), U^j_{XXX}(\lambda), U^j_{AL}(\lambda)$ etc. (Apparantly all Different !).

• Different Lax operators satisfy the same YBE

$$\{U^{j}(\lambda), \otimes U^{k}(\mu)\} = \delta_{jk}[r(\lambda - \mu), U^{j}(\lambda), \otimes U^{k}(\mu)]$$

with same r-matrix of Rational $r_{rat}(\lambda)$ or Trigonometric $r_{trig}(\lambda)$ type. Examples of representative Lax operators (associated with $r_{rat}(\lambda)$) Rational Class:

I.

$$U_{XXX}^{j}(\lambda) = \begin{pmatrix} (\lambda + \sigma_{j}^{3}) & \sigma_{j}^{-} \\ \sigma_{j}^{+} & (\lambda - \sigma_{j}^{3}) \end{pmatrix}, \qquad (1)$$

Giving the Hamiltonian :

$$H = \sum_{n}^{N} (\sigma_{n}^{1} \sigma_{n+1}^{1} + \sigma_{n}^{2} \sigma_{n+1}^{2} + \sigma_{n}^{3} \sigma_{n+1}^{3}), \qquad (2)$$

II.

$$U_{Toda-chain}^{j}(\lambda) = \begin{pmatrix} \lambda + p_{j} & -e^{q_{j}} \\ e^{-q_{j}} & 0 \end{pmatrix},$$

giving the Model Hamiltonian:

$$H = \sum_{i} \left(\frac{1}{2} p_i^2 + e^{(q_i - q_{i+1})} \right)$$

Using PB $\{q_i, p_j\} = \delta_{ij}$ derive the Toda chain equation III. Lattice NLS model (not AL !)

$$U_{lNLS}^{j}(\lambda) = \begin{pmatrix} (\lambda + s + N_j) & q_j^* N_j^{1/2} \\ N_j^{1/2} q_j & (\lambda - (s + N_j)) \end{pmatrix}, \quad N = (s - q_j^* q_j) \quad (3)$$

IV. Simple lattice NLS model (SINLS) (Kundu-Ragnisco) Lax operator

$$U_n(\lambda) = \begin{pmatrix} -\frac{i}{\lambda} + N(n) & -i\psi^*(n) \\ i\psi(n) & 1 \end{pmatrix}, \ N(n) = 1 + \psi^*(n)\psi(n)$$
$$T = \sum (\psi^*(k+1)\psi(k-1) - (N(k) + N(k+1))\phi(k+1)\psi(k) + 3N(k))$$

 $H = \sum_{k} (\psi^*(k+1)\psi(k-1) - (N(k) + N(k+1))\phi(k+1)\psi(k) + 3N(k)^3)$

Using PB $\{\psi(k), \psi^*(j)\} = \delta_{kj}$ derive the lattice NLS equation

Trigonometric Class $(q = ei\alpha \text{ models- with } r_{trig}(\lambda))$: I. XXZ-spin chain (quantum)

$$U_{XXZ}^{j}(\xi) = i[\sin(\lambda + \frac{\alpha}{2}\sigma^{3}\sigma_{j}^{3}) + \sin\alpha(\sigma^{+}\sigma_{j}^{-} + \sigma^{-}\sigma_{j}^{+})].$$

generating the Hamiltonian

$$H = J \sum_{n}^{N} (\sigma_n^1 \sigma_{n+1}^1 + \sigma_n^2 \sigma_{n+1}^2 + \cos \alpha \sigma_n^3 \sigma_{n+1}^3),$$

II. Lattice sine-Gordon model

$$U_{lSG}^{j}(\lambda) == \begin{pmatrix} g(u_{j}) \ e^{ip_{j}\Delta} & m\Delta\sin(\lambda - \alpha u_{n}) \\ m\Delta\sin(\lambda + \alpha u_{n}) & e^{-ip_{n}\Delta} \ g(u_{n})) \end{pmatrix}, \qquad (4)$$

where $g(u_j)$ - trigonometric function of u_j III. Lattice Liouville model (LLM)

$$U_{LLM}^{j}(\lambda) = \begin{pmatrix} e^{p_{j}\Delta} f(u_{j}) & \Delta e^{\alpha(\lambda+u_{j})} \\ \Delta e^{\alpha(-\lambda+u_{j})} & f(u_{j}) e^{-p_{j}\Delta} \end{pmatrix}$$
(5)

IV. Lattice DNLS model (IDNLS) [Kundu-Basumallick]

$$U_n^{(ldnls)}(\xi) == \begin{pmatrix} \frac{1}{\xi}q^{-N_n} - \frac{i\xi\Delta}{4}q^{N_n+1} & A_n^{\dagger} \\ A_n & \frac{1}{\xi}q^{N_n} + \frac{i\xi\Delta}{4}q^{-(N_n+1)} \end{pmatrix}$$
(6)

where A_n, A_n^{\dagger} are q-bosons (bosonized as $A_n = \psi_n \sqrt{\frac{\sin(\alpha N_n)}{N_n \sin \alpha}}, \ N_n = \psi_n^{\dagger} \psi_n$ IV. Lattice massive Thirring model (IMTM) [Kundu-Basumallick]

$$U_n^{(lMTM)}(\xi) = U_n^{(ldnls)}(\xi, A^{(1)}) U_n^{(ldnls)}(\xi, A^{(2)})$$

 $A^{(1)}, A^{(2)}$ two-component MTM field. V. Relativistic Toda chain ($q = e^{i\alpha}$ -deformed Toda)

$$U_{rtoda}^{j}(\lambda) = \begin{pmatrix} q^{(p-\lambda)} - q^{-(p_{j}-\lambda)} & \alpha e^{q_{j}} \\ -\alpha e^{-q_{j}} & 0 \end{pmatrix},$$
(7)

yielding Hamiltonian

$$H = \sum_{i} \left(\cosh 2\alpha p_i + \alpha^2 \cosh \alpha (p_i + p_{i+1}) e^{(q_i - q_{i+1})} \right), \tag{8}$$

using canonical PB $\{q_i, p_j\} = \delta_{ij}$ the Equation for RTC is derived. IV. Ablowitz-Ladik model:

$$U_{AL}^{j}(\xi) = \begin{pmatrix} \xi^{-1} & \tilde{b}_{qj}^{\dagger} \\ \tilde{b}_{qj} & \xi \end{pmatrix}, \quad \xi = e^{i\alpha\lambda}$$

yielding Hamiltonian (discrete NLS equation).

$$H = \sum_{n} b_{n}^{\dagger} (b_{n+1} - b_{n-1}) + \ln(1 + b_{n}^{\dagger} b_{n}), \qquad (9)$$

with q-bosonic type operators:

$$\{b_m, b_n^{\dagger}\} = \hbar (1 - b_n^{\dagger} b_n) \ \delta_{m,n}.$$

producing a discrete-NLS equation (But Trig class!) **Note**

Different Integrable discrete models have diffrent representative Lax operators U^j

However is it really true?

A closer look shows:

Known Lax operators are only different *Reductions*, *Realizations*, *Representations* of an Ancestor Lax operator (or its (trigonometric) q-deformation) !

Ancestor Lax operator (rational) [Kundu'PRL]

$$U_r^j(\lambda) = \begin{pmatrix} c_1(\lambda + S_j^3) + c_2 & S_j^- \\ S_j^+ & c_3(\lambda - S_j^3) - c_4 \end{pmatrix},$$
(10)

 \mathbf{S}_j satisfy Ancestor-algebra (*spin*-like algebra):

$$[S_j^-, S_j^+] = m^+ S_j^3 + m^-, \ [S_j^\pm, S_j^3] = \pm S_j^\pm$$

 $m^{\pm}(c_i)$ dependent (independent) arbitrary parameters including zero-values.

Note: 1) $U_r^j(\lambda)$ dependent linearly on λ (*-this fact will be important!) 2) Ancestor algebra algebra is derived from VBE, hence Integrability

2) Ancestor algebra algebra is derived from YBE, hence Integrability guaranteed!

Generation of Known rational models from $U_r^j(\lambda)$:

1) XXX-spin chain:

 $c_1 = c_3 = 1$, $c_2 = c_4 = 0$, gives $m^+ = 2$, $m^- = 0$ with spin $-\frac{1}{2}$ represent. $\mathbf{S}_j \to \sigma_j$ with Anc-algebra \to spin-algebra and generates $U_r^j(\lambda) \to U_{XXX}^j(\lambda)$ 2) Discrete NLS model (Korepin) Reduction as above, but spin fields \mathbf{S}_j realised through Bosons $[q_j, q_k^{\dagger}] = \delta_{jk}$ as HPT:

$$S_j^+ = q_j (s - q_j^{\dagger} q_j)^{1/2}, \ S_j^3 = 2s - q_j^{\dagger} q_j$$

gives $U_r^j(\lambda) \to U_{lNLS}^j(\lambda)$ 2a) NLS field model obtained at $q_j \to \Delta q(x), /\Delta \to 0$ gives: $U_{lNLS}^j(\lambda) = 1 + \Delta U_{NLS}(\lambda)$

$$U_{NLS}(\lambda) = \begin{pmatrix} \lambda & q(x) \\ q^{\dagger}(x) & -\lambda \end{pmatrix},$$

AKNS form!

3) Simple lattice NLS model (Kundu-Ragnisco) Degenerate reduction $c_2 = c_3 = 0$ with $m^+ = 0, m^- = 1$ realization

$$S_n^3 = s - N(n), \ S_n^+ = -i\psi^*(n), \ S_n^- = -i\psi(n)$$

Note: However Lax operator of AL model (more popular lNLS) does not give above $U_{NLS}(\lambda)$

4) t-J model

A similar reduction as XXX but with Higher-rank Representation (su(3)), (realized through fermions: (c, c^{\dagger}) with constraint) gives $U_r^j(\lambda) \rightarrow U_{tJ}^j(\lambda)$

Similar construction also for Hubbard model 5) Toda chain:

 $c_1 = 1, c_2 = c_3 = c_4 = 0 \rightarrow m^+ = m^- = 0$ Anc. field Realized through canonical opes. $[q_j, p_k] = \delta_{jk}$ as

$$S^{\pm}{}_{j} = e^{\pm q_{j}}, \ S^{3}{}_{j} = p_{j},$$

generates $U_r^j(\lambda) \to U_{Toda-chain}^j(\lambda)$

Trigonometric Ancestor Lax operator $U^j_t(\lambda)$ $(q=e^{i\alpha}$ deformation of rational $U^j_r(\lambda)$) (Kundu'PRL)

$$U_t^j(\lambda) = \begin{pmatrix} c_1^+ q^{(S_j^3 + \lambda)} + c_1^- q^{-(S_j^3 - \lambda)} & 2\sin\alpha Sq_j^- \\ 2\sin\alpha Sq_j^+ & c_2^+ q^{-(S_j^3 - \lambda)} + c_2^- q^{(S_j^3 - \lambda)} \end{pmatrix} , \quad (11)$$

with Sq_j^{\pm} satisfying quantum-deformed Ancestor algebra (generalized quantum algebra)

$$[S^{3}, Sq^{\pm}] = \pm Sq^{\pm}, \quad [Sq^{+}, Sq^{-}] = \frac{1}{2\sin\alpha} \left(M^{+} \sin(2\alpha S^{3}) - iM^{-} \cos(2\alpha S^{3}) \right)$$
(12)

 c_1^\pm, c_2^\pm arbitrary parameters (including 0-values) and M^\pm dependent on them.

bf Generation of known trigonometric class of models

1) Reduction $M^- = 0, M^+ = 2$ gives known quantum algebra $U_q(su(2))$

$$[S^3, S_q^{\pm}] = \pm S^{\pm}, [S_q^+, S_q^-] = \frac{1}{2\sin\alpha} \sin(2\alpha S^3) [$$
(13)

For 1.i) spin $\frac{1}{2}$ representation through Pauli matrices: $U_t^j(\lambda) \to U_{XXZ}^j(\lambda)$ -xxz spin chain and

1.ii) Lattice sine-Gordon model (LSG) with canonical: $\{u_j, p_k\} = \delta_{jk}$, realization of Anc. field:

$$S_j^+ = g(u_j) \ e^{ip_j\alpha}, S_j^3 = u_j$$

with

$$g(u_j) = \left[1 + \frac{1}{2}m^2\Delta^2\cos 2\alpha(u_j + \frac{1}{2})\right]^{\frac{1}{2}}$$

satisfying known quantum algebra gives $\sigma^1 U_t^j(\lambda) \to U_{lSG}^j(\lambda)$ of Lattice sine-Gordon model.

3) Lattice Liouville model: For $M^+ = i, M^- = 1$ and a similar bosonic realization:

$$Sq_j^+ = f(u_j) \ e^{ip_j\alpha}, S_j^3 = u_j$$

with

$$f(u_j) = [1 + \Delta^2 e^{\alpha(2u_j + i)}]^{\frac{1}{2}}$$

an exponential function of u_j . satisfying an algebra

$$[S^3, Sq_j^{\pm}] = \pm Sq_j^{\pm}, \quad [Sq_j^+, Sq_j^-] = \frac{1}{2\sin\alpha} e^{2\alpha u_j}.weget$$

 $\sigma^1 U_t^j(\lambda) \to U_{LLM}^j(\lambda)$ 4) Relativistic Toda chain: at $M^{\pm} = 0$ reducing algebra to

$$[S^3, Sq_j^{\pm}] = \pm Sq_j^{\pm}, \quad [Sq_j^+, Sq_j^-] = 0$$

and bosonic realization

$$Sq_j^{\pm} = \alpha e^{\pm q_j}, \ S_j^3 = e^{(\alpha p_j)} \tag{14}$$

reduces $U_t^j(\lambda) \to U_{rtoda}(\lambda)$ 5. Ablowitz-Ladik model Through a q-boson type realization (Macfarlane):

$$[\tilde{b}_{qj}, \tilde{b}_{qk}^{\dagger}] = \hbar (1 - \tilde{b}_{qj}^{\dagger} \tilde{b}_{qj}) \,\delta_{j,k}, \quad \hbar = 1 - q^{-2}$$

reduces to $U_t^j(\lambda) \to U_{AL}^j(\xi)$, 6) Derivative INLS model: For $M^+ = 2\sin \alpha$, $M^- = 2i\cos \alpha$ and q-boson realization

$$S_q^+ = -A, \ S_q^- = A^{\dagger}, \ S^3 = -N,$$
 (15)

q-Ancestor algebra reduces to q-boson algebra

$$[A, N] = A, \quad [A^{\dagger}, N] = -A^{\dagger}, \quad [A, A^{\dagger}] = \frac{\cos(\alpha(2N+1))}{\cos \alpha}$$
(16)

with $U_t^j \to U_{lDNLS}^j$ gives wellknown Derivative NLS equation at the continuum limit 7) Discrete Massive Thirring model : Fusion of two U_{lDNLS}^{j} yiels U_{lMTM}^{j} etc. **Conclusion** All known integrable models satisfying YBE (including quantum models) are only different realizations (representaions) of an Ancestor rational model with Lax operator: $U_{r}^{j}(\lambda)$ having linear dependence on λ . Or its q-deformation: $U_{t}^{j}(\lambda)$.

Question

Can one go beyond this Lax operator for constructing *New Models*? Seems to have No answer in the literature!!

bf Challenging problem

Use discretized Lax operators of higher powers in λ (with higher scaling dimension!

possibly: time t_n - Lax operator $V_n(x, t, \lambda) \to V_i^j(\lambda)$ for $(t_n, n = 2, 3, ...)$ Do we known any of them?

- find correponding new Ancestor Lax matrix $V_{i\ r}^{j}, V_{i\ t}^{j}$
- producing new families of models (similar to U_r^j, U_t^j)

Note Our successful so far! NLS field model and Landau Lifshits equation Known (1+1)-dim NLS model:

$$U_{NLS}(\lambda) = \left(\begin{array}{cc} \lambda & q(x) \\ q^{\dagger}(x) & -\lambda \end{array}\right),$$

linear in λ (with scaling dim 1) Hence We can generate infinite number

of conserved charges C_n , n = 1, 2, ...:

$$C_1 = \int dx (q^*q)$$
$$C_2 = i \int dx (q_x^*q - q^*q_x)$$
$$C_3 = \int dx (q_x^*q_x + |q|^4)$$

 $C_3 = H$ gives known NLS Equation

$$iq_t + q_{xx} + 2|q|^2 q = 0, \quad t = t_2$$

Same Eq can be obtained by NLS Lax pair: (U, V):

$$U_t - V_x + [U, V] = 0$$

Hence we know an alternative Lax operator with higher scaling dimention $U^{(2)}(\lambda) = V$! WE define Lax equation (adding another space y)

$$\Phi_y(y, x, t, \lambda) = U^{(2)}(\lambda)\Phi(y, x, t, \lambda),$$

$$U^{(2)}(\lambda) = i \begin{pmatrix} 2\lambda^2 - q^*q & 2\lambda q - iq_x, \\ -2\lambda q^* + iq_x^*, & -2\lambda^2 + q^*q \end{pmatrix},$$
(17)

with λ^2 (scaling dimension 2)

Hence We can generate New infinite number of conserved charges $C_n^{(2)}$, n = 1, 2, ...

$$C_{1}^{(2)} = i \int dy (q_{x}^{*}q - q^{*}q_{x}),$$

$$C_{2}^{(2)} = \int dy i q_{y}^{*}q + q_{x}^{*}q_{x} + (q^{*}q)^{2} + cc),$$

$$C_{3}^{(2)} = \int dy q_{y}^{*}q_{x},$$

$$C_{4}^{(2)} = \int dy (i q_{xy}^{*}q_{x} + q_{y}^{*}q_{y} - i|q|^{2}(q^{*}q_{y} - q_{y}^{*}q)),$$

$$-2|q|^{2} q_{x}^{*}q_{x} + (q^{*2}q_{x}^{2} + q_{x}^{*2}q^{2})),$$

Note : 1) $U^{(2)}(\lambda)$ satisfies YBE with rational $r_{rat}(\lambda)$ matrix 2) Novel PB: (not like NLS!)

$$\{q(y), q_x^*(y')\}_{(2)} = \delta(y - y'), \ \{q(y), q^*(y')\}_{(2)} = 0,$$

3) Using $H = C_4^{(2)}$ and above PB we derive New integrable quasi-(2+1)-dim NLS:

$$iq_t + q_{xx} - q_{yy} + 2iq(j^x - j^y) = 0,$$

with $j^x = q_x^*q - q^*q_x, j^y = q_y^*q - q^*q_y$, **Aim:** 1) To find discretised $U^{(2)}(x, y, \lambda) \rightarrow U^{(2)}(i, j, \lambda)$ 2) Find corresponding Ancestor model $U^{(2)}(i, j, \lambda)_{rat}, U^{(2)}(i, j, \lambda)_{trig}$, 3) Generate new ancestor algebras (new quantum algebra) and new Integrable models (like 2D spin model) satisfying YBE) **New 2D Landau-Lifshits eqaution** : 1) Standard

$$i\mathbf{S}_t = [\mathbf{S}, \mathbf{S}_{xx}], \mathbf{S} = \vec{S} \cdot \vec{\sigma}$$

standard Lax opr (scaling dim 1)

 $U(\lambda) = i\lambda \mathbf{S}$

2) Scal dim 2 Lax opr:

 $U^{(2)}(\lambda) = i(2\lambda^2 \mathbf{S} + \lambda \mathbf{S} \mathbf{S}_x)$

New LL eqn.

$$i\mathbf{S}_t = [\mathbf{S}_x, \mathbf{S}_y] + \mathbf{S}\mathbf{S}_{xy}]$$

(without further details)

II. Integrable Toda chain

1. Standard 2. With defect site (New !)

Generation of infinite Charges from Lax operator Global Lax operator (Monodromy matrix)

$$T_N(\lambda) = \prod_n^N U_n(\lambda)$$

$$T_{n+1}(\lambda) = U_n(\lambda)T_n(\lambda), \ T_n = \begin{pmatrix} \Psi_n^1, \ \Psi_n^{2*} \\ \Psi_n^2, \ \Psi_n^{1*} \end{pmatrix}$$

Lax equation

$$\Psi_{n+1}^{a} = \sum_{a} U_{n}^{ab} \Psi_{n}^{a}, \ a, b = 1, 2$$

Conserved charges: $trT_N(\lambda) = \tau(\lambda) \sim$ Hence $\ln \tau(\lambda) \sim \ln(\frac{\Psi_N^1}{\Psi_1^1}(\lambda)) = I(\lambda)$ generates conserved charges! Defining

$$\psi_n(\lambda) = \frac{\Psi_{n+1}^1}{\Psi_n^1}(\lambda),$$

get generating function:

$$I(\lambda) \equiv \ln \prod_{n}^{N} \psi_{n}(\lambda) = \sum_{n}^{N} \ln \psi_{n}(\lambda) = -\sum_{j=1}^{N} c_{j} \lambda^{-j}.$$

Therefore obtain c_j , j = 1, 2, ... N for any model Knowing Lax operator U^j Toda chain

$$U_n^{11} = (\lambda + p_n), \ U_n^{12} = -e^{q_n}, \ U_n^{21} = e^{-q_n}, \ U_n^{22} = 0,$$

Hence obtain

$$\psi_n(\lambda) = \lambda + p_n + -e^{q_n} \sum_{j=1} \Gamma_n^{-j} \lambda^{-j},$$

where

$$\Gamma_n(\lambda) = \frac{\Psi_n^2}{\Psi_n^1}(\lambda)$$

determined from discrete Riccati eqn.

$$\Gamma_{n+1}(\lambda) = \frac{U_n^{21} + U_n^{22}\Gamma_n(\lambda)}{U_n^{11} + U_n^{12}\Gamma_n(\lambda)}$$

We get

$$\Gamma_n^{-1} = e^{-q_{n-1}}, \ \Gamma_n^{-2} = -e^{-q_{n-1}}p_{n-1}, \tag{18}$$

From explicit above solutions of Γ_n^{-j} and conserved quantities for Toda chain:

$$c_{1} = -\sum_{-N}^{N} p_{n}, \quad c_{2} = \sum_{-N}^{N} \frac{1}{2} p_{n}^{2} + \sum_{-N+1}^{N} e^{q_{n}-q_{n-1}},$$

$$c_{3} = -\sum_{-N}^{N} \frac{1}{3} p_{n}^{3} + \sum_{-N+1}^{N} p_{n-1} e^{q_{n}-q_{n-1}},$$
(19)

Using PB relations

$$\{q_j(t), p_k(t)\} = \delta_{jk}, \ \{q_j(t), q_k(t)\} = \{p_j(t), p_k(t)\} = 0.$$
(20)

from $c_2 = H$ obtain the Toda chain Eq.:

$$\dot{\dot{q}_n} = e^{q_{n+1} - q_n} - e^{q_n - q_{n-1}}$$

and from c_3 etc. the Toda chain Hierarchy!

Integrable Toda chain with a defect point

- Real crystals show defects
- However defects in general spoil Integrability
- Aim therefore is to treat defects preserving Integrability

We are able to formulate Toda chain with a at site $n_0 = 0$ **Our approach**

at $n < n_0$ Toda chain described by U^n , while at $n > n_0$ by another copy \widetilde{U}_n bridged by a Bäcklund transformation (BT) $L_0(t, \lambda)$ frozen at n_0

$$\widetilde{\Psi}_{n_0}(t,\lambda) = L_0(t,\lambda)\Psi_{n_0}(t,\lambda), \qquad (21)$$

depending on Lax pair across the defect point $n_0 = 0$

$$L_{n+1} = \widetilde{U}^n L_n U^{n-1}, \qquad (22)$$

$$\dot{L}_n = \widetilde{V}_n L_n - L_n V_n \,. \tag{23}$$

• The generating functions for Toda charges (as shown above)

$$I_{bulk}^{right}(\lambda) = \sum_{n} c_n \lambda^{-n}, \quad I_{bulk}^{left}(\lambda) \sum_{n} \tilde{c}_n \lambda^{-n}$$

nolonger conserved

$$\partial_t \left(I_{bulk}^{left}(\lambda) + I_{bulk}^{right}(\lambda) \right) \neq 0$$

• Defect contribution needs to be included:

$$I(\lambda) = I_{bulk}^{left}(\lambda) + I_{bulk}^{right}(\lambda) + I_{defect}(\lambda), \qquad (24)$$

should give $I_t(\lambda) = 0$. How to determine $I_{defect}(\lambda)$ Since defect can be considered as a boundary, using $\dot{\Phi}_n = V_n \Phi_n$ we get

$$\partial_t \left(I_{bulk}^{left}(\lambda) + I_{bulk}^{right}(\lambda) \right) - (\widetilde{V}_{n_0}^{11} + \widetilde{V}_{n_0}^{12} \widetilde{\Gamma}_{n_0}(\lambda)) + (V_{n_0}^{11} + V_{n_0}^{12} \Gamma_{n_0}(\lambda)) \\ = - \left[\ln(L_0^{11} + L_0^{12} \Gamma_{n_0}) \right]_t$$

using BT relation, where $\Gamma_n(\lambda)$ already determined And hence

$$I_{defect}(\lambda) = \left[\ln(L_0^{11} + L_0^{12}\Gamma_{n_0}(\lambda))\right]$$

Representing BT as

$$L_n = \begin{pmatrix} \lambda + \alpha_n & \beta_n \\ \gamma_n & 1 \end{pmatrix}, \qquad (25)$$

using U_{Toda}^n solve from BT relation for the matrix elements

$$\beta_n = -e^{q_n}, \quad \gamma_n = e^{-\widetilde{q}_{n-1}}$$

$$\alpha_n = p_n + e^{\widetilde{q}_n - q_n}, \quad \alpha_{n+1} = \widetilde{p}_n + e^{\widetilde{q}_n - q_n}, \quad (26)$$

Hence we can derive defect contribution $I_{defect}(k)$, k = 1, 2, ... to all conserved charges:

$$I_{defect}(\lambda) = -\sum_{k} I_{defect}(k) \lambda^{-k} = \ln(L^{11}_{n} + L^{12}_{n} \Gamma_{n}(\lambda))|_{n=0}(27)$$

 $L^{12}{}_n = \beta_n, \ L^{11}{}_n = \alpha_n, \ \Gamma_n(\lambda)$ solved from Riccati eqn. expanded in powers of λ^{-k} Explicitly,

$$I_{defect}(1) = -\alpha_0 = -(p_0 + e^{\widetilde{q}_0 - q_0})$$

$$I_{defect}(2) = \frac{1}{2}\alpha_0^2 + e^{q_0 - q_{-1}},$$
(28)

etc. Taking

$$H \equiv C_2 = c_2 + \tilde{c}_2 + I_{defect}(2),$$

with

$$\tilde{c}_{2} = \tilde{H}_{toda} = \sum_{n=1}^{N} \frac{1}{2} \tilde{p}_{n}^{2} + \sum_{n=2}^{N} e^{\tilde{q}_{n} - \tilde{q}_{n-1}},$$

$$c_{2} = H_{toda} = \sum_{n=-N}^{-1} \frac{1}{2} p_{n}^{2} + \sum_{n=-N+1}^{-1} e^{q_{n} - q_{n-1}},$$

$$I_{defect}(2) = \alpha_{0}^{2} + e^{\tilde{q}_{1}} \gamma_{0} - e^{-q_{-1}} \beta_{0},$$

using

$$\{q_0, p_0\} = \{\tilde{q}_0, \tilde{p}_0\} = 1, \ \{\tilde{p}_0, q_0\} = 0$$

etc. we derive Hamilton Eqn

$$\dot{q}_j = \{q_j, H\}, \ \dot{p}_j = \{p_j, H\},$$

for all j = 1, N. At defect site j = 0 we get

$$\dot{q}_{0} = 2\alpha_{0}, \ \dot{p}_{0} = 2\alpha_{0} \ e^{\widetilde{q}_{0} - q_{0}} - e^{q_{0} - q_{-1}}$$
$$\dot{\tilde{q}}_{0} = 0, \ \dot{\tilde{p}}_{0} = -2\alpha_{0} \ e^{\widetilde{q}_{0} - q_{0}}$$
(29)

with contributions from both sides.

References:

1. Yu. B. Suris, Variational Formulation of Commuting Hamiltonian flows:

Multi-time Lagrangian 1-forms, arXiv: 1212.3314 [math-ph], v2 (24 Jan. 2013)

2. Anjan Kundu, Unraveling hidden hierarchies and dual structures in an integrable field model,

arXiv: 1201.0627 [nlin.SI], 2012

Thank You