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The QRT mapping

Two families: symmetric and asymmetric

3× 3 matrices, A0 and A1 and vectors Xn, Yn

Ai =

αi βi γi
δi εi ζi
κi λi µi

 and Xn =

x2n
xn
1

 , Yn =

 y2n
yn
1



K(xn, ym) =
ỸmA0Xn

ỸmA1Xn

Equations : K(xn, yn) = K(xn+1, yn) = K(xn+1, yn+1) = . . . = K
besides trivial solution xn+1 = xn, yn+1 = yn
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Asymmetric (generic case) mapping

xn+1 =
f1(yn)− xnf2(yn)

f2(yn)− xnf3(yn)

yn+1 =
g1(xn+1)− yng2(xn+1)

g2(xn+1)− yng3(xn+1)

fi (resp. gi) polynomials, in general quartic, of y (resp. x)

Symmetric mapping: if both A0 and A1 symmetric then gi ≡ fi

wm+1 =
f1(wm)− wm−1f2(wm)

f2(wm)− wm−1f3(wm)

with identification xn → w2n, yn → w2n+1
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Integration of QRT mapping

ỸnA0Xm −K ỸnA1Xm = 0 ⇒
αx2y2 + xy(βx+ δy) + γx2 + κy2 + εxy + ζx+ λy + µ = 0

Through homographic transformations x = Hx(ξ), y = Hy(η)

(same for x and y iff symmetric case)

ξ2η2 + Γ(ξ2 + η2) + Eξη + 1 = 0

Elliptic functions of modulus k: ξ=
√
k sn(z), η=

√
k sn(z ± q)

k2 +
(
Γ +

1

Γ
− E2

4Γ

)
k + 1 = 0, q such that Γk sn2(q) + 1 = 0

Finally ξn=
√
k sn(z0 + 2nq), ηn=

√
k sn(z0 + (2n+ 1)q)

Symmetric case: w = Hw(ω)→ ωn=
√
k sn(z0 + nq)
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Reinterpretation of the asymmetric QRT

Invariance condition K(xn, yn) = K(xn+1, yn) = K(xn+1, yn+1)

Introduce w even in asymmetric case : xn → w2n, yn → w2n+1

W̃2n+1A0W2n

W̃2n+1A1W2n

=
W̃2n+1A0W2n+2

W̃2n+1A1W2n+2

=
W̃2n+3A0W2n+2

W̃2n+3A1W2n+2

= . . . = K

W̃2n+1A0W2n+2

W̃2n+1A1W2n+2

=
W̃2n+2Ã0W2n+1

W̃2n+2Ã1W2n+1

⇒

∀m W̃m+1B0(m)Wm

W̃m+1B1(m)Wm

= K with Bi(2m) = Ai, Bi(2m+ 1) = Ãi

K(m;wm, wm+1) = K

here K(m; ∗, ∗) has period 2 (unless Ãi = Ai, symmetric QRT)
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How to find period 2 invariants?

Start from discrete Painlevé equation: for instance d-PI

wn+1 + wn + wn−1 = 1 +
zn
wn

, zn = αn+ β + (−1)nγ

Discard “secular” term α = 0 → zn periodic function of period 2

Invariant

K = wnwn−1(wn + wn−1 − 1)− zn−1wn − znwn−1

In QRT parlance:

A0 =

 0 1 0
1 −1 −β + γ
0 −β − γ 0

 A1 =

 0 0 0
0 0 0
0 0 1
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Invariants with coefficients of period three and higher

General approach:

Start from a discrete Painlevé equation

Discard the secular dependence on n

→ mapping, autonomous up to the periodicity of its coefficients

Use canonical expressions of the autonomous forms of the dPs

matrix A1 is fixed and we focus only on A0
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First case
xn+1 + xn−1 = 1 +

zn
xn

with zn = αn+ β + γjn + δj2n where j = e2iπ/3

Put α = 0 → z is periodic with period three, i.e. zn+2 = zn−1

Invariant

K = x2nx
2
n−1 − xnxn−1(xn + xn−1) + anxnxn−1 + bnxn + cnxn−1 + dn

Start from K and demand that K(n) ≡ K leads to the equation

an=1− zn − zn−1 + zn+1, bn=zn−1, cn=zn, dn=znzn−1

provided zn+2 = zn−1, i.e. zn of period three
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A mapping with period 5 coefficients

xn+1xn−1 =
xn − an
xn − 1

Postulate invariant

Kn = αnxnxn−1+βnxn+δnxn−1+εn+
γnxn + ζn
xn−1

+
κnxn−1 + λn

xn
+

µn
xnxn−1

Ask that conservation Kn+1 = Kn lead to equation

βn = −(αn + αn+1), δn = −(αn + αn−1), γn = αn+1, κn = αn−1

ζn = −(anαn+1+αn+2), λn = −(an+1αn+2+αn+3), µn = anαn+2, εn = 0

Period 5 solution (c is a constant)

αn+5 = αn and an = cαn−2
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Extend the mapping

xn+1xn−1 = bn
xn − an
xn − 1

We find
an =

c

bn−1b2nbn+1

and for b
bn−1bn = bn+2bn+3

Period 6

Interesting limit an = 0 (with y = 1/x)

yn+1yn−1 = gn(yn − 1)

Again period 6.

10



From elliptic discrete Painlevé equations

Period 12

xn−1 − (φn−1 + ωn)2

xn−1 − (φn−1 − ωn)2
xn − (φn−1 + φn+1 − ωn)2

xn − (φn−1 + φn+1 + ωn)2
xn+1 − (φn+1 + ωn)2

xn+1 − (φn+1 − ωn)2
= 1

where φn+3 = φn and ωn+4 = ωn

and period 20

xn−1 − (φn + φn−2 + ωn)2

xn−1 − (φn − φn−2 + ωn)2
xn − (φn − φn−2 − φn+2 + ωn)2

xn − (φn + φn−2 + φn+2 + ωn)2

×xn+1 − (φn + φn+2 + ωn)2

xn+1 − (φn − φn+2 + ωn)2
= 1

where φn+5 = φn and ωn+2 = −ωn

12=3×4, 20=4×5 but also 30=2×3×5, 14=2×7 and “genuine 8”
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Is there a limit to the length of periods? No!

Consider the mapping

xkn + xkn−2 =
d

xkn−1
(∗)

xkn+1 + xkn−1 = xkn + 1 +
d− c
xkn

xkn+2 + xkn =
d

xkn+1

xkn+3 + xkn+1 = −xkn+2 + 1 +
c

xkn+2

followed by

xkn+2j+2 + xkn+2j = −xkn+2j+1 + 1 +
d

xkn+2j+1

xkn+2j+3 + xkn+2j+1 = −xkn+2j+2 + 1 +
c

xkn+2j+2
j = 1, . . . , p
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xkn+2j+3 + xkn+2j+1 = −xkn+2j+2 + 1 +
c

xkn+2j+2
j = 1, . . . , p

At j = p: 3-point mapping around the point kn+ 2p+ 2
Next equation

xkn+2p+4 + xkn+2p+2 =
d

xkn+2p+3

i.e. like (∗) where n→ n+ 1 for k = 2p+ 4
and the pattern repeats indefinitely

General form of the system

xm+1 + xm−1 = αmxm + βm +
γm
xm

where αm, βm, γm are periodic coefficients with period 2p+ 4
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Integrating mappings wth periodic coefficients

Expect their solution to be given in terms of elliptic functions

Mapping with ternary symmetry (zn has period 3)

xn+1 + xn−1 = 1 +
zn
xn

Start with the integral

K = x2nx
2
n−1 − xnxn−1(xn + xn−1) + xnxn−1(1− zn − zn−1 + zn+1)

+zn−1xn + znxn−1 + znzn−1

Introduce homographic transformation for x

xm =
αmym + βm
γmym + δm

where α, β, γ, δ must have period 3
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Bring invariant K(y3n+j , y3n+1+j)− k = 0 to canonical form
for j = 0, 1, 2

Two transformations are necessary (one for each of the arguments)

By the usual miracles of integrability:
all three invariants can be brought to canonical form
the solution can be expressed in terms of elliptic functions
the moduli of the elliptic functions involved are the same

Solution
y3n =

√
κ sn(ωn), y3n+1 =

√
κ sn(ωn+p), y3n+2 =

√
κ sn(ωn+p+q)

y3n+3 =
√
κ sn(ωn+p+q+r), which means that ωn+1 = ωn+p+q+r

where sn(ω) elliptic sine of modulus κ

In general the three steps p, q, r are different

A distinctive difference compared to the asymmetric QRT mapping
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Going still beyond

Hirota, Kimura and Yahagi: systems with biquartic invariants

(xnxn+1 − 1)(xnxn−1 − 1) =
(xn − a)(xn − 1/a)(x2n − 1)

p2x2n − 1

Invariant

(xnxn−1 − 1)2K =
(
(xn − xn−1)2 − p2(xnxn−1 − 1)2

)
×
(
(xn + xn−1 − a− 1/a)2 − p2(xnxn−1 − 1)2

)
HKY 2nd-order mappings from 3rd-order ones
From q-Painlevé equations with q = −1
Reductions of Adler-Bobenko-Suris lattices
From non-QRT mappings
Using folding transformations
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HKY mappings can have periodic coefficients

Start from asymmetric q-PV

(xnyn − 1)(xnyn−1 − 1) =
(xn − a)(xn − b)(xn − c)(xn − d)

(pqnxn − 1)(rqnxn − 1)

(xn+1yn−1)(xnyn−1) =
(yn − 1/a)(yn − 1/b)(yn − 1/c)(yn − 1/d)

(sqnyn − 1)(tqnyn − 1)

Take q = −1, rescale, go to symmetric case

(xn+1xn − 1)(xnxn−1 − 1) =
(x2n − κxn + 1)(x2n − 1)

αx2n + βinxn − 1

Period 4

(xx̄− 1)2K =
(
(x− x̄)2 − α(xx̄− 1)2

)(
(x+ x̄− κ)2 − α(xx̄− 1)2

)
+2βin(xx̄−1)

(
α(xx̄−1)2(x̄+ix)−((x̄+ix)2−2i)(x̄−ix)+κ(x̄2+ix2−i−1)

)
+β2(−1)n(xx̄− 1)2((x̄+ ix)2 − 2i)
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How to get HKY mappings with periodic coefficients?

Start from a q-Painlevé equation and take q as a root of unity
(For q = 1, back to a QRT)
For q = −1 asymmetric QRT if even-odd periodicity is allowed
Otherwise HKY mapping with periodic coefficients

q-Painlevé I

xn+1xn−1 = aqn
1− xn
x2n

with q = −1

Invariant

K =
x4n−1x

4
n + 2a(−1)nx2n−1x

2
n(xn − xn−1) + a2(xn − xn−1 − 1)2

x2n−1x
2
n
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Another example

xn+1xn−1 =
xn − an
xn − 1

with
an+3an−3 = an+2an−2

where

log an = n log q + p+ rkn + sk2n + tk3n + uk4n (k5 = 1)

Taking q = −1 introduces even-odd periodicity
→ HKY mapping (period 10)

x̄2x2Kn = αnx
4x̄4+x3x̄3(βnx+β′nx̄+γn)+x̄2x2(δnx

2+δ′nx̄
2+εnx+ε′nx̄)

+xx̄(ζnx
3 + ζ ′nx̄

3 + ηnx
2 + η′nx̄

2 + θnx+ θ′nx̄+ κn)

+λnx
4 + λ′nx̄

4 + µnx
3 + µ′nx̄

3 + νnx
2 + ν′nx̄

2 + ξnx+ ξ′nx̄+ ρn
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A final example (zn = c(−1)n)

(xn+1xn − zn)(xnxn−1 − zn−1)

(xn+1xn − 1)(xnxn−1 − 1)
=
x4n + 2sznx

2
n − z2n

x4n + 2px2n + 1

Invariant

(xn+1xn − 1)2(xn+1xn − zn)2K = (1− zn)4(x2n+1 + x2n)2

−4(xn+1xn − 1)2(xn+1xn − z2n)2(1− p2 + s2)

+4(1− zn)2
(
x2n+1x

2
n((p− szn)x2n+1 + (p+ szn)x2n)

)
−8(1− zn)2xn+1xnzn

(
(p− s)x2n+1 + (p+ s)x2n)

)
+4(1− zn)2zn((pzn − s)x2n+1 + (pzn + s)x2n)

+4(1− zn)2
(
2(p2 + s2zn)x3n+1x

3
n − (p2(1 + zn)2 + 4s2zn)znx

2
n+1x

2
n

)
+4(1− zn)2(2p2z2n + 2s2zn)xn+1xn
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From HKY to QRT mappings (and back)

Apparently non-QRT mappings

xn+1 = i xn−1
(xn + iα)(xn + i/α)

(xn + α)(xn + 1/α)

Invariance condition K(xn+1, xn) = iK(xn, xn−1) with

xnxn−1K(xn, xn−1) = x2nx
2
n−1 + xnxn−1(α+ 1/α)(xn + ixn−1)

+(x2n − x2n−1) + (α+ 1/α)(xn − ixn−1) + 1

Invariant L(xn, xn−1) = K(xn, xn−1)4
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Change of variables
x4n = y4n, x4n+1 = iy4n+1, x4n+2 = i/y4n+2, x4n+3 = 1/y4n+3

yn+1yn−1 =
y2n + i(−1)n(α+ 1/α)yn − 1

y2n + (α+ 1/α)yn + 1

QRT-type mapping with periodic coefficients!
Invariant

ynyn−1M(yn, yn−1) = y2ny
2
n−1 + ynyn−1(α+ 1/α)(yn + yn−1)

+(y2n + y2n−1)− i(−1)n(α+ 1/α)(yn − yn−1) + 1

Re-interpret as a “standard” asymmetric QRT mapping
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Last integrable case

Xn+1 =
√
i Xn−1

X2
n − i

X2
n − 1

Invariant: start from biquartic K(Xn, Xn−1)

with invariance condition K(Xn+1, Xn) = iK(Xn, Xn−1)

→ Invariant L = K(Xn, Xn−1)4 of degree 16

X2
nX

2
n−1K(Xn, Xn−1) = X4

nX
4
n−1 − 2X2

nX
2
n−1(X2

n + iX2
n−1)

+X4
n −X4

n−1 − 2(X2
n − iX2

n−1) + 1
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Mapping obtained with folding transformation

xn+1 = i xn−1
(xn − i)2

(xn − 1)2

Introduce X by x = X2 (folding transformation)
and take the square root of the mapping, change of variables
X8n = Y8n, X8n+1 =

√
i Y8n+1, X8n+2 =

√
i/Y8n+2,

X8n+3 = −1/Y8n+3, X8n+4 = −Y8n+4, X8n+5 = −
√
i Y8n+5,

X8n+6 = −
√
i/Y8n+6, X8n+7 = 1/Y8n+7

Yn+1Yn−1 =
Y 2
n − i(−1)n

Y 2
n − 1

HKY type but with periodic coefficients!

Invariant

Y 2
n Y

2
n−1M(Yn, Yn−1) = Y 4

n Y
4
n−1 − 2Y 2

n Y
2
n−1(Y 2

n + Y 2
n−1)

+(Y 4
n + Y 4

n−1) + 2i(−1)n(Y 2
n − Y 2

n−1) + 1
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A digression on correspondences and their integrability

The invariant can define a 2-2 correspondence

Evolution: start with an invariant condition e.g.

αx2y2 + βxy(x+ y) + γ(x2 + y2) + εxy + ζ(x+ y) + µ = 0

For given x we solve for y (more than one solutions)
Iterate: inject values of y and solve for x
(again, more than one solutions, only one being previous x)

Question:
is the evolution defined by the 2-2 correspondence integrable?

Integrable 2-2 correspondences do exist!
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Simplest example: the invariant of the QRT mapping

Start with initial values xn, yn and compute K ≡ K(xn, yn)

Obtain the u’s from K(u, yn) = K
→two solutions: xn (obviously) and u = xn+1 (from conservation)

Set of values {xn, xn+1}
Start form u = xn+1 and from K(xn+1, v) = K
→two solutions: yn (obviously) and v = yn+1 (from conservation)
Starting from u = xn and from K(xn, v) = K
→two solutions: yn (again) and v = yn−1

Set of values {yn−1, yn, yn+1}
At the next step, only four solutions for x, namely {xn−1, xn, xn+1, xn+2}

Number of images grows linearly with the number of iterations

According to Veselov’s criterion this correspondence is integrable
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Can we extend this result to the case of periodic coeficients?

Invariant (3.4) in case of ternary freedom

K(n;x, y) = y2x2−yx(y+x)+yx(1−zn−zn−1+zn+1)+zn−1y+znx+znzn−1

Initial conditions x = xn−1, y = xn
From x and y compute the value of conserved quantity K

From invariant relation K(n+ 1; y, u) = K solve for u
→two solutions, but none coincides with xn

Using these solutions, obtain the v from K(n+ 2;u, v) = K
→ four distinct solutions

Next from K(n+ 3; v, w) = K, obtain 8 values for w

Exponential growth of the number of solutions? Not true!
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At K(n+ 4;w,ω) = K we find only 12 distinct ω’s

(From 8 values for w find 16 solutions, but only 12 distinct)

At K(n+ 5;ω, ψ) = K we find 18 distinct values (instead of 32)

The number of distinct values grows polynomially (cubic growth!)

For number of iterations of 3n− 2, 3n− 1 and 3n (n ≥ 1)

number of distinct solutions given by n2(n+1), n(n+1)2 and (n+1)3

For ternary freedom

the invariant relation, as a 2-2 correspondence, is integrable

(by Veselov’s criterion)
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The result is not specific to the ternary freedom.

Analysis of the case of coefficients of period 5

Again polynomial growth (quintic)

For number of iterations
5n− 4, 5n− 3, 5n− 2, 5n− 1 and 5n

the number of distinct solutions are
n4(n+ 1), n3(n+ 1)2, n2(n+ 1)3 and n(n+ 1)4 and (n+ 1)5

Again the polynomial growth is an indication of integrability

No rigorous proof but we expect
correspondences obtained from the invariant relation of a mapping
solved in terms of elliptic functions involving k different steps
to have a number of distinct solutions
growing with the number of iterations as a polynomial of degree k
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How about HKY mappings and their invariants?

Prototypical case of invariant curve(
(x− y)2 − p2(xy − 1)2

)(
(x+ y − b)2 − p2(xy − 1)2

)
−K(xy − 1)2 = 0

already studied (constant coefficients)

From initial condition (x, y)

obtain number of images 4, 13, 40, 121, 364, 1093, . . .

Exponential growth (recursion relation Nn+1 = 3Nn + 1)

Clear indication of nonintegrability

True for HKY mappings with constant coefficients

Since mappings with periodic coefficients grow faster, we expect

nonitegrability also for HKY mappings with periodic coefficients
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But an exception does exist!

HKY mappings with biquadratic “pre-invariant”

Start from a QRT-like invariant K(xn, xn−1)

Instead of QRT invariance condition K(xn, xn−1) = K(xn, xn+1)

introduce K(xn, xn+1) = SK(xn, xn−1)

where S is an involution

In practice we find simple relations
K(xn, xn+1) = −K(xn, xn−1) or K(xn, xn+1) = 1/K(xn, xn−1)

HKY invariant M in terms of K:
M = K2 or M = K + 1/K respectively
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Example

xn+1xn−1 + x2n + axn(xn+1 + xn−1) + b = 0

biquadratic pre-invariant

K =
2xnxn−1 + a(x2n + x2n−1)− ab

2axnxn−1 + x2n + x2n−1 + b

invariance condition K(xn, xn+1) = −K(xn, xn−1) and M = K2

Correspondence defined by M =M leads to

number of distinct solutions growing as (n+ 1)2 rather than 4n

HKY mappings with pre-invariants
→ associated correspondences expected to be integrable

(For HKY mappings with biquadratic pre-invariants we do not know
any extension to forms with periodic coefficients)
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Conclusions

QRT mappings can have periodic coeffcients

HKY mappings can have periodic coefficients, too

All these mappings are integrable. Solution in elliptic functions

Interesting result: more than one steps

off-shoot: integrability of a large family of correspondences

From QRT mappings to d-Painlevé equations by deautonomisation

With adequate autonomisation
from d-Painlevé equations back to (extensions of) QRT mappings
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