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Question asked time and again:

“How do you find a good discretisation?”

Standard (rather unsatisfactory) answer:

“With experience and a little bit of luck”

We need a systematic discretisation approach

∃ Infinitely many discrete analogues of a given continuous system

However for integrable systems the answer is almost unique.

2



Two important names: Mickens and Hirota

Mickens discretisation rules

1 The orders of “discrete” and “differential” derivatives should be
equal

2 The discrete representations for derivatives must, in general, have
nontrivial denominators

3 Nonlinear terms must be, in general, replaced by nonlocal discrete
representations

4 A property that holds for the differential equation should also be
present in the discrete model
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An example: discretise the Riccati equation

x′ = ax2 + 2bx+ f

Mickens prescription

x′ → xn+1 − xn
∆t

x2 → xn+1xn

Discrete form

xn+1 =
(1 + 2b∆t)xn + f∆t

1− a∆txn

What about Rule 4?

Integrability by direct linearisation is preserved !
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The Hirota method: bilinearisation and gauge invariance

Riccati example: introduce ansatz

x = P/Q

Gauge transformation P → g(t)P , Q→ g(t)Q leaves x invariant

Riccati becomes

PQ′ −QP ′ = aP 2 + 2bPQ+ fQ2

Gauge-invariance ⇒ nonlocal discretisation of the quadratic terms

Qn+1Pn − Pn+1Qn
∆t

= aPnPn+1+b(αQn+1Pn+βPn+1Qn)+fQnQn+1

where α+ β = 2

xn+1 =
(1 + bα∆t)xn + f∆t

1− bβ∆t− a∆txn
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Our approach

Discretisation procedure based on

ad hoc linearisation of differential system
and Padé-type approximation of the exponential operator

Example, linear first-order equation

x′ = αx+ β

with solution

x(t) = ceαt − β

α
Time-discretisation

x(t+ ∆t) = ceα(t+∆t) − β

α
= eα∆t

(
x(t) +

β

α

)
− β

α
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Rational approximation of exponential

eσ =
1 + (λ+ 1)σ

1 + λσ

Finally

xn+1 =
1 + (λ+ 1)α∆t

1 + λα∆t
xn +

∆tβ

1 + λα∆t
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Second example, Riccati equation

x′ = (ax+ 2b)x+ f

We find

xn+1 =
(1 + (λ+ 1)∆t(axn + 2b))xn + f∆t

1 + λ∆t(axn + 2b)

For generic λ not acceptable (violates reversibility)

Taking λ = −1 we find

xn+1 =
xn + f∆t

1 + 2b∆t− a∆txn
(∗)

Compare to Hirota result

Equation (*) is obtained from Hirota for α = 0, β = 2
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Different derivation

Mapping

xn+1 =
xn + f∆t

1 + 2b∆t− a∆txn
(∗)

can be obtained from

x′ = (ax+ 2b)x+ f

by ansatz

x′ → (xn+1 − xn)/∆t

x2 → xn+1xn and x→ (xn+1 + xn)/2
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Two applications (∆t ≡ ε)
The Lotka-Volterra system

x′ = x(λ− y) y′ = y(x− µ)

Discrete form

xn+1

xn
=

1 + (p+ 1)(λ− y)ε

1 + p(λ− y)ε

yn+1

yn
=

1 + (q + 1)(x− µ)ε

1 + q(x− µ)ε

Freedom on the staggering

xn+1

xn
=

1 + (p+ 1)(λ− yn)ε

1 + p(λ− yn)ε

yn+1

yn
=

1 + (q + 1)(xn+1 − µ)ε

1 + q(xn+1 − µ)ε

Take p = −1 and q = 0

xn+1

xn
=

1

1− ελ+ εyn

yn+1

yn
= 1− εµ+ εxn+1
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SIR model for epidemic dynamics

S′ = −SI I ′ = −µI + SI

(Lotka-Volterra with λ = 0) ⇒ discrete form

Sn
Sn−1

=
1 + (p+ 1)Inε

1 + pInε

In+1

In
=

1 + (q + 1)(Sn − µ)ε

1 + q(Sn − µ)ε

Staggering different from that of LV

“Intuitive” discretisation

Sn
Sn−1

=
1 + cIn
1 + In

In+1

In
=

a+ Sn
1 + bSn

Same as “systematic” by
rescaling of variables and appropriate definition of a, b, c
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A system of coupled Riccatis

x′ = −x2 + axy

y′ = −y2 + bxy

Painlevé singularity analysis ⇒ 5 integrable cases

i) a = 0, b = n (n nonnegative integer)
ii) a = 1, b = 1

iii) a = 2, b = 2
iv) a = 1, b = 3 and its dual a = 3, b = 3
v) a = 1, b = 2 and its duals a = 1, b = 5 and a = 2, b = 5
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Case i) is a special case of the Gambier equation

Discretisation, with p = 0

xn+1 =
xn

1 + xn

yn+1 =
(1 + bxn+1)yn

1 + yn

Special case of the Gambier mapping:

xn+1 =
λxn + µ

1 + xn

yn+1 =
xnyn + σ

1 + νyn

with σ = 0, and specific staggering
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For remaining cases again p = 0

xn+1 =
xn

1 + xn − ayn

yn−1 =
yn

1− yn + bxn

Study integrability with:

singularity confinement & algebraic entropy

Integrable cases found: exactly cases (ii) to (v)

The same values a and b lead to integrable for
continuous and discrete
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Apply our method to the discretisation of Painlevé equations

e.g. Painlevé I
x′′ = x2 + t

Discrete form

xn+1 + xn + xn−1 =
αn+ β

xn
+ 1

Was known for 70 years

but only recognised in the 90s

Extend our method to 2nd-order systems

Alas! Not very useful beyond PI
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The Okamoto Hamiltonian formalism for the Painlevé equations

Hamiltonian is related to the τ -function

H = (log τ)′

Write Painlevé equations as Hamiltonian system

Starting with H(x, p, z) and equations of motion

f(t)
dx

dt
=
∂H

∂p

f(t)
dp

dt
= −∂H

∂x

Eliminating p find equation for x (and vice versa)

Miura transformation
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Use Hamiltonian formalism for integrable discretisations

Hamiltonian equations of motion are in general of Riccati type

Ansatz for x:

x′ → xn+1 − xn x2 → xn+1xn x→ (xn+1 + xn)/2

For p, analogous ansatz but down-shifted

p′ → pn − pn−1 p2 → pnpn−1 p→ (pn + pn−1)/2

staggering is essential
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Discretisation of Painlevé II
Hamiltonian:

H(x, p) =
1

2
p2 − p

(
x2 +

t

2

)
−
(
µ+

1

2

)
x

The equations of motion have the form

x′ = −x2 + p− t

2
p′ = 2xp+ µ+

1

2

Eliminating p gives PII for x

Use ansatz

xn+1 + xn−1 =
xn(t+ 2) + µ+ 1/2

1− x2
n

Discrete (autonomous)

Deautonomisation: here take t linear in n
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Painlevé III

H(x, p) = 2x2p2 − p(zx2 + 2µx− z) + κzx

with z = et and f(z) = 1

x′ = x2(4p− z)− 2µx+ z

p′ = −4p2x+ 2p(xz + µ)− κz

Discretisation

xn+1xn−1 =
x2(µ2 − 1)− 2µxz + z2

x2z2 + 2xz(µ− 2κ) + µ2 − 1

with z = λn we find q-discrete PIII
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Painlevé IV

H(x, p) = 2xp2 − p(x2 + 2tx+ µ) + κx

and
x′ = −x2 + 2x(2p− t)− µ

p′ = −2p2 + 2p(x+ t)− κ

Discretisation

(xn+1 + xn)(xn + xn−1) =
(x2 − µ)2 − 4x2

(x+ t)2 − 2κ− 1

Deautonomisation ⇒ t linear in n
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Painlevé V

H(x, p) = x(x− 1)2p2 − p(ν(x− 1)2 − µx(x− 1)− zx) + κ(x− 1)

and z = et

x′ = 2px3 − (4p+ ν − µ)x2 + (2p+ z + 2ν − µ)x− ν

p′ = −p2(3x2 − 4x+ 1) + p(2(ν − µ)x+ µ− 2ν − z)− κ

Equation for x is not of Riccati type

Introduce auxiliary variable u = xp and eliminate p

x′ = 2ux2 − 4ux− (ν − µ)x2 + 2u+ (z + 2ν − µ)x− ν

u′ = −
(
x− 1

x

)
u2 + (ν − µ)xu− ν

x
u− κx
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Discretisation ⇒ discrete equation for x

but not in canonical form

Introduce new variable

xn =
yn − 1

yn + 1

Mapping for y

(yn+1yn − 1)(ynyn−1 − 1)

=
(y2
n − 1)2(µ2 − 4) + 4yn(yn − 1)2(4κ+ 2µν − µ2) + 16ν2y2

n

(zyn − µ)2 − 4

with z = λn we find q-discrete PV
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Painlevé VI

H(x, p) = x(x−1)(x−t)p2−p(ν(x−1)(x−t)+ρx(x−t)+µx(x−1))+κ(x−t)

where for the time being we do not care about f(t)

x′ = 2px3− (2p(t+ 1) +ν+µ+ρ)x2 + (2pt+ν(t+ 1) +µ+ρt)x−νt

p′ = −p2(3x2−2x(t+1)+ t)+p(2(ν+µ+ρ)x−µ−ν(t+1)−ρt)−κ

Again introduce u = xp and eliminate p

x′ = 2ux2−(ν+µ+ρ)x2−2(t+1)ux+(ν(t+1)+µ+ρt)x+2ut−νt

u′ = −
(
x− t

x

)
u2 + (ν + µ+ ρ)xu− νt

x
u− κx
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The mapping for x is not in canonical form

xn =
√
t
1− yn
1 + yn

The (continuous) independent variable must also be changed

t =

(
1− s
1 + s

)2

We finally find (s = λn, σ = ρ+ µ)

(yn+1yn − s2)(ynyn−1 − s2)

(yn+1yn − 1)(ynyn−1 − 1)

=
(ρ(yn − s)2 + µ(yn + s)2)2 − 4t−1(y2

n − s2)2

(σ2 − 4t−1)(y2
n − 1)2 + (16κ− 4σ(σ + 2ν))yn(yn − 1)2 + 16ν2y2

n
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All Painlevé equations could be discretised

An intriguing remark:

only the discrete forms of the “standard” family were obtained

Why? The standard forms are not even the more fundamental!

On the contrary, if we implement full freedom

PI→PII, PII→PIII, PIII→PVI, PIV→PVI and PV,PVI → higher

More important

Where are the other discrete forms of the Painlevé equations?

We must find a different approach
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A (not so) short introduction to the QRT mapping

Motivation:

Autonomous limit of Painlevé transcendents ⇒ elliptic functions

Angle of attack:

To obtain discrete Painlevé equations

start from mapping with elliptic function solutions

then extend by deautonomisation

Enter QRT mapping
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Our strategy for discretisation:

Perform discretisation on autonomous form

require integrability i.e. ask that they be of QRT type

if non-autonomous form is already known, identify it

if not, deautonomise maintaining integrability

Ansatz for x:

x′′ → xn+1 + xn−1 − 2xn x→ a1(xn+1 + xn) + a2xn

x2 → b1xn+1xn−1 + b2xn(xn+1 + xn−1) + b3x
2
n
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Canonical forms of A1 QRT matrices

(I) A1 =

 0 0 0
0 0 0
0 0 1

 xn+1 + xn−1 = F (xn)

(II) A1 =

 0 0 0
0 1 0
0 0 0

 xn+1xn−1 = F (xn)

(III) A1 =

 0 0 0
0 0 1
0 1 0

 (xn+1 + xn)(xn + xn−1) = F (xn)
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(IV) A1 =

 0 0 0
0 1 0
0 0 −1

 (xn+1xn− 1)(xnxn−1− 1) = F (xn)

(V)

A1 =

 0 0 1
0 2 z
1 z 0

 (xn+1 + xn + z)(xn + xn−1 + z)

(xn+1 + xn)(xn + xn−1)
= F (xn)

(VI)

A1 =

 1 0 0
0 −z − 1 0
0 0 z

 (xn+1xn − z)(xnxn−1 − z)
(xn+1xn − 1)(xnxn−1 − 1)

= F (xn)

(VII)

A1 =

 0 0 1
0 −2 −2z
1 −2z z2

 (xn+1 − xn − z)(xn−1 − xn − z) + 4zxn
xn+1 − 2xn + xn−1 − 2z

= F (xn)
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(VIII)

A1 =

 0 0 1
0 z + 1/z 0
1 0 1

 (xn+1z + xn)(xn−1z + xn)− z2

(xn+1 + zxn)(xn−1 + zxn)− 1
= F (xn)

Matrix A1 for case VI has different structure with α1 6= 0

Traditionally associated with the Painlevé VI equation

but it is possible to transform to α1 = 0
(VI′)

A1 =

 0 0 1
0 z + 1/z 0
1 0 0

 (xn+1 + zxn)(zxn + xn−1)

(zxn+1 + xn)(xn + zxn−1)
= F (xn)

More convenient for degeneration process starting from VIII
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Discretising the Painlevé I equation

x′′ = x2 + λx+ µ

Ansatz

axn+1xn−1 +bxn(xn+1 +xn−1)+cx2
n+f(xn+1 +xn−1)+gxn+h = 0

Constraints

If a = 0, b = 0 and c = 0, mapping becomes linear

If a = 0, b = 0 and f = 0, mapping becomes linear

If a = 0 and b2h−bfg+cf2 = 0, factorisation and mapping becomes
linear

If ac−b2 = 0, ag−2bf = 0 and ah−f2 = 0 factorisation into linear
first-order mappings

31



A few selected examples

Two difference PIs

xn+1 + xn−1 = − h

xn + f

xn+1 + xn + xn−1 = −g − h

xn

A q-PI

xn+1xn−1 = −gxn − h

Also a PI from the PIV family

(xn+1 + xn)(xn + xn−1) = −gxn − h
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From the family of PVI, two new equations(
xn+1 + znzn+1xn
znzn+1xn+1 + xn

)(
znzn−1xn + xn−1

xn + znzn−1xn−1

)
=
xnzn−1z

2
nzn+1 − 1

xn − zn−1z2
nzn+1

and(
xn+1 + znzn+1xn
znzn+1xn+1 + xn

)(
znzn−1xn + xn−1

xn + znzn−1xn−1

)
=

1

zn

xnzn−1znzn+1 + 1

−xn + zn−1znzn+1

where zn = z0λ
n
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For the difference E
(1)
8 case

(xn − xn+1 + ζ2
n)(xn − xn−1 + ζ2

n−1) + 4xnζnζn−1

ζn−1(xn − xn+1 + ζ2
n) + ζn(xn − xn−1 + ζ2

n−1)

= ζn + ζn−1 −
xn + f

ζn + ζn−1

(xn − xn+1 + ζ2
n)(xn − xn−1 + ζ2

n−1) + 4xnζnζn−1

ζn−1(xn − xn+1 + ζ2
n) + ζn(xn − xn−1 + ζ2

n−1)

= zn+1 + zn + zn−1 −
xn + f

zn+1 + zn + zn−1

where zn = z0 + λn and ζn = zn + zn+1
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And for the multiplicative E
(1)
8 case

(xn+1ζn + xn)(xn−1ζn−1 + xn)− φn
(xn+1 + ζnxn)(xn−1 + ζn−1xn)− φn/(ζnζn−1)

=
xn − fζnζn−1

xnζnζn−1 − f

(xn+1ζn + xn)(xn−1ζn−1 + xn)− φn
(xn+1 + ζnxn)(xn−1 + ζn−1xn)− φn/(ζnζn−1)

=
xnzn + gζnζn−1

−xnζnζn−1/zn + g

where zn = z0λ
n, ζn = znzn+1 and φn = (ζ2

n − 1)(ζ2
n−1 − 1)
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Results on PII

A contiguity of continuous PVI

zn+1 + zn
xn + xn+1

+
zn + zn−1

xn + xn−1
=

2zn
xn + a

+
2zn
xn + b

A E
(1)
8 example

(xn+1ζn + xn)(xn−1ζn−1 + xn)− φn
(xn+1 + ζnxn)(xn−1 + ζn−1xn)− φn/(ζnζn−1)

=
x2
n + dz2

nxn − z8
n − 1− fz4

n

x2
nz

4
n + dz2

nxn − z4
n − 1/z4

n − f

Many more exist
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Conclusion

The new method is very powerful

It allows a “bottom-up” construction of Painlevé equations

First results of equations described by E
(1)
8 Weyl group

Not presented results: linearisable equations

Remaining tasks

Find full freedom of the new equations

Derive discrete forms of the other Painlevé equations
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