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Credit Network

I Decentralized payment infrastructure introduced by
[DeFigueiredo, Barr, 2005] and [Ghosh et. al., 2007]

I Do not need banks, common currency

I Models trust in networked interactions

I A robust “reputation system” for transaction oriented social
networks



Barter and Currency

I Barter: If I need a goat from you, I had better have the
blanket that you are looking for. Low liquidity.

I Centralized banks: Issue currencies, which are essentially IOUs
from the bank. Very high liquidity; allows strangers to trade
freely.

I Credit Networks: Bilateral exchange of IOUs among friends.
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Illustration: Credit Networks
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What is a Credit Network?

I Graph G (V ,E ) represents a network (social network, p2p
network, etc.)

I Nodes: (non-rational) agents/players; print their own
currency

I Edges: credit limits cuv > 0 extended by nodes to each other1

I Payments made by passing IOUs along a chain of trust. Same
as augmentation of single-commodity flow along the chain

I Credit gets replenished when payments are made in the other
direction

Robustness: Every node is vulnerable to default only from its own
neighbors, and only for the amount it directly trusts them for.

1assume all currency exchange ratios to be unity



Research Questions

I Liquidity: Can credit networks sustain transactions for a long
time, or does every node quickly get isolated?

I Network Formation: How do rational agents decide how much
trust to assign to each other?



Liquidity Model

I Edges have integer capacity c > 0 (summing up both
directions)

I Transaction rate matrix Λ = {λuv : u, v ∈ V , λuu = 0}
I Repeated transactions; at each time step choose (s, t) with

prob. λst
I Try to route a unit payment from t to s via the shortest

feasible path; update edge capacities along the path

I Transaction fails if no path exists



Liquidity Model
The Random Walk

Failure rate = Stationary probability of making a transition to the
same state
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Analysis
Cycle-reachability
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Definition

Let S and S ′ be two states of the network. We say that S ′ is
cycle-reachable from S if the network can be transformed from
state S to state S ′ by routing a sequence of payments along
feasible cycles (i.e. from a node to itself along a feasible path).



Analysis
Steady-State

Cycle-reachability partitions all possible states of the credit
network into equivalence classes.

Theorem

If the transaction rates are symmetric, then the network has a
uniform steady-state distribution over all reachable equivalence
classes.

Consequence: Yields a complete characterization of success
probabilities in trees, cycles, or complete graphs; estimate for
Erdös-Rényi graphs
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Analysis
Example: Two node network

Assume capacity c . Then we have c + 1 states; each in a different
equivalence class.

Success probability for a transaction is c/(c + 1).



Analysis
Example: Tree networks

No cycles. Hence, all states are equally likely.

Let c1, c2, . . . , cL be the capacities along the path from s to t in
the tree. Then, success probability is

L∏
i=1

ci/(ci + 1).



Analysis
Example: Bankruptcy probability in general graphs

Assume capacity c = 1 on each edge, and the Markov chain is
ergodic. Let dv denote the degree of node v . Then the stationary
probability that v is bankrupt is at most 1/(1 + dv ).
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Analysis
Centralized Payment Infrastructure

Convert Credit Network → Centralized Model

∀u, cru =
∑
v

cvu

=⇒ Total credit in the system is conserved during conversion

Slight variant of the liquidity analysis gives steady state
distribution and success probabilities.
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Liquidity Comparison
Dandekar, Goel, Govindan, Post; 2010

Bankruptcy probability
Graph class Credit Network Centralized System

General graphs ≤ 1/(dv + 1) ≈ 1/(dAVG + 1)

Transaction failure probability
Graph class Credit Network Centralized System

Star-network Θ(1/c) Θ(1/c)
Complete Graph Θ(1/nc) Θ(1/nc)

Gc(n, p) Θ(1/npc) Θ(1/npc)
(simulation/estimate)

Summary: Many credit networks have liquidity which is almost the
same as that in centralized currency systems.



Random Forests

An Interesting Connection

I G = (V ,E ), a multi-graph,

I RF-connectivity between two vertices u and v = Pr(u is
connected to v in a uniformly chosen random forest of G ).

Prop: Liquidity in a Credit Network = Average RF-connectivity in
the underlying graph (via [Kleitman and Winston, 1981])



Liquidity in Expander Graphs
Goel, Khanna, Raghavendra, Zhang; 2015

Def: Expansion of a graph is

h(G ) = min
S⊆V : 0≤|S|≤|V |/2

|E (S , S̄)|
|S |

For graphs with expansion h(G ),

Thm (Main): Average RF-connectivity over any two vertices

≥ 1− 2

h(G )
.

Thm: Average RF-connectivity between one vertex and all other

vertices ≥ 1− log n + 2

h(G ) + 1
.
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Corollaries

Corollaries: In a uniformly random forest,

I Expected size of largest component ≥ n − 2n

h(G )
.

I Expected number of components ≤ 1 +
2n

h(G )
.

I Pr(largest component ≤ n

2
) ≤ 2

h(G )
.



RF-connectivity on Expanding Subgraphs

Thm: Let S be any subset of vertices and GS be the induced

subgraph. Then ΦS(G ) ≥ 1− 2

h(GS)
.

The Monotonicity Cojecture: RF-connectivity can not decrease
if we add a new edge in the graph.

Equivalent to Negative Correlation (known for random spanning
trees).
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Open Problems

I The Monotonicity conjecture

I Approximately sampling a random forest from a graph

I Rationality: how do nodes initialize and update trust values
(in general settings)?
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