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Plan of the Course

1. General introduction: who cares about integrability?
2. Integrable continuous systems: from Newton to Kruskal.
3. Detecting integrability: the Painlevé approach.
4. A prelude to discrete integrability: Hirota’s creations.
5. The paradigmatic discrete systems: QRT maps.
6. The discovery of singularity confinement.
7. Complexity and algebraic entropy.
8. Confinement and complexity for multidimensional systems.
9. The Painlevé equations, discretised.

10. The Okamoto-Sakai approach for Painlevé equations.
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Integrability: no definition here
(Arguments towards a ‘working’ definition)

Integrability, integral, di↵erential equations

Poincaré’s definition:
integrate a di↵erential equation is to find for the general solution a
finite expression, in a finite number of functions.
(Singlevaluedness)

Integrability is a rare phenomenon
The typical dynamical system is nonintegrable
Study of a generic system only with computers

Integrable systems can be studied in detail
Algebraic and analytic methods available
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But Integrability is structurally unstable

(pertinence of integrable systems?)

Calogero: “Integrable systems are both universal and widely appli-
cable”

Novikov: “Scientists do not believe that the laws of nature are to
be expressed by arbitrarily chosen equations”

Segur:

Mathematics is the study of abstract strustures and relationships
Physics is the study of the structure of our universe
Sciences is the search for structure which, when found, is encoded
in laws.

Who cares about integrability?
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Newton: equations of motion of two gravitating bodies

V =
1

|~x
1

� ~x
2

|

Superintegrable system
(Laplace-Runge-Lenz vector)

Study of di↵erential equations in the complex domain
(Why?)

From local solutions to global results

critical point (‘branch point’):
multivaluedness
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Critical singularities of a linear ODE are fixed: the solution af any
linear ODE defines a function

Every linear ODE is integrable

Can we define new functions from nonlinear equations?
Di�culty:
Movable critical singularities!

Fuchs and Painlevé: first order equation without movable critical
singularities

Riccati equation
w0 = aw2 + bw + c

Linearizable (w = F/G), no new functions
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Painlevé
Second order equations without critical movable singularities

w00 = f(w0, w, z)

with f polynomial in w0, rational in w and analytic in z

Six equations that define new functions

w00 = 6w2 + z

w00 = 2w3 + zw + a

w00 =
w02

w
� w0

z
+

1

z
(aw2 + b) + cw3 +

d

w

w00 =
w02

2w
+

3w3

2
+ 4zw2 + 2(z2 � a)w � b2

2w
etc.

Painlevé transcendents.
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Kowalevskaya: study of integrability of a heavy spinning top

A
dp

dt
= (B � C)qr + Mg(�y

0

� �z
0

)

B
dq

dt
= (C � A)pr + Mg(↵z

0

� �x
0

)

C
dr

dt
= (A � B)pq + Mg(�x

0

� ↵y
0

)

d↵

dt
= �r � �q

d�

dt
= �p � ↵r

d�

dt
= ↵q � �p
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Integrals ↵2 + �2 + �2 = 1

Ap2 + Bq2 + Cr2 � 2Mg(↵x
0

+ �y
0

+ �z
0

) = K
1

A↵p + B�q + C�r = K
2

Fourth integral only for:

Spherical: A = B = C with integral px
0

+ qy
0

+ rz
0

= K

Euler: x
0

= y
0

= z
0

with integral A2p2 + B2q2 + C2r2 = K

Lagrange: A = B and x
0

= y
0

= 0 with integral Cr = K
and
Kowalevskaya: A = B = 2C and z

0

= 0 with integral

[C(p + iq)2 + Mg(x
0

+ iy
0

)(↵ + i�)]
[C(p � iq)2 + Mg(x

0

� iy
0

)(↵ � i�)] = K

Result obtained with singularity analysis methods
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Solitary waves

Korteweg-de Vries equation
Propagation of long, one-dimensional, small amplitude, surface grav-
ity waves in a shallow water channel

@⌘

@⌧
=

3

2

r

g

h

@

@⇠

✓

⌘2

2
+

2↵⌘

3
+

�

3

@2⌘

@⇠2

◆

Nondimensional form

u
t

+ 6uu
x

+ u
xxx

= 0

Solitary wave solution

u(x, t) = 22sech2((x � 42t � x
0

))
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Fermi, Pasta and Ulam
Lattice of coupled anharmonic oscillators:

mẍ
n

= k(x
n+1

+ x
n�1

� 2x
n

)[1 + ↵(x
n+1

� x
n�1

)]

No energy equilibration but recurrence

Kruskal and Zabusky: continuous limit is KdV!
Confirmation of recurrence
Discovery of “solitons” (solitary waves interacting elastically)

Properties of KdV equation:
- 1 number of conservation laws
- Miura transformation to modified KdV:

v
t

+ 6v2v
x

+ v
xxx

= 0

- Arbitrary number of solitons (Hirota, bilinear formalism)
- Linearization
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Linear time-independent Schrödinger problem

�
xx

+ u� = ��

and
�

t

= u
x

� + (4� + 2u)�
x

with u, the solution of KdV

Compatibility of the two (�
t

= 0)
! KdV for u

Quantum Mechanical Inverse Scattering (IST)

Lax formulation L� = ��, �
t

= M�
Compatibility

L
t

+ [L,M ] = 0
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Integrable nonlinear lattice
Toda system:

d2x
n

dt2
= exn+1�xn + exn�xn�1

- 1-number of conservation laws
- Lax pair

More integrable PDE’s

Nonlinear Schrödinger equation

iu
t

+ u
xx

+ |u|2u = 0

Sine-Gordon equation
u

xt

= sinu
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More discoveries on integrability

Ablowitz-Segur
Linearization of the Painlevé equations (IST)

Painlevé property and Integrability:
Reductions of integrable PDEs are of Painlevé type

Integrability detector

Singularity analysis (“Painlevé method”)

Ablowitz-Ramani-Segur algorithm
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Fixed and movable singularities
Linear ODE’s: only fixed singularities

Nonlinear eqs.: also movable singularities

w0 + w2 = 0 with solution w = (z � z
0

)�1

2w0 + w3 = 0 with solution w = (z � z
0

)�1/2

ww00 � w0 + 1 = 0 with solution w = (z � z
0

)ln(z � z
0

) + ↵(z � z
0

)

µww00 � (1 � µ)w02 = 0 with solution w = ↵(z � z
0

)µ

(ww00 � w02)2 + 4zw03 = 0 with solution w = ↵e(z�z0)
�1

(1 +w2)w00 + (1 � 2w)w02 = 0 with solution w = tan[↵+ ln(z � z
0

)]
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Ablowitz-Ramani-Segur algorithm
necessary condition for the absence of movable branch points
(movable essential singularities cannot be detected)

w0
i

= F
i

(w
1

, w
2

, . . . , w
n

; z) i = 1, . . . , n

Assumption
w

i

⇠ ↵
i

(z � z
0

)pi , z ! z
0

(Dominant logarithmic branches ?)

In some cases w
i

do not diverge and only some higher derivative
becomes singular

How to treat w⇤
i
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Step 1: Dominant Behaviours

w
i

= a
i

(z � z
0

)pi

z
0

is arbitrary.
One must find all possible dominant behaviours

Example
x0 = x(a � x � y) y0 = y(x � 1)

We set p = p
1

and q = p
2

(⌧ = z � z
0

)

x = ↵⌧p y = �⌧ q

! p = �1, q = ↵, with
either ↵ = +1 and � free or ↵ = �1 and � = 2.
Two leading behaviours:
(i) x = ⌧�1, y = �⌧ (leading terms x0 = �x2, y0 = xy)
(ii) x = ⌧�1, y = 2⌧�1 (leading terms x0 = �x2 � xy, y0 = xy)
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Step 2: Resonances.
Leading terms

w
i

= a
i

⌧pi(1 + �
i

⌧ r), r > 0, i = 1, . . . , n

Q(r)� = 0, � = (�
1

. . . , �
n

)

where Q(r) is an n ⇥ n matrix
Resonances from

detQ(r) = (r + 1)(rn�1 + A
2

rn�2 + . . . + A
n

) = 0

Example
� = �

1

, � = �
2

case (i) Resonances r = �1 and r = 0
case (ii) Resonances r = �1, r = 2.
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The constants of Integration.
Truncated expansion to substitute in full equation

w
i

= ↵
i

⌧pi
i

+
rs
X

1

a
(m)

i

⌧pi+m

! compatibility condition

Q(m)a(m) = R(m)(z
0

; a(j)), j = 1, . . . ,m � 1

If resonance condition is not satisfied then

w
i

=
r�1

X

0

a
(m)

i

⌧pi+m + (a(r)

i

+ b
(r)

i

ln⌧)⌧pi+r + . . .

Example: case (i) is OK, but case (ii) has one resonance at r = 2
Expand x = �⌧�1 + a

1

+ a
2

⌧ + . . . y = 2⌧�1 + b
1

+ b
2

⌧ + . . .

Compatibility condition a = �1
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Painlevé cases are integrable

Example for a = �1
New variables

X = ezx, Y = ezy, Z = e�z

lead to
X 0 = X2 + XY, Y 0 = �XY

reduction to

Y 0 � 1

2
Y 2 = 2c2

1

Integrated to Y (Z) = 2c
1

tan[c1(Z + c2)], c
1

, c
2

free constants

ARS approach not failsafe
(movable essential critical singularities?)
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2-D Hamiltonian with cubic potential

H =
1

2

�

p2

x

+ p2

y

�

+ y3 + ay2x + byx2 + cx3

‘rotation’ to
V (x, y) = y3 + byx2 + cx3

Painlevé analysis:

ẍ = �2bxy � 3cx2 ÿ = �3y2 � bx2

(i) x / ↵⌧�2 y / �⌧�2 (ii) x / ⌧ s y / �2⌧�2 with s(s�1) = 4b
(s must be an integer or for c = 0 also half-integer)

At leading order
6 = �2b� � 3c↵ 6� = �3�2 � b↵2
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Resonances’ equation:

(N + 2�b + 6↵c)(N + 6�) � 4b2a2 = 0

where N = (r � 2)(r � 3)

Resonances

r = �1 and r = 6 or N = (2b � 6)�

N
1

and N
2

corresponding to �
1

, �
2

N
1

+ N
2

= �2(2b � 6) + 1

9

N
1

N
2

b

Introducing N
3

= s(s � 1), we obtain

36(N
1

+ N
2

+ N
3

� 12) = N
1

N
2

N
3

with N
i

’s consecutive integers
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Painlevé cases (all integrable) (N
1

= N
2

= 6 leads to logarithms)

a) N
1

= 0, N
2

= 12, N
3

= 0, separable potential

V = y3 + �x3

b) N
1

= 90, N
2

= 90, N
3

= 3/4, with c = 0 and s = �1/2 yielding

V = y3 +
3

16
yx2

c) N
1

= 30, N
2

= 30, N
3

= 2 giving

V = y3 +
1

2
yx2

d) N
1

= 20, N
2

= 90, N
3

= 2, with

V = y3 +
1

2
yx2 +

i

6
p

3
ix3
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Painlevé:
F (x0, x, t) = 0

F polynomial in x0 and x, analytic in t
Movable singularities: poles and/or algebraic branch points

Fuchs:
x0 = f(x, t)

f is rational in x and analytic in t
Only Riccati equation has Painlevé property

x0 = a(t)x2 + b(t)x + c(t)

Integration:
if a = 0 linear, otherwise x = � u

0

au

and linearize

au00 � (a0 + ab)u0 + a2cu = 0
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Painlevé:
x00 = f(x0, x, t)

f rational in x0, polynomial in x and analytic in t

Rather than the Painlevé ↵-method present Gambier’s method
Start with

x00 = x2 + f(t)

and put
x ⇠ a⌧p

where ⌧ = t � t
0

We find p = �2 and a = 1
Next look for the power of ⌧ at which a second constant appears
(Fuchs:“index”, ARS “resonance”)

x = ⌧�2 + �⌧ r�2
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Linearizing for �:
(r � 2)(r � 3) � 12 = 0

roots r = �1 and r = 6
Compatibility condition at r = 6

d2f/dt2 = 0

Only (nontrivial) Painlevé case:
the P

I

equation
x00 = 6x2 + t

Painlevé:
P

I

is free of movable essential singularities
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One of Gambier’s fundamental remarks:

Je rencontrais des systèmes de conditions di↵érentielles dont l’intégration
était, quoiqu’au fond bien simple, assez di�cile à apercevoir. Par
un mécanisme qui est général, mais qui était di�cile à prévoir, la
résolution de ce premier problème, intégration des conditions, est in-
timement liée à l’intégration de l’équation di↵érentielle elle-même.

In other words, the integration of the (integrability) conditions is
intimately related to the integration of the nonlinear equation itself.
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Properties of Painlevé equations:

- they form coalescence cascades,
- they possess Lax pairs,
- their solutions are related through Bäcklund and Miura transforma-

tions,
- they have particular solutions in terms of special functions or ratio-

nal solutions for special values of their parameters. These solutions
can be written in terms of Wronskians,

- they can be cast into bilinear forms,
- they can be written as Hamiltonian systems
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Hirota-sensei in the mid 70’s

Observation: N -soliton of KdV

u = 2
@2

@x2

logF (⇤)

(F determinant of some matrix)

Use (*) in KdV

FF
xt

� F
t

F
x

+ FF
xxxx

� 4F
x

F
xxx

+ 3F 2

xx

= 0

Bilinear form!

Two soliton solution

F = 1 + exp(⌘
1

) + exp(⌘
2

) + A
12

exp(⌘
1

+ ⌘
2

)

with ⌘
i

= k
i

x � k3

i

t + �
i

and A
12

= (k
1

� k
2

)2/(k
1

+ k
2

)2
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Introducing the bilinear (Hirota) operator

D
x

F ·G =

✓

@

@x
� @

@x0

◆

F (x)G(x0)|
x

0
=x

Rewrite KdV
(D

x

D
t

+ D4

x

)F ·F = 0

For modified-KdV

v
t

+ 6v2v
x

+ v
xxx

= 0

we put

v =
G

F
and find

(D
t

+ D3

x

)F ·G = 0

D2

x

F ·F = 2G2
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Moving to discrete

The Hirota-Satsuma nonlinear network

d2

dt2
log(1 + u

n

) = u
n+1

� 2u
n

+ u
n�1

Introduce

u
n

=
d2

dt2
logF

n

Bilinearisation

D2

t

F
n

·F
n

= 2(F
n+1

F
n�1

� F 2

n

)

Discrete Hirota operator

eDnF
n

·G
n

= F
n+1

G
n�1

and
D2

t

F
n

·F
n

= 2(coshD
n

� 1)F
n

·F
n
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Discretising the KdV equation

Semi-discrete form

d

dt

w
n

1 + w
n

= w
n�1/

2

� w
n+

1/
2

Semi-discretisation

D
x

(D
t

+D3

x

)F·F = 0 ! sinh

✓

D
n

4

◆✓

D
t

+ 2 sinh

✓

D
n

2

◆◆

F
n

·F
n

= 0

Full discretisation

sinh

✓

D
n

+ �D
t

4

◆✓

2

�
sinh

✓

�D
t

2

◆

+ 2 sinh

✓

D
n

2

◆◆

F
n

·F
n

= 0
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Reduction to more familiar form

Introduce

u
n

=
cosh(D

n

/2)F
n

·F
n

cosh(�D
t

/2)F
n

·F
n

and obtain

�(u
n+

1/
2

(t) � u
n�1/

2

(t)) =
1

u
n

(t + �/2)
� 1

u
n

(t � �/2)

Finally

Um+1

n+1

� Um

n

=
1

Um

n+1

� 1

Um+1

n

and potential form

wm+1

n+1

� wm

n

=
1

wm

n+1

� wm+1

n
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Many more disrete equations were derived by Hirota-sensei

Modified-KdV

um+1

n+1

= um

n

um+1

n

+ µum

n+1

µum+1

n

+ um

n+1

sine-Gordon

um+1

n+1

um

n

=
1 + µum+1

n

um

n+1

µ + um+1

n

um

n+1

Also linearisable equations

Liouville (�
xt

= exp(�2�))

um

n+1

um

n�1

� um+1

n

um�1

n

= 1

Burgers

um+1

n

= um

n

1 + µum

n+1

1 + µum

n
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Most important discovery:

the discrete form of the 2+1 dim Kadomtsev-Petviashvili equation

The Hirota equation

�

z
1

exp(D
1

) + z
2

exp(D
2

) + z
3

exp(D
3

)
�

F ·F = 0 (⇤)

From (*) obtain many integrable lattice equations by reduction

Hirota-sensei used the bilinear formalism to obtain

Soliton solutions

Bäcklund transformations

Lax pairs
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A brief introduction to the QRT mapping

TTwo families: symmetric and asymmetric

Start with 3 ⇥ 3 matrices, A
0

and A
1

and vector ~X

A
i

=

0

@

↵
i

�
i

�
i

�
i

✏
i

⇣
i


i

�
i

µ
i

1

A and ~X =

0

@

x2

x
1

1

A

Construct ~F ⌘
0

@

f
1

f
2

f
3

1

A and ~G ⌘
0

@

g
1

g
2

g
3

1

A

~F = (A
0

~X) ⇥ (A
1

~X) and ~G = ( eA
0

~X) ⇥ ( eA
1

~X)

The f
i

, g
i

are, in general, quartic polynomials of x
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Asymmetric mapping

x
n+1

=
f
1

(y
n

) � x
n

f
2

(y
n

)

f
2

(y
n

) � x
n

f
3

(y
n

)

y
n+1

=
g
1

(x
n+1

) � y
n

g
2

(x
n+1

)

g
2

(x
n+1

) � y
n

g
3

(x
n+1

)

Symmetric

x
m+1

=
f
1

(x
m

) � x
m�1

f
2

(x
m

)

f
2

(x
m

) � x
m�1

f
3

(x
m

)

with dentification x
n

! x
2n

, y
n

! x
2n+1

Parameter counting: 8 for the asymmetric and 5 for the symmetric

Invariant relation (biquadratic in x and y)

↵x2

n

y2

n

+ �x2

n

y
n

+ �x2

n

+ �x
n

y2

n

+ ✏x
n

y
n

+ ⇣x
n

+ y2

n

+ �y
n

+ µ = 0

where ↵ ⌘ ↵
0

+ K↵
1

etc. and K integration constant
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Integration of QRT mapping: symmetric case is well-known

↵x2y2 + �xy(x + y) + �(x2 + y2) + ✏xy + ⇣(x + y) + µ = 0

Through homographic transformation (common to x and y)

X2Y 2 + �(X2 + Y 2) + EXY + 1 = 0

Elliptic functions: X = A sn(z),Y = A sn(z+q) modulus k (A2 = k)

k2 +
�

� +
1

�
� E2

4�

�

k + 1 = 0

Step q given by �k sn2(q) + 1 = 0

Asymmetric case: integrated in a similar way.
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A special case, ↵ = � = 0

Linearisable case (solution in terms of the exponential function)

�(x2

n+1

+ x2

n

) + ✏x
n+1

x
n

+ ⇣(x
n+1

+ x
n

) + µ = 0

Canonical form

x2

n+1

+ x2

n

+ ✏x
n+1

x
n

+ 1 = 0

Solution

x
n

=
�

n

p
+

q

�
n

with
�

n+1

= ��
n

� is given by

�2 + ✏� + 1 = 0 and
p

q
= ✏2 � 4
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Solution of generic QRT mapping: sampling of an elliptic function

Why are QRT mappings pertinent?

Continuous Painlevé equations:
non-autonomous extensions of elliptic functions

This means:
same functional forms as the autonomous equations
with coe↵s depending on the independent variable

Strategy for the derivation of discrete analogues:

Start from QRT
allow coe↵s to depend on independent variable
select the integrable cases (through integrability detector)
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Do integrable mappings have the Painlevé property?

Singularity confinement criterion

Lattice KdV equation

xi+1

j

= xi�1

j+1

+
1

xi

j

� 1

xi

j+1

“what if a singularity appears spontaneously?”

x = 0 at (i, j)
x = 1 at both (i + 1, j � 1) and (i + 1, j)
and x = 0 at (i + 2, j � 1)

At (i + 3, j � 2) and (i + 3, j � 1) finite values!

The singularity does not propagate beyond a few lattice points: it
is confined
Discrete Painlevé property
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An example

x
n+1

+ x
n�1

=
a

x
n

+
1

x2

n

Singularity, whenever x
n

=0
Iterate ! sequence {0,1, 0}
and then indeterminate form 1 � 1
Kruskal:
The real problem is the indeterminate form not the simple infinity
Solution
Use continuity with respect to the initial conditions
Introduce a small parameter ✏
Start from x

n

= ✏, obtain: x
n+1

⇡ 1/✏2, x
n+2

⇡ �✏
Compute carefully x

n+3

Finite and depends on initial condition x
n�1

The singularity has disappeared!
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Consider the McMillan mapping:

x
n+1

+ x
n�1

=
2µx

n

1 � x2

n

Singularity: whenever x passes through ±1

Assume, x
0

is finite and x
1

= 1 + ✏

We find:
x

2

= �µ/✏ � (x
0

+ µ/2) + O(✏),
x

3

= �1 + ✏ + O(✏2)
x

4

= x
0

+ O(✏)

Singularity confined
and
mapping recovered memory of the initial conditions through x

0
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Deautonomise the McMillan mapping

x
n+1

+ x
n�1

=
a(n) + b(n)x

n

1 � x2

n

Assume: regular x
n

and x
n+1

= � + ✏ where � = ±1
Compute
x

n+2

(infinite) and x
n+3

(= ��at lowest order)
Condition for x

n+4

to be finite:

b
n+1

� 2b
n+2

+ b
n+3

+ �(a
n+1

� a
n+3

) = 0

Solution:
b
n

(⌘ z
n

) = ↵n + � and a
n

= � + �(�1)n

Ignore even-odd dependence (a=constant)

x
n+1

+ x
n�1

=
a + z

n

x
n

1 � x2

n

Discrete form of P
II

!
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d-P
I

from singularity confinement (deautonomisation)

x
n+1

+ x
n

+ x
n�1

= a(n) +
b(n)

x
n

Assume: x
n

regular and x
n+1

vanishes
x

n+1

= ✏

x
n+2

= bn+1

✏

+ a
n+1

� x
n

+ O(✏)

x
n+3

= � bn+1

✏

+ a
n+2

� a
n+1

+ x
n

+ O(✏)
x

n+4

diverges unless a
n+3

� a
n+2

=0 (for confinement a=constant)
For x

n+5

finite, second condition: b
n+1

� b
n+2

� b
n+3

+ b
n+4

= 0
Solution b

n

= ↵n + � + �(�1)n

If we ignore even-odd dependence: b
n

⌘ z
n

= ↵n + �

x
n+1

+ x
n

+ x
n�1

= a +
z
n

x
n
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Our conjecture (no known counterexample)

All mappings integrable through spectral methods
have confined singulmarities

The Hietarinta-Viallet (H&V) discovery:

Confinement is not su�cient for integrability

Integrability related to low–growth properties (complexity)

Mapping of degree d
! n-th iterate: degree dn, unless there exist simplifications

Integrable mappings: massive simplifications
! polynomial degree growth

Algebraic entropy: lim
n!1

log dn

n

46



Example

x
n+1

+ x
n�1

=
a

x
n

+
1

x2

n

Introduce homogeneous coordinates

x
0

= r, x
1

= p/q

Assume r to be of degree zero
and compute the degree of homogeneity in p and q at every iteration

Obtain the degrees:

0, 1, 2, 5, 8, 13, 18, 25, 32, 41, . . . ,

Degree growth is polynomial: d
2m

= 2m2 and d
2m+1

= 2m2+2m+1

The mapping is integrable (QRT)
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Nonintegrable mapping, (the H&iV) example

x
n+1

+ x
n�1

= x
n

+
1

x2

n

Singularity pattern is {0,1,1, 0}
but
chaotic behaviour

Degree growth: 0, 1, 3, 8, 23, 61, 162, 425, . . . ,

Exponential!

d
n+4

= 3(d
n+3

� d
n+1

) + d
n

with ratio of (3 +
p

5)/2
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The linearisable case

A Gambier mapping

x
n+1

x
n�1

� x
n�1

x
n

=
x2

n

1 � x
n

Degree growth: 0, 1, 2, 3, 4, 5, 6, 7, . . . ,

A so-called “third-kind” mapping

1

x
n+1

+ x
n

+
1

x
n

+ x
n�1

=
1

x
n

+ 1

Degree growth: 0, 1, 3, 5, 7, 9,. . . ,

In both cases, linear growth (but di↵erent steps)
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Algebraic entropy is not necessary

Simplest example
x

n+1

x
n�1

= x3

n

Put !
n

= log x
n

and find for ! a linear equation

!
n+1

+ !
n�1

= 3!
n

Algebraic entropy ✏ = log((3 +
p

5)/2)

Another example

x
n+1

=
3x

n

� x3

n

+ x
n�1

(1 � 3x2

n

)

1 � 3x2

n

+ x
n�1

(3x
n

� x3

n

)

Put !
n

= tanx
n

and find for ! the same linear equation

Infinitely many such examples exist
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Application of singularity confinement to lattice eqs.

The KdV example

z
1

f(m + 1, n)f(m � 1, n � 1) + z
2

f(m + 1, n � 1)f(m � 1, n)

+z
3

f(m,n)f(m,n � 1) = 0

Singularity:
when one of the f ’s becomes 0 or 1 (0 et previous step)

Singularity confinement:
the vanishing of an f never induces a divergence at the next stage

Condition for the vanishing of f(m,n) = 0:

z
1

f(m + 1, n)f(m � 1, n � 1) + z
2

f(m + 1, n � 1)f(m � 1, n) = 0

The vanishing of f(m,n) may lead to a diverging f(m,n + 1)
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This does not happen!

Compute f(m ± 2, n) and f(m ± 1, n + 1)

z
3

f(m + 1, n + 1)f(m + 1, n) + z
2

f(m + 2, n)f(m,n + 1) = 0

z
3

f(m � 1, n + 1)f(m � 1, n) + z
1

f(m � 2, n)f(m,n + 1) = 0

z
3

f(m � 1, n)f(m � 1, n � 1) + z
2

f(m � 2, n)f(m,n � 1) = 0

z
3

f(m + 1, n)f(m + 1, n � 1) + z
1

f(m + 2, n)f(m,n � 1) = 0

Eliminating f(m ± 2, n) we find:

z
1

f(m + 1, n + 1)f(m � 1, n) + z
2

f(m + 1, n)f(m � 1, n + 1) = 0

This guarantees a finite value for f(m,n + 1)
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Deautonomising the Hirota equation

z
1

(k,m, n)⌧(k � 1,m, n)⌧(k + 1,m, n)

+z
2

(k,m, n)⌧(k,m � 1, n)⌧(k,m + 1, n)

+Z
3

(k,m, n)⌧(k,m, n � 1)⌧(k,m, n + 1) = 0

For singularity confinement:
assume ⌧(k,m, n) = 0

z
2

(k � 1,m, n)⌧(k � 1,m � 1, n)⌧(k � 1,m + 1, n)

+z
3

(k � 1,m, n)⌧(k � 1,m, n � 1)⌧(k � 1,m, n + 1) = 0

while ⌧(k � 2,m, n) finite

z
2

(k + 1,m, n)⌧(k + 1,m � 1, n)⌧(k + 1,m + 1, n)

+z
3

(k + 1,m, n)⌧(k + 1,m, n � 1)⌧(k + 1,m, n + 1) = 0
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Compute the necessary ⌧ ’s at (k,m ± 1, n) and at (k,m, n ± 1)

We find the confinement condition is satisfied provided:

z
1

(k,m � 1, n)z
1

(k,m + 1, n)z
2

(k,m, n � 1)z
2

(k,m, n + 1)

⇥z
3

(k � 1,m, n)z
3

(k + 1,m, n) = z
1

(k,m, n � 1)z
1

(k,m, n + 1)

⇥z
2

(k � 1,m, n)z
2

(k + 1,m, n)z
3

(k,m � 1, n)z
3

(k,m + 1, n)

Automatic for constant z’s
However, by gauge z

2

= z
3

and by division z
2

= z
3

= 1
Condition

z
1

(k,m � 1, n)z
1

(k,m + 1, n) = z
1

(k,m, n � 1)z
1

(k,m, n + 1)

Solution z
1

= g(k,m + n)h(k,m � n) with g, h free functions

Unfortinately, a gauge transforms z
1

to 1 (back to autonomous)
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Deautonomisation of potential KdV (find m,n dependence of zm

n

)

xm+1

n+1

= xm

n

+
zm

n

xm+1

n

� xm

n+1

Degrees of the iterates for constant z:dm

n

= mn + 1

v
n�1

tsv
n�1

tsv
n�1

tsv
n�1

tsv
n�1

tsv
n�1

ts . .
.

1 4 7 10 13 16 · · ·

1 3 5 7 9 11 · · ·

1 2 3 4 5 6 · · ·

m

x

?

?

1 1 1 1 1 1 · · ·
��!

n
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Deautonomisation:

degrees from autonomous and nonautonomous must be identical

First constraint: degree of x2

2

must be 5 (and not 6)

Condition: z1

1

� z1

0

� z0

1

+ z0

0

= 0

Same as from singularity confinement

Generically
zm+1

n+1

� zm+1

n

� zm

n+1

+ zm

n

= 0

su�ces

Solution: zm

n

= f(n) + g(m) (f , g arbitrary functions)

Result known in convergence acceleration algorithms
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Lattice mKdV

xm+1

n+1

= xm

n

xm+1

n

+ qm

n

xm

n+1

qm

n

xm+1

n

+ xm

n+1

Growth in autonomous case: dm

n

= mn + 1
Condition on z

qm+1

n+1

qm

n

� qm+1

n

qm

n+1

= 0

Solution qm

n

= f(n)g(m)

Reduction xm+1

n

= xm

n+2

Introduce y
n

= x
n+2

/x
n+1

y
n+1

y
n�1

=
1 + q

n

y
n

y
n

(q
n

+ y
n

)

with q
n

q
n+3

q
n

= q
n+1

q
n+2

Solution: log q
n

= an + b + c(�1)n

Equation is q-P
III
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Discrete Burgers equation

xm+1

n

= xm

n

1 + zm

n

xm

n+1

1 + zm

n

xm

n

For z constant: dm

n

= m + 1 Condition for same growth

zm

n+1

� zm

n

= 0

i.e. zm

n

= g(m)

Nonautonomous extension:
cannot be removed by gauge, is compatible with linearisability

Putting xm

n

= Xm

n+1

/Xm

n

we find (f is arbitrary)

Xm+1

n

= f(m)(Xm

n

+ g(m)Xm

n+1

)

(Continuous Burgers also possesses nonautonomous extension)
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The discrete Painlevé equations

Some historical results

Shohat (1939), orthogonal polynomials (Laguerre?)

x
n+1

+ x
n�1

+ x
n

=
z
n

x
n

+ 1

with z
n

= ↵n + � + �(�1)n

(many years later was recognised as d-P
I

)

Jimbo & Miwa (1981), contiguity relations of c-Painlevé equations
From P

II

:
x00 = 2x3 + tx + ↵

contiguity relation (↵
n

= n + ↵
0

):
↵

n

+ 1

/

2

x
↵n+1

+ x
↵n

+
↵

n

� 1

/

2

x
↵n + x

↵n�1

= �(2x2

↵n
+ t)

No continuous limit was derived!
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Brézin & Kazakov (1990) Field-theoretical model of 2-D gravity
Recursion relation of Shohat
Computed the continuous limit!
Obtained w00 = 6w2 + t, i.e. Painlevé I

Periwal & Shevitz (1990)
Obtained

x
n+1

+ x
n�1

=
z
n

x
n

1 � x2

n

Continuous limit w00 = 2w3 + tw, i.e. Painlevé II

Nijho↵ & Papageorgiou (1991)

Since similarity reduction of mKdV ! P
II

Similarity reduction of disrete mKdV should give d-P
II

They found the same as Periwal & Shevitz
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Derivation of discrete Painlevé equations

Start from QRT mapping:

x
n+1

=
f
1

(x
n

) � x
n�1

f
2

(x
n

)

f
2

(x
n

) � x
n�1

f
3

(x
n

)

and deautonomize

Rewrite QRT as:

f
3

(x
n

)⇧ � f
2

(x
n

)⌃ + f
1

(x
n

) = 0

where ⌃ = x
n+1

+ x
n�1

, ⇧ = x
n+1

x
n�1

Ask that this equation go over to c-Painlevé equation
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Lattice parameter ✏ and obtain:

⌃ = 2x + ✏2x00 + O(✏4), ⇧ = x2 + ✏2(xx00 � x02) + O(✏4)

Derivative part at continuous limit, ✏ ! 0:

x00 =
f
3

(x)

xf
3

(x) � f
2

(x)
x02 + g(x)

Proper choice of f
2

, f
3

For P
I

and P
II

we have f
3

= 0

x
n+1

+ x
n�1

+ x
n

= a +
↵n + � + �(�1)n

x
n

and

x
n+1

+ x
n�1

=
x

n

(↵n + �) + � + �(�1)n

1 � x2

n
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For P
III

take f
2

= 0

x
n+1

x
n�1

=
(n)x2

n

+ ⇣(n)x
n

+ µ(n)

x2

n

+ �(n)x
n

+ �(n)

rewrite as

x
n+1

x
n�1

=
ab(x

n

� cq
n

)(x
n

� dq
n

)

(x
n

� a)(x
n

� b)

where a, b, c, and d are constants

From singularity confinement

q
n

= q
0

�n

Neglecting even-odd dependence, the continuous limit is P
III

(if we do not, we get PVI, as shown by Jimbo and Sakai)

Not a di↵erence equation, but a q- (multiplicative) mapping
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For d-P
IV

(x
n+1

+ x
n

)(x
n�1

+ x
n

) =
(x2

n

� a2)(x2

n

� b2)

(x
n

+ z
n

)2 � c2

a, b and c are constants

Algebraic entropy approach

Start from autonomous: if z
n

is constant

degrees: d
n

=0, 1, 3, 6, 11, 17, 24, . . . ,

quadratic growth

For a generic z
n

, sequence d
n

=0, 1, 3, 6, 13,. . . ,

Condition for d
4

= 11

z linear in n
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Lax pairs

Di↵erence equations
linear isospectral deformation problem:

⇣�
n,⇣

= L
n

(⇣)�
n

�
n+1

= M
n

(⇣)�
n

Compatibility condition:

⇣M
n,⇣

= L
n+1

M
n

� M
n

L
n

Multiplicative equations
q-di↵erence linear isospectral problem:

�
n

(�⇣) = L
n

(⇣)�
n

(⇣)

�
n+1

= M
n

(⇣)�
n

(⇣)

Compatibility condition:

M
n

(�⇣)L
n

(⇣) = L
n+1

(⇣)M
n

(⇣)
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For d-P
I

we start from Lax pair:

L
n

=

0

@

0 x
n

1
⇣ z

n

x
n+1

+ z
n

/x
n

⇣x
n�1

⇣ z
n+1

1

A

and

M
n

=

0

@

�z
n

/x
n

1 0
0 0 1
⇣ 0 0

1

A

where z
n

= n/2 + �

Consistency conditions:

x
n+2

+ z
n+1

/x
n+1

= x
n�1

+ z
n

/x
n

Integrate (a is the integration constant)

x
n+1

+ x
n�1

+ x
n

� z
n

x
n

= a
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A multiplicative equation

L
n

=

0

B

B

@

0 0 kn
xn

0
0 0 x

n�1

qx
n�1

hx
n

0 1 q
0 hkn�1

xn�1
0 0

1

C

C

A

and

M
n

=

0

B

@

0 xn
kn(xn+1)

0 0
0 0 1 0
0 0 1

xn

q

xn

h 0 0 0

1

C

A

Compatibility:

x
n+1

x
n�1

= k
n

k
n+1

(x
n

+ 1)/x2

n

where k
n+1

= qk
n�1

q-Painlevé I
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q-P
V

(q
n

= q
0

�n)

(x
n+1

x
n

� 1)(x
n

x
n�1

� 1) =
(x

n

� a)(x
n

� 1/a)(x
n

� b)(x
n

� 1/b)

(1 � cx
n

q
n

)(1 � x
n

q
n

/c)

�-P
V

(z
n

= ↵n + �)

(x
n

+ x
n+1

� z
n

� z
n+1

)(x
n

+ x
n�1

� z
n

� z
n�1

)

(x
n

+ x
n+1

)(x
n

+ x
n�1

)

=
((x

n

� z
n

)2 � a2)((x
n

� z
n

)2 � b2)

(x2

n

� c2)(x2

n

� d2)

q-P
VI

(q
n

= q
0

�n)

(x
n

x
n+1

� q
n

q
n+1

)(x
n

x
n�1

� q
n

q
n�1

)

(x
n

x
n+1

� 1)(x
n

x
n�1

� 1)

=
(x

n

� aq
n

)(x
n

� q
n

/a)(x
n

� bq
n

)(x
n

� q
n

/b)

(x
n

� c)(x
n

� 1/c)(x
n

� d)(x
n

� 1/d)
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Canonical forms of discrete Painlevé equations

Are they essentially symmetric? Not true!

Form singularity confinement
obtain terms of the form (�1)n, but also jn where j3 = 1, in etc.

They should not be discarded because “they do not possess a con-
tinuous limit”

– They indicate that the equation is better written as a system of
two, three, etc. equations
– They also introduce one or more extra, parameters
– They lead to richer continuous limits
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Profusion of asymmetric forms
terminology with qualifier “asymmetric”

The limit of asymmetric d-P
II

is P
III

Of asymmetric q-P
III

is P
VI

(Jimbo & Sakai)
The limits of asym. d-P

IV

, q-P
V

, d-P
V

and q-P
VI

are P
VI

Higher number of components:

x
n+1

x
n�1

= a(x
n

� 1)

From singularity confinement (with j3 = 1):

log a
n

= kn + p + rjn + sj2n + t(�1)n

Can be written as a second-order system of six equations
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Properties of discrete Painlevé equations

The discrete Painlevé equations have many special properties

Most are analogues of properties of continuous Painlevé equations

– Lax pairs (already discussed)

– Degeneration through coalescence

q-P
VI

�! q-P
V

�! q-P
III

�! q-P1

III

�! q-P0

III

?

y

?

y

?

y

?

y

d-P
V

�! d-P
IV

�! d-P
II

�! d-P
I

Convention
‘higher’ equation in capital letters
‘lower’ equation in lowercase letters
Introduce the coalescence limit: �
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From d-P
II

! d-P
I

Start with the equation:

X
n+1

+ X
n�1

=
Z

n

X
n

+ A

1 � X2

n

Put X = 1 + �x:

4 + 2�(x
n+1

+ x
n�1

+ x
n

) = �Z
n

(1 + �x
n

) + A

�x
n

Z = �A � 2�2z to cancel A up to order �
O(�0) term in rhs must cancel 4 of lhs
so A = 4 + 2�a
At � ! 0:

x
n+1

+ x
n�1

+ x
n

=
z
n

x
n

+ a

precisely d-P
I
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Degeneration of d-P
III

to d-P
II

Start from:

X
n+1

X
n�1

=
AB(X

n

� P
n

)(X
n

� Q
n

)

(X
n

� A)(X
n

� B)

Aansatz for X: , X = 1 + �x. For the remaining quantities we find:

A = 1 + �, B = 1 � �

P = 1 + � + �2(z + a)/2 + O(�3)

Q = 1 � � + �2(z � a)/2 + O(�3)

At the limit � ! 0:

x
n+1

+ x
n�1

=
z
n

x
n

+ a

1 � x2

n

exactly d-P
II
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In the case of q-P
V

:

(X
n+1

X
n

� 1)(X
n

X
n�1

� 1)

=
(X

n

� A)(X
n

� 1/A)(X
n

� B)(X
n

� 1/B)

(1 � CX
n

Q
n

)(1 � X
n

Q
n

/C)

two di↵erent limits exist

Limit to disrete P
IV

Put X = 1 + �x, � = 1 � ↵� and take:

A = 1 + �a, B = 1 � �b

C = 1 + �c, Q
n

= 1 � �z
n

At the limit � ! 0 we find d-P
IV

(x
n+1

+ x
n

)(x
n

+ x
n�1

) =
(x2

n

� a2)(x2

n

� b2)

(x
n

� z
n

)2 � c2
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Limit to discrete P
III

Put X = x/� and take:

C = c, Q
n

=
q
n

�
, A =

a

�
, B =

b

�

We find then at the limit � ! 0:

x
n+1

x
n�1

=
(x

n

� a)(x
n

� b)

(1 � cx
n

q
n

)(1 � x
n

q
n

/c)

precisely q-P
III
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– Special solutions

Elementary solutions for specific values of the parameters
Special functions (of hypergeometric type)
or rational
Example q-P

V

(x
n+1

x
n

�1)(x
n

x
n�1

�1 =
pr(x

n

� u)(x
n

� 1/u)(x
n

� v)(x
n

� 1/v)

(x
n

� p)(x
n

� r)

Factorization

xx
n+1

� 1 =
p(x � u)(x � v)

uv(xz � p)

xx
n�1

� 1 =
uvr(x � 1/u)(x � 1/v)

(xz � r)

Compatibility uv = p/r�
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! discrete Riccati

z(xx
n+1

� 1) = px
n+1

+ �r(x � u � v)

Linearization

x
n+1

=
�r(x � u � v) + z

zx � p

Cole-Hopf x = B/A

A
n+2

+ (p � r)A
n+1

� (�z2 � zr(u + v) + pr)A
n

= 0

discrete form of confluent hypergeometric
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Rational solutions

x = ±1 when u or v equal ±1

Nontrivial solutions

x = ±1 + (p + r)/z

for u (or 1/u) = ⌥1/�

and v (or 1/v) = ⌥p/r (or u $ v)

Also
x = (p + r)/z

for u =
p
�, v = �p

�
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Solutions by direct linearisation

Instead of discrete Riccati equation

x
n+1

= �↵x
n

+ �

�x
n

+ �

when � or � vanishes
we get linear equation for x

n

or 1/x
n

Some further constraint must be satisfied

integration of the linear equation

�
n

x
n+1

+ ↵
n

x
n

+ �
n

= 0

First solution, ⇠
n

of the homogeneous equation

�
n

x
n+1

+ ↵
n

x
n

= 0
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Formally

⇠
n

= A

n�1

Y

k=0

(�↵
k

/�
k

)

With “variation of constant”

A
n+1

� A
n

=
�

n

↵
n

Q

n�1

k=0

(�↵
k

/�
k

)

Formally (c is the integration constant)

A
n

=
X

n

�
n

/(↵
n

n�1

Y

k=0

(�↵
k

/�
k

)) + c
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If �� = 0 is impossible
we must find one special solution ⌘

n

of the Riccati equation

We set x = ⌘ + 1/y
and y satisfies the linear equation,

(�
n

⌘
n+1

+ ↵
n

)y
n+1

+ (�
n

⌘
n

+ �
n

)y
n

+ �
n

= 0

q-discrete P
III

(z
n

= �n)

x
n+1

x
n�1

=
(x

n

� a)(x
n

� b)

(1 � x
n

z
n

/c)(1 � x
n

z
n

/d)

Linearisability condition ad = bc� leads to

x
n+1

=
d

�

a � x
n

c � x
n

z
n

Solutions in terms of discrete Bessel functions
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This Riccati cannot be reduced to a linear

But can obtain one special solution

We find x
n

=
p

ac/z
n

provided c
p
� + d = 0 is satisfied

Putting x
n

= k/
p
z
n

+ 1/y
n

we find

y
n+1

(
p

az
n

/c + 1) + µy
n

(
p

az
n

/c � 1) + µz
n

/c = 0

Solution from

A
n+1

� A
n

=

p
z

n

(
p
acz

n

� c)
Q

n�1 tanh 1

4

ln
⇣

c

azk

⌘

Formally discrete quadrature needed

At the continuous limit the special solution goes precisely to the
special solution of P

III

in the form of a tangent
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– Miura/auto-Bäcklund/Schlesinger transformations

The discrete Painlevé equations have many interrelations

– Miura transformations: relate two di↵erent equations

– auto-Bäcklund relate solutions of the same equation with di↵erent
values of the parameter

– Schlesinger transformations are particular auto-Bäcklund trans-
formations

Continuous Schlesingers relate solutions corresponding to the same
monodromy data except for integer di↵erences in the monodromy
exponents

In the discrete case the analogy requires a proper parametrisation
(auto-Bäcklund with elementary changes of the parameters can be
dubbed Schlesinger)
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Miura transformations for d-P
II

Introduce the system:

y
n

= (1 + x
n

)(1 � x
n+1

) � z
n+1/2

/2

x
n

=
m + y

n

� y
n�1

y
n

+ y
n�1

Eliminating y we obtain d-P
II

:

x
n+1

+ x
n�1

=
m � (z

n+1

� z
n

)/2 + z
n

x
n

1 � x2

n

Eliminating x we find

(y
n+1

+ y
n

)(y
n

+ y
n�1

) =
4y2

n

� m2

y
n

+ z
n+1/2

/2
)

Discrete form of the equation 34 (d-P
34

)
in the Painlevé/Gambier classification

84



Miura transformations for d-P
I

:

x
n+1

+ x
n�1

=
z
n

x
n

+
a

x2

n

Miura y
n

= x
n

x
n+1

leads to:

(y
n

+ y
n�1

� z
n

)(y
n

+ y
n+1

� z
n+1

) =
a2

y
n

Another form of d-P
I

Miura y
n

= x
n+1

/x
n

on discrete derivative of d-P
I

! 4-point eq.

y
n+1

y
n

+ 1 � y2

n+1

y
n

(y
n+2

y
n+1

+ 1)

y
n

y
n�1

+ 1 � y2

n

y
n�1

(y
n

y
n+1

+ 1)
=

y
n+1

z
n+2

� z
n+1

y
n

z
n+1

� z
n

1

y
n

y
n�1

Continuous limit ww000 = (w00 � 1)w0 + 12w3 Integrate to

(w00 � 1)2 � 24w2(w0 � t) = 0

i.e. Cosgrove’s equation SD
V

(modified P
I

)
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How can one find auto-Bäcklund transformations for a given d-P?

General principle

– Obtain a Miura that transforms the equation into a new one

– Use invariance of the latter under some discrete transformation

– Implement these transformations and return to the initial equation

In the process the parameters of initial equation have been modified

The chain of transformations defines an auto-Bäcklund

Clue: all known Miura’s are homographic mappings
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– Quadratic, “folding”, relations

d-P
I

equation

x
n+1

+ x
n�1

+ x
n

=
z
n

x
n

+ t

Take t = 0 and multiply by x
n

Introduce X
n

= x2

n

and y
n

= x
n

x
n+1

Find y
n

+ y
n�1

+ X
n

= z
n

and X
n

X
n+1

= y2

n

Eliminating X

(y
n+1

+ y
n

� z
n+1

)(y
n

+ y
n�1

� z
n

) = y2

n

Another special form of a d-P
I
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The asymmetric d-P
II

y
n

+ y
n�1

=
z
n

x
n

+ a

x2

n

� 1

x
n

+ x
n+1

=
z
n+

1

/

2

y
n

+ b

y2

n

� 1

Folding when a = b = 0

v
n�1

+ v
n+1

=
z
n

v
n

v2

n

� 1

Multiply by v
n

and introduce

X
n

= v2

n

and W
n

= v
n

v
n+1
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W
n

+ W
n�1

=
z
n

X
n

X
n

� 1

X
n

X
n+1

= W 2

n

Eliminate X to find an equation for W :

(W
n

+ W
n+1

� z
n+1

)(W
n

+ W
n�1

� z
n

)

(W
n

+ W
n+1

)(W
n

+ W
n�1

)
=

1

W 2

n

Miura transformed of the “alternate d-P
II

”

z
n+1

1 + u
n

u
n+1

+
z
n

1 + u
n

u
n�1

= u
n

� 1

u
n

+ z
n

+ µ
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Contiguity relations
Start from continuous P

III

w00 =
w02

w
� w0

t
+

1

t
(↵w2 + �) + w3 � 1

w

Relations
w(�↵,��) = �w(↵,�)

w(��,�↵) = w�1(↵,�))

w(�� � 2,�↵ � 2) = w(↵,�)

 

1 +
2 + ↵ + �

t(w

0

w

+ w + 1

w

) � 1 � �

!

Assume further ↵ 6= �

90



Start from w(��,�↵) find w(↵ � 2,� � 2) and eliminate w0

Obtain a relation between w(↵�2,��2), w(↵,�) and w(↵+2,�+2)

One-dimensional 3-point mapping on the (↵,�)-plane

Introduce independent variable z = (↵ + � + 2)/4
and parameters µ = (� � ↵ � 2)/4, = �it/2

Choose x = i/w and

z
n

x
n+1

x
n

+ 1
+

z
n�1

x
n

x
n�1

+ 1
= (�x

n

+
1

x
n

) + z
n

+ µ

Contiguity relation for the solutions of P
III

This is the “alternate” discrete Painlevé II
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Alt-dP
II

is a (discrete) Painlevé equation
So it must have Schlesinger transformations and contiguities
What is the evolution along the parameters?
Schlesinger transform of alt-d-P

II

x
n

(µ � 1) =
1

x
n

+
µ(1 + x

n

x
n�1

)

(1 + x
n

x
n�1

) � z
n�1

x
n

Similarly

x
n

(µ + 1) =

✓

x
n

� (µ + 1)(1 + x
n

x
n�1

)

(1 + x
n

x
n�1

) � z
n�1

x
n�1

◆�1

Eliminate x
n�1

µ is now the independent variable (z is now a parameter)

µ + 1

x
µ

x
µ+1

� 1
+

µ

x
µ

x
µ�1

� 1
= (x

µ

+
1

x
µ

) � µ � z

Again the alternate d-P
II

itself (self-duality).
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Try to understand the underlying mathematical structures

Hamiltonian approach for Painlevé equations

dx

dt
=

@H

@p

dp

dt
= �@H

@x

Hamiltonians for Painlevé II:

H(x, p) = p2/2 � p(x2 + t/2) � (↵ + 1

/

2

)x

Hamiltonian equations are Miura relations:
Eliminate p find P

II

equation for x
Eliminate x and find P

34

for p
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Geometrical description of Painlevé equations

Consider their birational transformations

Start H(↵) for P
II

x̃ = �x +
↵ � 1/2

p
, p̃ = �p

Solution of P
II

corresponding to Hamiltonian H(↵ � 1)

Birational transformation is an auto-Bäcklund for P
II

Group generated by the transformations ↵ ! 1 � ↵ and ↵ ! �↵.

Realisation of the a�ne Weyl group with root system of type A
(1)

1

Okamoto: result valid for all Painlevé equations

P
II

- A(1)

1

, P
III

- (2A(1)

1

), P
IV

- A(1)

2

, P
V

- A(1)

3

, P
VI

- D(1)

4
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Fundamental notion (Okamoto): ⌧ -function

Relation to the Hamiltonian :

d

dt
log ⌧ = H

For Painlevé equations:
⌧ -function: entire function on the complex plane of the ind. variable

Birational transformations expressed in terms of the ⌧ -function

x =
d

dt
log

⌧(↵ � 1)

⌧(↵)

Successive application of auto-B̈’s: sequence of ⌧ -functions
! translation in the space of parameters
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Okamoto: “space of initial conditions”

Continuous Painlevé equations: 2nd di↵erential equations

Space of initial conditions should be C2

For some t
0

solution specified by data of function and derivative

(precautions for singular coe�cients)

But there exist solutions diverging at t
0

Must compactify C2

It may happen that several solutions pass through the point at 1
We must then separate themt through a blowing-up of the space

(introducing local coordinates making the divergence disappear)
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Sakai: geometrical description of discrete Painlevé equations

Rational surfaces obtained by successive blow-ups of P1⇥P1

studied through connection between Weyl groups
and the gr. of Cremona isometries on the Picard gr. of the surfaces

When 8 points in generic position in projective plane are blown up

group of Cremona isometries isomorphic to Weyl group E
(1)

8

Sakai studied the case where the 8 points are not in generic position

Birational (bi-meromorphic) mappings on P1⇥P1

are obtained by interchanging the procedure of blow-downs

Discrete Painlevé equations:
birational mappings corr. to translations of a�ne Weyl groups
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Classification of discrete Painlevé equations

Degeneration pattern:

Ee

8

Aq

1

?

y �
Eq

8

�! Eq

7

�! Eq

6

�! Dq

5

�! Aq

4

�! (A
2

+ A
1

)q �! (A
1

+ A
1

)q �! Aq

1

?

y

?

y

?

y

?

y

?

y

�

�

?

y

�

�

?

y

E�

8

�! E�

7

�! E�

6

�! Dc

4

�! Ac

3

�! �

� (2A
1

)c �! �

� Ac

1

� ?

y � ?

y

Ac

2

�! Ac

1

Upper index e: a discrete equation involving elliptic functions
Upper index q: equation of q-type
Upper index �: di↵erence equation not related continuous equation
Upper index c: di↵erence equation, contiguity of continuous Painlevé

P
VI

for D
(1)

4

, P
V

for A
(1)

3

, P
IV

for A
(1)

2

, P
III

for 2A(1)

1

, P
II

for the

A
(1)

1

on the last line and P1

III

for the A
(1)

1

on the line above last
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Sakai’s construction is a global one

To construct explicit examples one must specify
a periodically repeated nonclosed pattern in the appropriate space
and obtain the corresponding discrete Painlevé equation

New definition of “discrete Painlevé equation”
A discrete Painlevé equation is the mapping obtained by the peri-
odic repetition of a non-closed pattern on a lattice associated to an

a�ne Weyl groups belonging to the degeneration cascade of E
(1)

8

Consequence:
the potential number of discrete Painlevé equations is infinite

any pattern, compatible with the above definition
in each of the a�ne Weyl groups of the degeneration pattern
would lead to a di↵erent discrete Painlevé equation
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Important finding of Sakai:

elliptic discrete Painlevé equations

Example:

cn(�
n

)dn(�
n

)(1 � k2sn4(z
n

))x
n

(x
n+1

+ x
n�1

)

�cn(z
n

)dn(z
n

)(1 � k2sn2(z
n

)sn2(�
n

))(x2

n

+ x
n+1

x
n�1

)

+cn(z
n

)dn(z
n

)(cn2(z
n

) � cn2(�
n

))(1 + k2x2

n

x
n+1

x
n�1

) = 0

z
n

= (�
e

+ �
o

)n + z
0

and �
n

= �
e,o

n-parity dependent
Sakai provided link between singularity confinement
and the construction of the space of initial conditions

All d-Painlevé equations have a max. of 8 confined singularities
They can be described by a maximum of 8 blow-ups

Procedure first advocated by Kruskal
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