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Question asked time and again:

“How do you find a good discretisation?”

Standard (rather unsatisfactory) answer:

“With experience and a little bit of luck”
We need a systematic discretisation approach

1 Infinitely many discrete analogues of a given continuous system

However for integrable systems the answer is almost unique.



Two important names: Mickens and Hirota
Mickens discretisation rules
The orders of “discrete” and “differential” derivatives should be

equal

The discrete representations for derivatives must, in general, have
nontrivial denominators

Nonlinear terms must be, in general, replaced by nonlocal discrete
representations

A property that holds for the differential equation should also be
present in the discrete model



An example: discretise the Riccati equation

= az® + 2bx + f

Mickens prescription
AN LIn+1 — Ln

x —
At

Discrete form
(1 + 2bAt)z,, + AL

1 — aAtx,

Ln+1 —

What about Rule 47

Integrability by direct linearisation is preserved !



The Hirota method: bilinearisation and gauge invariance

Riccati example: introduce ansatz

v = P/Q
Gauge transformation P — ¢(t)P, Q — ¢g(t)Q leaves x invariant

Riccati becomes
PQ' — QP = aP? 4 2bPQ + fQ*

(Gauge-invariance = nonlocal discretisation of the quadratic terms

Q +1 A7 +1Q — a,PnPn_H—I—b(OdQn+1Pn+5Pn—|—1QN)+anQn+1

where a4+ 8 = 2

(14 baAt)z, + fAL
1 — bBAt — aAtzx,

LIn+1 —



Our approach

Discretisation procedure based on

ad hoc linearisation of differential system
and Padé-type approximation of the exponential operator

Example, linear first-order equation
v =ax+ B

with solution

r(t) = ce® — =
Time-discretisation

z(t + At) = ce® A S e (:v(t) + é) ¥
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Rational approximation of exponential

s 1+A+1)o
e p—
1+ Mo

Finally
1+ (A +1)aAt AtS

1 4+ MaAt Tn T+ 1 4+ MaAt

Ln+1 —



Second example, Riccati equation
v’ = (ax +2b)x + f

We find

N (1+ (A + 1)At(az, + 2b))x, + fAL
nH 1 4+ AAt(ax, + 2b)

For generic A not acceptable (violates reversibility)

Taking A = —1 we find

xn, + fAL
Tpt] =
T L oAt — aAtx,,

Compare to Hirota result

Equation (*) is obtained from Hirota for a = 0,5 = 2



Different derivation

Mapping Al
Ty T+

Tntl = 1 + 2b0At — aAtx,

can be obtained from

v’ = (ax + 2b)x + f
by ansatz

v — (Tpy1 — Tn) /AL

° = Tpi1Tn and T — (Tpgpr + 2n)/2



Two applications (At = ¢)

The Lotka-Volterra system
v’ =z(A—y)

Discrete form

Tnt1 _ 1+ P+ 1)(A—y)e
Tn, 1+ p(A—y)e

Freedom on the staggering
Tnt+l _ L+ (p+ 1)(A—yn)e
T 14 p(A — yn )€
Take p=—1 and ¢ =0

Ln+1 o 1
T, 1—e\+ey,

y = y(r — p)
ynr1 _ 1+ (g +1)(z — p)e
YUn 1+ Q(:E o ,u)e
yn+1 _ 14 (¢ +1)(Tny1 — pe
YUn 1 + Q(xn—|—1 — U)E
Yn+1 —1_ e+ €T i1
YUn
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SIR model for epidemic dynamics
S’ = -S1I I'=—ul +SI
(Lotka-Volterra with A = 0) = discrete form

Sn _ 1+ (p+1)1,e€ Inyi 14 (g+1)(Sn — p)e

Sn—1 1+ pl,e I,  14q(S, — e
Staggering different from that of LV

“Intuitive” discretisation

Sn o 1 + CIn In—l—l a + Sn

S, 1 1+ 1, I, 14+05bS,

Same as “systematic” by
rescaling of variables and appropriate definition of a, b, c
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A system of coupled Riccatis

= —x° + axy

y' =y’ +bay

Painlevé singularity analysis = 5 integrable cases

) a=20
ii) a =1,
i) a = 2,
iv) a=1,
v) a=1

~»

b = n (n nonnegative integer)

b=1

b=2

b=3and itsduala=3, b=3
b=2anditsdualsa=1, b=5anda=2, b=5
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Case i) is a special case of the Gambier equation
Discretisation, with p =0

Ln
14+ x,

Ln4+1 =

(1 T bxn—l—l)yn
1+ vy,

Special case of the Gambier mapping:

Yn+1 —

ATy + p

Ln+1 — 1+
_ TpYn TO
T T oy,

with 0 = 0, and specific staggering



For remaining cases again p =0

xn
Tt =
i 1 -+ Ln — AYn
Yno1 = —"
el T Yn + bx,

Study integrability with:

singularity confinement & algebraic entropy
Integrable cases found: exactly cases (ii) to (v)

The same values a and b lead to integrable for
continuous and discrete



Apply our method to the discretisation of Painlevé equations

e.g. Painlevé I
v =axt 4+t

Discrete form

an —+
n
Ln

1

Ln+1 +Tp +Tp—1 =

Was known for 70 years

but only recognised in the 90s

Extend our method to 2nd-order systems

Alas! Not very useful beyond Pj
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The Okamoto Hamiltonian formalism for the Painlevé equations

Hamiltonian is related to the 7-function

H = (log 1)’

Write Painlevé equations as Hamiltonian system

Starting with H (x, p, z) and equations of motion

dv O0OH
f(t)g =
dp  OH
f(t)a =~

Eliminating p find equation for x (and vice versa)

Miura transformation
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Use Hamiltonian formalism for integrable discretisations
Hamiltonian equations of motion are in general of Riccati type
Ansatz for z:

T — Tpi1 — Tn T% = Tpi1n r— (Tpa1 + Tn)/2
For p, analogous ansatz but down-shifted

P'=pn—Pn1 P = Pabn1 P (Pn+Dao1)/2

staggering is essential
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Discretisation of Painlevé 11
Hamiltonian:

1 t 1
H(z,p) = §p2—29($2+§> - (M+§

The equations of motion have the form

f
v'=—at+p-g P =2uptpt

Eliminating p gives Py for x

Use ansatz
Tn(t+2)+pu+1/2

2
1 — a2

Ln+1 + Tp_1 =
Discrete (autonomous)

Deautonomisation: here take ¢ linear in n

)

2
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Painlevé III
H(z,p) = 22°p* — p(z2” + 2uzx — 2) + K2z
with z = e' and f(z) =1

v =2%(dp — 2) — 2ux + 2

, _ —

p = —4p*c + 2p(xz + 1) — K2

Discretisation

22 (p® — 1) — 2urz + 2*
222 + 2x2(p — 2K) + p? — 1

LIn4+1Ln—1 —

with z = A" we find g-discrete Py
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Painleve IV
H(z,p) = 2zp* — p(a® + 2tx + p) + Kz

and
v = —x* +2x(2p —t) — u

p = —2p° + 2p(x +1) — Kk
Discretisation

(% — p)? — 4a?

(Tnt1 + Tn)(Tn + Tp—1) = (x+1t)? -2k —1

Deautonomisation = ¢t linear in n

20



Painlevé V

H(z,p) =x(x — 1)?p* —pv(zx — 1)? — px(x — 1) — zz) + k(x — 1)

and z = et

v =22 — (dp+v—pr*+2p+2+20—p)xr —v

p'=-p*Bz® —4x+ 1) +p2(v —p)r+pu—2v—2)—k

Equation for z is not of Riccati type

Introduce auxiliary variable © = xp and eliminate p
v =2ur® —dur — (v —p)x* +2u+ (2 4+ 20 — ) — v

1 U

u’:—(x——)uQ—l—(V—,u):vu——u—/ﬁ;x
T T
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Discretisation = discrete equation for x

but not in canonical form

Introduce new variable

Mapping for y

(Yn+1Yn — 1) (YnYn—1 — 1)
(y2 — 1)2(p?® — 4) + dyn(yn — 1)*(46 + 2uv — p?) + 1602y2
(Zyn — ,u)2 e

with z = A" we find ¢-discrete Py,
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Painlevé VI

H(z,p) = z(z—1)(z—t)p" —p(v(z—1)(z—t)+pz(z—t)+pz(z—1))+r(z—t)
where for the time being we do not care about f(t)

v’ =2px® — 2p(t+1)+v+p+p)a+ 2pt+v(t+1)+p+pt)r — vt

p=—p*B3x® —220(t+1)+t)+pRv+pu+px—pu—vt+1)—pt)—kx

Again introduce u = xp and eliminate p

v’ = 2uz® — (v+p+p)rd —20t+Duz+ (vt +1)+ p+pt)x +2ut — vt

, t\ - vt
uw=—|x——|u"+v+pu+pru— —u—Kx
T T
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The mapping for x is not in canonical form

1 -y,
T, =\t
1+ vy,

The (continuous) independent variable must also be changed

. 1l —s 2
- \1+s

We finally find (s = A", 0 = p+ u)

(Yn+1Yn — $2) (YnYn—1 — %)

)
(yn—l—lyn T 1)(ynyn 1 — 1)
(p(Yn — 8)* + plyn +5)%)° =4t~ (y, — 5°)?
(02 —4t=1)(y2 — 1)?2 + (16K — 4o (0 + 20))yn(yn — 1)? + 160292
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All Painlevé equations could be discretised

An intriguing remark:

only the discrete forms of the “standard” family were obtained

Why? The standard forms are not even the more fundamental!

On the contrary, if we implement full freedom

P1—P11, Pii—Pi, Pin—Pv1, Prv—Pv1 and Pv,Py1 — higher

More important

Where are the other discrete forms of the Painlevé equations?

We must find a different approach
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A (not so) short introduction to the QRT mapping

Motivation:

Autonomous limit of Painlevé transcendents = elliptic functions

Angle of attack:

To obtain discrete Painlevé equations
start from mapping with elliptic function solutions

then extend by deautonomisation

Enter QRT mapping
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Our strategy for discretisation:

Perform discretisation on autonomous form
require integrability i.e. ask that they be of QRT type
if non-autonomous form is already known, identify it

if not, deautonomise maintaining integrability
Ansatz for x:
" — Tpy1 + Tpo1 — 2T, T — a1(Tpi1 + Tpn) + a2z,

2 2
r~ — blxn—klxn—l + bQan(an—l—l + an—l) + ben
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Canonical forms of A; QRT matrices

0 0 O
(I) A1 = 0O 0 O Ln+1 + XTp_1 = F(CEn)
0 0 1
0O 0 O
(IT) Ai=10 1 0 Tpi1Tn_1 = F(x,)
0O 0 O
0 0 O
(II) Ay =10 0 1 (a1 +xp)(xy +2p_1) = F(xn)
0O 1 0
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0 0 O
(IV) Ay, =110 1 0 (Tni12n — D) (xpxn_1—1) = F(x,)
0 0 -1
(V)
0 0 1
Ai=10 2 =z (Znt1 @0 +2)(@n + Tna + 2) = F(xy)
1 2 0 (xn—l—l - wn)(ajn + xn—l)
(VI)
1 0 0 (Tna12Tn — 2)(Tpxp_1 — 2)
Ai=10 —2z—1 0 = F(x,)
0 0 s (Tnar12n — 1) (xprn_1 — 1)
(VII)
0 O 1
A=|o —2 _a (a1 — Tp — 2)(Tp_1 — Tp — 2) + 422y _ F(x,)
1 — 95 22 Ln+1 — QZEn -+ LTp—1 — 2z n
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(VII)

0 0 1 2
A1=|0 z+4+1/z 0 (En 412 4 8n)(En 12+ 20) =27 F(x,)
| 0 | (Tpa1 + zxpn)(Tp_1 + 2x,) — 1
Matrix A; for case VI has different structure with aq # 0
Traditionally associated with the Painlevé VI equation
but it is possible to transform to oy =0
(VI')
0 0 1
A1=10 z+1/z 0 (g + 280) (200 + Tn1) _ F(x,)

1 0 0 (zxpi1 + xp)(Tn + 225 1)

More convenient for degeneration process starting from VIII
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Discretising the Painlevé I equation
=2+ A+ i
Ansatz
AT 41Tn—1 40T (Tpi1 +Tp_1)+cxp + f(Tni1 +Tp_1)+ 92, +h =0

Constraints

If a=0,b=0 and ¢ =0, mapping becomes linear
If a=0,b=0 and f =0, mapping becomes linear

If a = 0 and b*h—bfg+cf? = 0, factorisation and mapping becomes
linear

If ac—b* =0, ag—2bf = 0 and ah — f? = 0 factorisation into linear
first-order mappings
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A few selected examples

Two difference Pgs

h
Ln+41 +xn—1 — _xn + f
h
Ln+1 + Ty + Tp—1 = —g — ZE_
A ¢-Pq
Tpt1Tn—1 = —GTn — h

Also a Py from the Py family

(Tny1 +20)(Tn +Tno1) = —gTn — h
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From the family of Py, two new equations

2
(:Bn+1 + znzn+1xn) (znzn_lxn + a:n_1> TnZn—1%5%n+1 — 1
Ln — Zn—lzq%zn+1

<xn—|—1 - ann—klxn) (znznlxn =+ xnl) 1 Lnin—1<n<n+1 +1

“ncn+1Ln+1 + T Tp + ZnZn—1Tn—1 Zn —Tp T+ An—1<n<n+1

where z,, = zg\"
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For the difference Eél) case

(mn — Tn+1 + Cf,%,)(wn — Tn—1 + C?%,—l) + 4xn€n€n—1
Cn—l(ajn — Ln+1 + C%) + Cn(wn — Tp—1 T Cg,—l)

_ it
— Cn =+ Cn—l Cn 4 Cfn,—l
(T — Tpg1 + ) (@n — Tp—1 + 2 1) + 420 Cnln—1
Cn—l(ajn — Tn+1 + Cg) + Cn(xn — LTn—1 + Cf,%_l)
Ty + f

where 2z, = 29 + An and (,, = 2z, + 2nt1
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And for the multiplicative Eél) case

(xn+1Cn + xn)(ajn—lgn—l + xn) — ¢n _ Ln — anCn—l
(ajn—l—l + Cnxn)(xn—l + Cn—lxn) _ gbn/(gngn—l) xnCnCn—l — f
(mn—l—lgn + ajn)(xn—lcn—l + mn) — ¢n L Lnn + gCnCn—l

<xn—|—1 + Cnmn)(ajn—l + Cn—lxn) _ qbn/(CnCn—l) B _aannCn—l/Zn + g

where z, = 20\", (, = 2nzny1 and ¢, = (¢ —1)(¢2_; — 1)
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Results on PII

A contiguity of continuous Py

“n+1 + Zn 4 Zn T Zn—1 2Zn 2Zn
Tp+ Tpnt1l Tpn+Tp-1  Tpta  Tp+0d

A Eél) example

(xn—l—lgn + xn)(mn—lgn—l + xn) - ¢n
(xn—l-l -+ Cnajn)(ajn—l + Cn—lxn) - ¢n/(CnCn—1)
xr+din, — 2 —1— fz
2224 v d2x, — A -1/ — f

Many more exist
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Conclusion

The new method is very powerful

It allows a “bottom-up” construction of Painlevé equations

First results of equations described by Eél) Weyl group

Not presented results: linearisable equations

Remaining tasks

Find full freedom of the new equations

Derive discrete forms of the other Painlevé equations
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