Integrable discrete systems, an introduction

B. Grammaticos, Paris VII \& XI University

with
A. Ramani and many, many other collaborators

Plan of the Course

1. General introduction: who cares about integrability?
2. Integrable continuous systems: from Newton to Kruskal.
3. Detecting integrability: the Painlevé approach.
4. A prelude to discrete integrability: Hirota's creations.
5. The paradigmatic discrete systems: QRT maps.
6. The discovery of singularity confinement.
7. Complexity and algebraic entropy.
8. Confinement and complexity for multidimensional systems.
9. The Painlevé equations, discretised.
10. The Okamoto-Sakai approach for Painlevé equations.

Integrability: no definition here (Arguments towards a 'working' definition)
Integrability, integral, differential equations
Poincaré's definition:
integrate a differential equation is to find for the general solution a finite expression, in a finite number of functions.
(Singlevaluedness)
Integrability is a rare phenomenon
The typical dynamical system is nonintegrable Study of a generic system only with computers

Integrable systems can be studied in detail Algebraic and analytic methods available

But Integrability is structurally unstable (pertinence of integrable systems?)

Calogero:"Integrable systems are both universal and widely applicable"

Novikov: "Scientists do not believe that the laws of nature are to be expressed by arbitrarily chosen equations"

Segur:
Mathematics is the study of abstract strustures and relationships Physics is the study of the structure of our universe Sciences is the search for structure which, when found, is encoded in laws.

Who cares about integrability?

Newton: equations of motion of two gravitating bodies

$$
V=\frac{1}{\left|\vec{x}_{1}-\vec{x}_{2}\right|}
$$

Superintegrable system (Laplace-Runge-Lenz vector)

Study of differential equations in the complex domain (Why?)

From local solutions to global results
critical point ('branch point'):
multivaluedness

Critical singularities of a linear ODE are fixed: the solution af any linear ODE defines a function

Every linear ODE is integrable
Can we define new functions from nonlinear equations?
Difficulty:
Movable critical singularities!
Fuchs and Painlevé: first order equation without movable critical singularities

Riccati equation

$$
w^{\prime}=a w^{2}+b w+c
$$

Linearizable $(w=F / G)$, no new functions

Painlevé

Second order equations without critical movable singularities

$$
w^{\prime \prime}=f\left(w^{\prime}, w, z\right)
$$

with f polynomial in w^{\prime}, rational in w and analytic in z
Six equations that define new functions

$$
\begin{aligned}
w^{\prime \prime} & =6 w^{2}+z \\
w^{\prime \prime} & =2 w^{3}+z w+a
\end{aligned}
$$

$w^{\prime \prime}=\frac{w^{\prime 2}}{w}-\frac{w^{\prime}}{z}+\frac{1}{z}\left(a w^{2}+b\right)+c w^{3}+\frac{d}{w}$
$w^{\prime \prime}=\frac{w^{\prime 2}}{2 w}+\frac{3 w^{3}}{2}+4 z w^{2}+2\left(z^{2}-a\right) w-\frac{b^{2}}{2 w}$
etc.
Painlevé transcendents.

Kowalevskaya: study of integrability of a heavy spinning top

$$
\begin{gathered}
A \frac{d p}{d t}=(B-C) q r+M g\left(\gamma y_{0}-\beta z_{0}\right) \\
B \frac{d q}{d t}=(C-A) p r+M g\left(\alpha z_{0}-\gamma x_{0}\right) \\
C \frac{d r}{d t}=(A-B) p q+M g\left(\beta x_{0}-\alpha y_{0}\right) \\
\frac{d \alpha}{d t}=\beta r-\gamma q \\
\frac{d \beta}{d t}=\gamma p-\alpha r \\
\frac{d \gamma}{d t}=\alpha q-\beta p
\end{gathered}
$$

Integrals $\quad \alpha^{2}+\beta^{2}+\gamma^{2}=1$

$$
\begin{gathered}
A p^{2}+B q^{2}+C r^{2}-2 M g\left(\alpha x_{0}+\beta y_{0}+\gamma z_{0}\right)=K_{1} \\
A \alpha p+B \beta q+C \gamma r=K_{2}
\end{gathered}
$$

Fourth integral only for:
Spherical: $A=B=C$ with integral $p x_{0}+q y_{0}+r z_{0}=K$
Euler: $x_{0}=y_{0}=z_{0}$ with integral $A^{2} p^{2}+B^{2} q^{2}+C^{2} r^{2}=K$
Lagrange: $A=B$ and $x_{0}=y_{0}=0$ with integral $C r=K$ and
Kowalevskaya: $A=B=2 C$ and $z_{0}=0$ with integral

$$
\begin{aligned}
& {\left[C(p+i q)^{2}+M g\left(x_{0}+i y_{0}\right)(\alpha+i \beta)\right]} \\
& {\left[C(p-i q)^{2}+M g\left(x_{0}-i y_{0}\right)(\alpha-i \beta)\right]=K}
\end{aligned}
$$

Result obtained with singularity analysis methods

Solitary waves
Korteweg-de Vries equation Propagation of long, one-dimensional, small amplitude, surface gravity waves in a shallow water channel

$$
\frac{\partial \eta}{\partial \tau}=\frac{3}{2} \sqrt{\frac{g}{h}} \frac{\partial}{\partial \xi}\left(\frac{\eta^{2}}{2}+\frac{2 \alpha \eta}{3}+\frac{\sigma}{3} \frac{\partial^{2} \eta}{\partial \xi^{2}}\right)
$$

Nondimensional form

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

Solitary wave solution

$$
u(x, t)=2 \kappa^{2} \operatorname{sech}^{2}\left(\kappa\left(x-4 \kappa^{2} t-x_{0}\right)\right)
$$

Fermi, Pasta and Ulam
Lattice of coupled anharmonic oscillators:

$$
m \ddot{x}_{n}=k\left(x_{n+1}+x_{n-1}-2 x_{n}\right)\left[1+\alpha\left(x_{n+1}-x_{n-1}\right)\right]
$$

No energy equilibration but recurrence
Kruskal and Zabusky: continuous limit is KdV!
Confirmation of recurrence
Discovery of "solitons" (solitary waves interacting elastically)
Properties of KdV equation:

- ∞ number of conservation laws
- Miura transformation to modified KdV:

$$
v_{t}+6 v^{2} v_{x}+v_{x x x}=0
$$

- Arbitrary number of solitons (Hirota, bilinear formalism)
- Linearization

Linear time-independent Schrödinger problem

$$
\Phi_{x x}+u \Phi=\lambda \Phi
$$

and

$$
\Phi_{t}=u_{x} \Phi+(4 \lambda+2 u) \Phi_{x}
$$

with u, the solution of KdV
Compatibility of the two $\left(\lambda_{t}=0\right)$
$\rightarrow \mathrm{KdV}$ for u
Quantum Mechanical Inverse Scattering (IST)
Lax formulation $L \Phi=\lambda \Phi, \Phi_{t}=M \Phi$
Compatibility

$$
L_{t}+[L, M]=0
$$

Integrable nonlinear lattice
Toda system:

$$
\frac{d^{2} x_{n}}{d t^{2}}=e^{x_{n+1}-x_{n}}+e^{x_{n}-x_{n-1}}
$$

- ∞-number of conservation laws
- Lax pair

More integrable PDE's
Nonlinear Schrödinger equation

$$
i u_{t}+u_{x x}+\kappa|u|^{2} u=0
$$

Sine-Gordon equation

$$
u_{x t}=\sin u
$$

More discoveries on integrability
Ablowitz-Segur
Linearization of the Painlevé equations (IST)
Painlevé property and Integrability:
Reductions of integrable PDEs are of Painlevé type
Integrability detector
Singularity analysis ("Painlevé method")
Ablowitz-Ramani-Segur algorithm

Fixed and movable singularities
Linear ODE's: only fixed singularities
Nonlinear eqs.: also movable singularities
$w^{\prime}+w^{2}=0$ with solution $w=\left(z-z_{0}\right)^{-1}$
$2 w^{\prime}+w^{3}=0$ with solution $w=\left(z-z_{0}\right)^{-1 / 2}$
$w w^{\prime \prime}-w^{\prime}+1=0$ with solution $w=\left(z-z_{0}\right) \ln \left(z-z_{0}\right)+\alpha\left(z-z_{0}\right)$
$\mu w w^{\prime \prime}-(1-\mu) w^{2}=0$ with solution $w=\alpha\left(z-z_{0}\right)^{\mu}$
$\left(w w^{\prime \prime}-w^{\prime 2}\right)^{2}+4 z w^{\prime 3}=0$ with solution $w=\alpha e^{\left(z-z_{0}\right)^{-1}}$
$\left(1+w^{2}\right) w^{\prime \prime}+(1-2 w) w^{\prime 2}=0$ with solution $w=\tan \left[\alpha+\ln \left(z-z_{0}\right)\right]$

Ablowitz-Ramani-Segur algorithm necessary condition for the absence of movable branch points (movable essential singularities cannot be detected)

$$
w_{i}^{\prime}=F_{i}\left(w_{1}, w_{2}, \ldots, w_{n} ; z\right) \quad i=1, \ldots, n
$$

Assumption

$$
w_{i} \sim \alpha_{i}\left(z-z_{0}\right)^{p_{i}}, \quad z \rightarrow z_{0}
$$

(Dominant logarithmic branches ?)
In some cases w_{i} do not diverge and only some higher derivative becomes singular

How to treat w_{i}^{*}

Step 1: Dominant Behaviours

$$
w_{i}=a_{i}\left(z-z_{0}\right)^{p_{i}}
$$

z_{0} is arbitrary.
One must find all possible dominant behaviours
Example

$$
x^{\prime}=x(a-x-y) \quad y^{\prime}=y(x-1)
$$

We set $p=p_{1}$ and $q=p_{2}\left(\tau=z-z_{0}\right)$

$$
x=\alpha \tau^{p} \quad y=\beta \tau^{q}
$$

$\rightarrow p=-1, q=\alpha$, with
either $\alpha=+1$ and β free or $\quad \alpha=-1$ and $\beta=2$.
Two leading behaviours:
(i) $x=\tau^{-1}, y=\beta \tau$ (leading terms $x^{\prime}=-x^{2}, y^{\prime}=x y$)
(ii) $x=\tau^{-1}, y=2 \tau^{-1}$ (leading terms $x^{\prime}=-x^{2}-x y, y^{\prime}=x y$)

Step 2: Resonances.
Leading terms

$$
\begin{gathered}
w_{i}=a_{i} \tau^{p_{i}}\left(1+\gamma_{i} \tau^{r}\right), \quad r>0, \quad i=1, \ldots, n \\
Q(r) \gamma=0, \quad \gamma=\left(\gamma_{1} \ldots, \gamma_{n}\right)
\end{gathered}
$$

where $Q(r)$ is an $n \times n$ matrix
Resonances from

$$
\operatorname{det} Q(r)=(r+1)\left(r^{n-1}+A_{2} r^{n-2}+\ldots+A_{n}\right)=0
$$

Example
$\gamma=\gamma_{1}, \delta=\gamma_{2}$
case (i) Resonances $r=-1$ and $r=0$
case (ii) Resonances $r=-1, r=2$.

The constants of Integration.
Truncated expansion to substitute in full equation

$$
w_{i}=\alpha_{i} \tau_{i}^{p_{i}}+\sum_{1}^{r_{s}} a_{i}^{(m)} \tau^{p_{i}+m}
$$

\rightarrow compatibility condition

$$
Q(m) a^{(m)}=R^{(m)}\left(z_{0} ; a^{(j)}\right), \quad j=1, \ldots, m-1
$$

If resonance condition is not satisfied then

$$
w_{i}=\sum_{0}^{r-1} a_{i}^{(m)} \tau^{p_{i}+m}+\left(a_{i}^{(r)}+b_{i}^{(r)} \ln \tau\right) \tau^{p_{i}+r}+\ldots
$$

Example: case (i) is OK, but case (ii) has one resonance at $r=2$
Expand $x=-\tau^{-1}+a_{1}+a_{2} \tau+\ldots \quad y=2 \tau^{-1}+b_{1}+b_{2} \tau+\ldots$
Compatibility condition $a=-1$

Painlevé cases are integrable
Example for $a=-1$
New variables

$$
X=e^{z} x, \quad Y=e^{z} y, \quad Z=e^{-z}
$$

lead to

$$
X^{\prime}=X^{2}+X Y, \quad Y^{\prime}=-X Y
$$

reduction to

$$
Y^{\prime}-\frac{1}{2} Y^{2}=2 c_{1}^{2}
$$

Integrated to $Y(Z)=2 c_{1} \tan [c 1(Z+c 2)], c_{1}, c_{2}$ free constants
ARS approach not failsafe
(movable essential critical singularities?)

2-D Hamiltonian with cubic potential

$$
H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+y^{3}+a y^{2} x+b y x^{2}+c x^{3}
$$

'rotation' to

$$
V(x, y)=y^{3}+b y x^{2}+c x^{3}
$$

Painlevé analysis:

$$
\ddot{x}=-2 b x y-3 c x^{2} \quad \ddot{y}=-3 y^{2}-b x^{2}
$$

(i) $x \propto \alpha \tau^{-2} \quad y \propto \beta \tau^{-2}$ (ii) $x \propto \tau^{s} \quad y \propto-2 \tau^{-2}$ with $s(s-1)=4 b$ (s must be an integer or for $c=0$ also half-integer)

At leading order
$6=-2 b \beta-3 c \alpha \quad 6 \beta=-3 \beta^{2}-b \alpha^{2}$

Resonances' equation:

$$
(N+2 \beta b+6 \alpha c)(N+6 \beta)-4 b^{2} a^{2}=0
$$

where $N=(r-2)(r-3)$
Resonances
$r=-1$ and $r=6$ or $N=(2 b-6) \beta$
N_{1} and N_{2} corresponding to β_{1}, β_{2}
$N_{1}+N_{2}=-2(2 b-6)+\frac{1}{9} N_{1} N_{2} b$
Introducing $N_{3}=s(s-1)$, we obtain

$$
36\left(N_{1}+N_{2}+N_{3}-12\right)=N_{1} N_{2} N_{3}
$$

with N_{i} 's consecutive integers

Painlevé cases (all integrable) ($N_{1}=N_{2}=6$ leads to logarithms)
a) $N_{1}=0, N_{2}=12, N_{3}=0$, separable potential

$$
V=y^{3}+\lambda x^{3}
$$

b) $N_{1}=90, N_{2}=90, N_{3}=3 / 4$, with $c=0$ and $s=-1 / 2$ yielding

$$
V=y^{3}+\frac{3}{16} y x^{2}
$$

c) $N_{1}=30, N_{2}=30, N_{3}=2$ giving

$$
V=y^{3}+\frac{1}{2} y x^{2}
$$

d) $N_{1}=20, N_{2}=90, N_{3}=2$, with

$$
V=y^{3}+\frac{1}{2} y x^{2}+\frac{i}{6 \sqrt{3}} i x^{3}
$$

Painlevé:

$$
F\left(x^{\prime}, x, t\right)=0
$$

F polynomial in x^{\prime} and x, analytic in t
Movable singularities: poles and/or algebraic branch points
Fuchs:

$$
x^{\prime}=f(x, t)
$$

f is rational in x and analytic in t
Only Riccati equation has Painlevé property

$$
x^{\prime}=a(t) x^{2}+b(t) x+c(t)
$$

Integration:
if $a=0$ linear, otherwise $x=-\frac{u^{\prime}}{a u}$ and linearize

$$
a u^{\prime \prime}-\left(a^{\prime}+a b\right) u^{\prime}+a^{2} c u=0
$$

Painlevé:

$$
x^{\prime \prime}=f\left(x^{\prime}, x, t\right)
$$

f rational in x^{\prime}, polynomial in x and analytic in t
Rather than the Painlevé α-method present Gambier's method Start with

$$
x^{\prime \prime}=x^{2}+f(t)
$$

and put

$$
x \sim a \tau^{p}
$$

where $\tau=t-t_{0}$
We find $p=-2$ and $a=1$
Next look for the power of τ at which a second constant appears (Fuchs:"index", ARS "resonance")

$$
x=\tau^{-2}+\gamma \tau^{r-2}
$$

Linearizing for γ :

$$
(r-2)(r-3)-12=0
$$

roots $r=-1$ and $r=6$
Compatibility condition at $r=6$

$$
d^{2} f / d t^{2}=0
$$

Only (nontrivial) Painlevé case:
the P_{I} equation

$$
x^{\prime \prime}=6 x^{2}+t
$$

Painlevé:
P_{I} is free of movable essential singularities

One of Gambier's fundamental remarks:
Je rencontrais des systèmes de conditions différentielles dont l'intégration était, quoiqu'au fond bien simple, assez difficile à apercevoir. Par un mécanisme qui est général, mais qui était difficile à prévoir, la résolution de ce premier problème, intégration des conditions, est intimement liée à l'intégration de l'équation différentielle elle-même.

In other words, the integration of the (integrability) conditions is intimately related to the integration of the nonlinear equation itself.

Properties of Painlevé equations:

- they form coalescence cascades,
- they possess Lax pairs,
- their solutions are related through Bäcklund and Miura transformations,
- they have particular solutions in terms of special functions or rational solutions for special values of their parameters. These solutions can be written in terms of Wronskians,
- they can be cast into bilinear forms,
- they can be written as Hamiltonian systems

Hirota-sensei in the mid 70's
Observation: N-soliton of KdV

$$
\begin{equation*}
u=2 \frac{\partial^{2}}{\partial x^{2}} \log F \tag{*}
\end{equation*}
$$

(F determinant of some matrix)
Use (*) in KdV

$$
F F_{x t}-F_{t} F_{x}+F F_{x x x x}-4 F_{x} F_{x x x}+3 F_{x x}^{2}=0
$$

Bilinear form!
Two soliton solution

$$
F=1+\exp \left(\eta_{1}\right)+\exp \left(\eta_{2}\right)+A_{12} \exp \left(\eta_{1}+\eta_{2}\right)
$$

with $\eta_{i}=k_{i} x-k_{i}^{3} t+\phi_{i}$ and $A_{12}=\left(k_{1}-k_{2}\right)^{2} /\left(k_{1}+k_{2}\right)^{2}$

Introducing the bilinear (Hirota) operator

$$
D_{x} F \cdot G=\left.\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial x^{\prime}}\right) F(x) G\left(x^{\prime}\right)\right|_{x^{\prime}=x}
$$

Rewrite KdV

$$
\left(D_{x} D_{t}+D_{x}^{4}\right) F \cdot F=0
$$

For modified-KdV

$$
v_{t}+6 v^{2} v_{x}+v_{x x x}=0
$$

we put

$$
v=\frac{G}{F}
$$

and find

$$
\begin{gathered}
\left(D_{t}+D_{x}^{3}\right) F \cdot G=0 \\
D_{x}^{2} F \cdot F=2 G^{2}
\end{gathered}
$$

Moving to discrete
The Hirota-Satsuma nonlinear network

$$
\frac{d^{2}}{d t^{2}} \log \left(1+u_{n}\right)=u_{n+1}-2 u_{n}+u_{n-1}
$$

Introduce

$$
u_{n}=\frac{d^{2}}{d t^{2}} \log F_{n}
$$

Bilinearisation

$$
D_{t}^{2} F_{n} \cdot F_{n}=2\left(F_{n+1} F_{n-1}-F_{n}^{2}\right)
$$

Discrete Hirota operator

$$
e^{D_{n}} F_{n} \cdot G_{n}=F_{n+1} G_{n-1}
$$

and

$$
D_{t}^{2} F_{n} \cdot F_{n}=2\left(\cosh D_{n}-1\right) F_{n} \cdot F_{n}
$$

Discretising the KdV equation
Semi-discrete form

$$
\frac{d}{d t} \frac{w_{n}}{1+w_{n}}=w_{n-1 / 2}-w_{n+1 / 2}
$$

Semi-discretisation
$D_{x}\left(D_{t}+D_{x}^{3}\right) F \cdot F=0 \rightarrow \sinh \left(\frac{D_{n}}{4}\right)\left(D_{t}+2 \sinh \left(\frac{D_{n}}{2}\right)\right) F_{n} \cdot F_{n}=0$
Full discretisation

$$
\sinh \left(\frac{D_{n}+\delta D_{t}}{4}\right)\left(\frac{2}{\delta} \sinh \left(\frac{\delta D_{t}}{2}\right)+2 \sinh \left(\frac{D_{n}}{2}\right)\right) F_{n} \cdot F_{n}=0
$$

Reduction to more familiar form
Introduce

$$
u_{n}=\frac{\cosh \left(D_{n} / 2\right) F_{n} \cdot F_{n}}{\cosh \left(\delta D_{t} / 2\right) F_{n} \cdot F_{n}}
$$

and obtain

$$
\delta\left(u_{n+1 / 2}(t)-u_{n-1 / 2}(t)\right)=\frac{1}{u_{n}(t+\delta / 2)}-\frac{1}{u_{n}(t-\delta / 2)}
$$

Finally

$$
U_{n+1}^{m+1}-U_{n}^{m}=\frac{1}{U_{n+1}^{m}}-\frac{1}{U_{n}^{m+1}}
$$

and potential form

$$
w_{n+1}^{m+1}-w_{n}^{m}=\frac{1}{w_{n+1}^{m}-w_{n}^{m+1}}
$$

Many more disrete equations were derived by Hirota-sensei Modified-KdV

$$
u_{n+1}^{m+1}=u_{n}^{m} \frac{u_{n}^{m+1}+\mu u_{n+1}^{m}}{\mu u_{n}^{m+1}+u_{n+1}^{m}}
$$

sine-Gordon

$$
u_{n+1}^{m+1} u_{n}^{m}=\frac{1+\mu u_{n}^{m+1} u_{n+1}^{m}}{\mu+u_{n}^{m+1} u_{n+1}^{m}}
$$

Also linearisable equations
Liouville $\left(\phi_{x t}=\exp (-2 \phi)\right)$

$$
u_{n+1}^{m} u_{n-1}^{m}-u_{n}^{m+1} u_{n}^{m-1}=1
$$

Burgers

$$
u_{n}^{m+1}=u_{n}^{m} \frac{1+\mu u_{n+1}^{m}}{1+\mu u_{n}^{m}}
$$

Most important discovery:
the discrete form of the $2+1$ dim Kadomtsev-Petviashvili equation
The Hirota equation

$$
\begin{equation*}
\left(z_{1} \exp \left(D_{1}\right)+z_{2} \exp \left(D_{2}\right)+z_{3} \exp \left(D_{3}\right)\right) F \cdot F=0 \tag{*}
\end{equation*}
$$

From $\left(^{*}\right)$ obtain many integrable lattice equations by reduction
Hirota-sensei used the bilinear formalism to obtain
Soliton solutions
Bäcklund transformations
Lax pairs

A brief introduction to the QRT mapping
TTwo families: symmetric and asymmetric
Start with 3×3 matrices, A_{0} and A_{1} and vector \vec{X}

$$
A_{i}=\left(\begin{array}{ccc}
\alpha_{i} & \beta_{i} & \gamma_{i} \\
\delta_{i} & \epsilon_{i} & \zeta_{i} \\
\kappa_{i} & \lambda_{i} & \mu_{i}
\end{array}\right) \quad \text { and } \quad \vec{X}=\left(\begin{array}{c}
x^{2} \\
x \\
1
\end{array}\right)
$$

Construct $\vec{F} \equiv\left(\begin{array}{c}f_{1} \\ f_{2} \\ f_{3}\end{array}\right)$ and $\vec{G} \equiv\left(\begin{array}{l}g_{1} \\ g_{2} \\ g_{3}\end{array}\right)$

$$
\vec{F}=\left(A_{0} \vec{X}\right) \times\left(A_{1} \vec{X}\right) \quad \text { and } \quad \vec{G}=\left(\widetilde{A}_{0} \vec{X}\right) \times\left(\widetilde{A}_{1} \vec{X}\right)
$$

The f_{i}, g_{i} are, in general, quartic polynomials of x

Asymmetric mapping

$$
\begin{gathered}
x_{n+1}=\frac{f_{1}\left(y_{n}\right)-x_{n} f_{2}\left(y_{n}\right)}{f_{2}\left(y_{n}\right)-x_{n} f_{3}\left(y_{n}\right)} \\
y_{n+1}=\frac{g_{1}\left(x_{n+1}\right)-y_{n} g_{2}\left(x_{n+1}\right)}{g_{2}\left(x_{n+1}\right)-y_{n} g_{3}\left(x_{n+1}\right)}
\end{gathered}
$$

Symmetric

$$
x_{m+1}=\frac{f_{1}\left(x_{m}\right)-x_{m-1} f_{2}\left(x_{m}\right)}{f_{2}\left(x_{m}\right)-x_{m-1} f_{3}\left(x_{m}\right)}
$$

with dentification $x_{n} \rightarrow x_{2 n}, y_{n} \rightarrow x_{2 n+1}$
Parameter counting: 8 for the asymmetric and 5 for the symmetric Invariant relation (biquadratic in x and y)
$\alpha x_{n}^{2} y_{n}^{2}+\beta x_{n}^{2} y_{n}+\gamma x_{n}^{2}+\delta x_{n} y_{n}^{2}+\epsilon x_{n} y_{n}+\zeta x_{n}+\kappa y_{n}^{2}+\lambda y_{n}+\mu=0$
where $\alpha \equiv \alpha_{0}+K \alpha_{1}$ etc. and K integration constant

Integration of QRT mapping: symmetric case is well-known

$$
\alpha x^{2} y^{2}+\beta x y(x+y)+\gamma\left(x^{2}+y^{2}\right)+\epsilon x y+\zeta(x+y)+\mu=0
$$

Through homographic transformation (common to x and y)

$$
X^{2} Y^{2}+\Gamma\left(X^{2}+Y^{2}\right)+E X Y+1=0
$$

Elliptic functions: $X=A \operatorname{sn}(z), Y=A \operatorname{sn}(z+q)$ modulus $k\left(A^{2}=k\right)$

$$
k^{2}+\left(\Gamma+\frac{1}{\Gamma}-\frac{E^{2}}{4 \Gamma}\right) k+1=0
$$

Step q given by $\Gamma k \operatorname{sn}^{2}(q)+1=0$
Asymmetric case: integrated in a similar way.

A special case, $\alpha=\beta=0$
Linearisable case (solution in terms of the exponential function)

$$
\gamma\left(x_{n+1}^{2}+x_{n}^{2}\right)+\epsilon x_{n+1} x_{n}+\zeta\left(x_{n+1}+x_{n}\right)+\mu=0
$$

Canonical form

$$
x_{n+1}^{2}+x_{n}^{2}+\epsilon x_{n+1} x_{n}+1=0
$$

Solution

$$
x_{n}=\frac{\phi_{n}}{p}+\frac{q}{\phi_{n}}
$$

with

$$
\phi_{n+1}=\lambda \phi_{n}
$$

λ is given by

$$
\lambda^{2}+\epsilon \lambda+1=0 \quad \text { and } \quad \frac{p}{q}=\epsilon^{2}-4
$$

Solution of generic QRT mapping: sampling of an elliptic function
Why are QRT mappings pertinent?
Continuous Painlevé equations: non-autonomous extensions of elliptic functions

This means:
same functional forms as the autonomous equations with coeffs depending on the independent variable

Strategy for the derivation of discrete analogues:
Start from QRT
allow coeffs to depend on independent variable select the integrable cases (through integrability detector)

Do integrable mappings have the Painlevé property?
Singularity confinement criterion
Lattice KdV equation

$$
x_{j}^{i+1}=x_{j+1}^{i-1}+\frac{1}{x_{j}^{i}}-\frac{1}{x_{j+1}^{i}}
$$

"what if a singularity appears spontaneously?"
$x=0$ at (i, j)
$x=\infty$ at both $(i+1, j-1)$ and $(i+1, j)$
and $x=0$ at $(i+2, j-1)$
At $(i+3, j-2)$ and $(i+3, j-1)$ finite values!
The singularity does not propagate beyond a few lattice points: it is confined
Discrete Painlevé property

An example

$$
x_{n+1}+x_{n-1}=\frac{a}{x_{n}}+\frac{1}{x_{n}^{2}}
$$

Singularity, whenever $x_{n}=0$
Iterate \rightarrow sequence $\{0, \infty, 0\}$
and then indeterminate form $\infty-\infty$
Kruskal:
The real problem is the indeterminate form not the simple infinity Solution
Use continuity with respect to the initial conditions
Introduce a small parameter ϵ
Start from $x_{n}=\epsilon$, obtain: $x_{n+1} \approx 1 / \epsilon^{2}, x_{n+2} \approx-\epsilon$
Compute carefully x_{n+3}
Finite and depends on initial condition x_{n-1}
The singularity has disappeared!

Consider the McMillan mapping:

$$
x_{n+1}+x_{n-1}=\frac{2 \mu x_{n}}{1-x_{n}^{2}}
$$

Singularity: whenever x passes through ± 1
Assume, x_{0} is finite and $x_{1}=1+\epsilon$
We find:
$x_{2}=-\mu / \epsilon-\left(x_{0}+\mu / 2\right)+\mathcal{O}(\epsilon)$,
$x_{3}=-1+\epsilon+\mathcal{O}\left(\epsilon^{2}\right)$
$x_{4}=x_{0}+\mathcal{O}(\epsilon)$
Singularity confined
and
mapping recovered memory of the initial conditions through x_{0}

Deautonomise the McMillan mapping

$$
x_{n+1}+x_{n-1}=\frac{a(n)+b(n) x_{n}}{1-x_{n}^{2}}
$$

Assume: regular x_{n} and $x_{n+1}=\sigma+\epsilon$ where $\sigma= \pm 1$
Compute
$x_{n+2}($ infinite $)$ and $x_{n+3}(=-\sigma$ at lowest order $)$
Condition for x_{n+4} to be finite:

$$
b_{n+1}-2 b_{n+2}+b_{n+3}+\sigma\left(a_{n+1}-a_{n+3}\right)=0
$$

Solution:
$b_{n}\left(\equiv z_{n}\right)=\alpha n+\beta$ and $a_{n}=\delta+\gamma(-1)^{n}$
Ignore even-odd dependence ($a=$ constant)

$$
x_{n+1}+x_{n-1}=\frac{a+z_{n} x_{n}}{1-x_{n}^{2}}
$$

Discrete form of P_{II} !
d- P_{I} from singularity confinement (deautonomisation)

$$
x_{n+1}+x_{n}+x_{n-1}=a(n)+\frac{b(n)}{x_{n}}
$$

Assume: x_{n} regular and x_{n+1} vanishes
$x_{n+1}=\epsilon$
$x_{n+2}=\frac{b_{n+1}}{\epsilon}+a_{n+1}-x_{n}+\mathcal{O}(\epsilon)$
$x_{n+3}=-\frac{b_{n+1}}{\epsilon}+a_{n+2}-a_{n+1}+x_{n}+\mathcal{O}(\epsilon)$
x_{n+4} diverges unless $a_{n+3}-a_{n+2}=0$ (for confinement $a=$ constant)
For x_{n+5} finite, second condition: $b_{n+1}-b_{n+2}-b_{n+3}+b_{n+4}=0$ Solution $b_{n}=\alpha n+\beta+\gamma(-1)^{n}$
If we ignore even-odd dependence: $b_{n} \equiv z_{n}=\alpha n+\beta$

$$
x_{n+1}+x_{n}+x_{n-1}=a+\frac{z_{n}}{x_{n}}
$$

Our conjecture (no known counterexample)
All mappings integrable through spectral methods have confined singulmarities

The Hietarinta-Viallet (H\&V) discovery:
Confinement is not sufficient for integrability
Integrability related to low-growth properties (complexity)
Mapping of degree d
$\rightarrow n$-th iterate: degree d^{n}, unless there exist simplifications
Integrable mappings: massive simplifications
\rightarrow polynomial degree growth
Algebraic entropy: $\lim _{n \rightarrow \infty} \frac{\log d_{n}}{n}$

Example

$$
x_{n+1}+x_{n-1}=\frac{a}{x_{n}}+\frac{1}{x_{n}^{2}}
$$

Introduce homogeneous coordinates

$$
x_{0}=r, x_{1}=p / q
$$

Assume r to be of degree zero and compute the degree of homogeneity in p and q at every iteration

Obtain the degrees:
$0,1,2,5,8,13,18,25,32,41, \ldots$,
Degree growth is polynomial: $d_{2 m}=2 m^{2}$ and $d_{2 m+1}=2 m^{2}+2 m+1$
The mapping is integrable (QRT)

Nonintegrable mapping, (the $\mathrm{H} \& \mathrm{~V}$) example

$$
x_{n+1}+x_{n-1}=x_{n}+\frac{1}{x_{n}^{2}}
$$

Singularity pattern is $\{0, \infty, \infty, 0\}$
but
chaotic behaviour
Degree growth: $0,1,3,8,23,61,162,425, \ldots$,
Exponential!
$d_{n+4}=3\left(d_{n+3}-d_{n+1}\right)+d_{n}$ with ratio of $(3+\sqrt{5}) / 2$

The linearisable case
A Gambier mapping

$$
x_{n+1} x_{n-1}-x_{n-1} x_{n}=\frac{x_{n}^{2}}{1-x_{n}}
$$

Degree growth: $0,1,2,3,4,5,6,7, \ldots$,
A so-called "third-kind" mapping

$$
\frac{1}{x_{n+1}+x_{n}}+\frac{1}{x_{n}+x_{n-1}}=\frac{1}{x_{n}}+1
$$

Degree growth: $0,1,3,5,7,9, \ldots$,
In both cases, linear growth (but different steps)

Algebraic entropy is not necessary
Simplest example

$$
x_{n+1} x_{n-1}=x_{n}^{3}
$$

Put $\omega_{n}=\log x_{n}$ and find for ω a linear equation

$$
\omega_{n+1}+\omega_{n-1}=3 \omega_{n}
$$

Algebraic entropy $\epsilon=\log ((3+\sqrt{5}) / 2)$
Another example

$$
x_{n+1}=\frac{3 x_{n}-x_{n}^{3}+x_{n-1}\left(1-3 x_{n}^{2}\right)}{1-3 x_{n}^{2}+x_{n-1}\left(3 x_{n}-x_{n}^{3}\right)}
$$

Put $\omega_{n}=\tan x_{n}$ and find for ω the same linear equation
Infinitely many such examples exist

Application of singularity confinement to lattice eqs.
The KdV example
$z_{1} f(m+1, n) f(m-1, n-1)+z_{2} f(m+1, n-1) f(m-1, n)$

$$
+z_{3} f(m, n) f(m, n-1)=0
$$

Singularity:
when one of the f 's becomes 0 or ∞ (0 et previous step)
Singularity confinement:
the vanishing of an f never induces a divergence at the next stage
Condition for the vanishing of $f(m, n)=0$:

$$
z_{1} f(m+1, n) f(m-1, n-1)+z_{2} f(m+1, n-1) f(m-1, n)=0
$$

The vanishing of $f(m, n)$ may lead to a diverging $f(m, n+1)$

This does not happen!
Compute $f(m \pm 2, n)$ and $f(m \pm 1, n+1)$

$$
\begin{aligned}
& z_{3} f(m+1, n+1) f(m+1, n)+z_{2} f(m+2, n) f(m, n+1)=0 \\
& z_{3} f(m-1, n+1) f(m-1, n)+z_{1} f(m-2, n) f(m, n+1)=0 \\
& z_{3} f(m-1, n) f(m-1, n-1)+z_{2} f(m-2, n) f(m, n-1)=0 \\
& z_{3} f(m+1, n) f(m+1, n-1)+z_{1} f(m+2, n) f(m, n-1)=0
\end{aligned}
$$

Eliminating $f(m \pm 2, n)$ we find:

$$
z_{1} f(m+1, n+1) f(m-1, n)+z_{2} f(m+1, n) f(m-1, n+1)=0
$$

This guarantees a finite value for $f(m, n+1)$

Deautonomising the Hirota equation

$$
\begin{aligned}
& z_{1}(k, m, n) \tau(k-1, m, n) \tau(k+1, m, n) \\
& \quad+z_{2}(k, m, n) \tau(k, m-1, n) \tau(k, m+1, n) \\
& \quad+Z_{3}(k, m, n) \tau(k, m, n-1) \tau(k, m, n+1)=0
\end{aligned}
$$

For singularity confinement:
assume $\tau(k, m, n)=0$

$$
\begin{aligned}
& z_{2}(k-1, m, n) \tau(k-1, m-1, n) \tau(k-1, m+1, n) \\
& \quad+z_{3}(k-1, m, n) \tau(k-1, m, n-1) \tau(k-1, m, n+1)=0
\end{aligned}
$$

while $\tau(k-2, m, n)$ finite

$$
\begin{aligned}
& z_{2}(k+1, m, n) \tau(k+1, m-1, n) \tau(k+1, m+1, n) \\
& \quad+z_{3}(k+1, m, n) \tau(k+1, m, n-1) \tau(k+1, m, n+1)=0
\end{aligned}
$$

Compute the necessary τ 's at $(k, m \pm 1, n)$ and at $(k, m, n \pm 1)$
We find the confinement condition is satisfied provided:

$$
\begin{aligned}
& z_{1}(k, m-1, n) z_{1}(k, m+1, n) z_{2}(k, m, n-1) z_{2}(k, m, n+1) \\
& \quad \times z_{3}(k-1, m, n) z_{3}(k+1, m, n)=z_{1}(k, m, n-1) z_{1}(k, m, n+1) \\
& \quad \times z_{2}(k-1, m, n) z_{2}(k+1, m, n) z_{3}(k, m-1, n) z_{3}(k, m+1, n)
\end{aligned}
$$

Automatic for constant z 's
However, by gauge $z_{2}=z_{3}$ and by division $z_{2}=z_{3}=1$
Condition

$$
z_{1}(k, m-1, n) z_{1}(k, m+1, n)=z_{1}(k, m, n-1) z_{1}(k, m, n+1)
$$

Solution $z_{1}=g(k, m+n) h(k, m-n)$ with g, h free functions
Unfortinately, a gauge transforms z_{1} to 1 (back to autonomous)

Deautonomisation of potential KdV (find m, n dependence of z_{n}^{m})

$$
x_{n+1}^{m+1}=x_{n}^{m}+\frac{z_{n}^{m}}{x_{n}^{m+1}-x_{n+1}^{m}}
$$

Degrees of the iterates for constant $z: d_{n}^{m}=m n+1$

Deautonomisation:
degrees from autonomous and nonautonomous must be identical
First constraint: degree of x_{2}^{2} must be 5 (and not 6)
Condition: $z_{1}^{1}-z_{0}^{1}-z_{1}^{0}+z_{0}^{0}=0$
Same as from singularity confinement
Generically

$$
z_{n+1}^{m+1}-z_{n}^{m+1}-z_{n+1}^{m}+z_{n}^{m}=0
$$

suffices
Solution: $z_{n}^{m}=f(n)+g(m)(f, g$ arbitrary functions $)$
Result known in convergence acceleration algorithms

Lattice mKdV

$$
x_{n+1}^{m+1}=x_{n}^{m} \frac{x_{n}^{m+1}+q_{n}^{m} x_{n+1}^{m}}{q_{n}^{m} x_{n}^{m+1}+x_{n+1}^{m}}
$$

Growth in autonomous case: $d_{n}^{m}=m n+1$
Condition on z

$$
q_{n+1}^{m+1} q_{n}^{m}-q_{n}^{m+1} q_{n+1}^{m}=0
$$

Solution $q_{n}^{m}=f(n) g(m)$
Reduction $x_{n}^{m+1}=x_{n+2}^{m}$
Introduce $y_{n}=x_{n+2} / x_{n+1}$

$$
y_{n+1} y_{n-1}=\frac{1+q_{n} y_{n}}{y_{n}\left(q_{n}+y_{n}\right)}
$$

with $q_{n} q_{n+3} q_{n}=q_{n+1} q_{n+2}$
Solution: $\log q_{n}=a n+b+c(-1)^{n}$
Equation is q - $\mathrm{P}_{\text {III }}$

Discrete Burgers equation

$$
x_{n}^{m+1}=x_{n}^{m} \frac{1+z_{n}^{m} x_{n+1}^{m}}{1+z_{n}^{m} x_{n}^{m}}
$$

For z constant: $d_{n}^{m}=m+1$ Condition for same growth

$$
z_{n+1}^{m}-z_{n}^{m}=0
$$

i.e. $z_{n}^{m}=g(m)$

Nonautonomous extension:
cannot be removed by gauge, is compatible with linearisability Putting $x_{n}^{m}=X_{n+1}^{m} / X_{n}^{m}$ we find (f is arbitrary)

$$
X_{n}^{m+1}=f(m)\left(X_{n}^{m}+g(m) X_{n+1}^{m}\right)
$$

(Continuous Burgers also possesses nonautonomous extension)

The discrete Painlevé equations
Some historical results
Shohat (1939), orthogonal polynomials (Laguerre?)

$$
x_{n+1}+x_{n-1}+x_{n}=\frac{z_{n}}{x_{n}}+1
$$

with $z_{n}=\alpha n+\beta+\gamma(-1)^{n}$
(many years later was recognised as $\mathrm{d}-\mathrm{P}_{\mathrm{I}}$)
Jimbo \& Miwa (1981), contiguity relations of c-Painlevé equations From P_{II} :

$$
x^{\prime \prime}=2 x^{3}+t x+\alpha
$$

contiguity relation ($\alpha_{n}=n+\alpha_{0}$):

$$
\frac{\alpha_{n}+1 / 2}{x_{\alpha_{n}+1}+x_{\alpha_{n}}}+\frac{\alpha_{n}-1 / 2}{x_{\alpha_{n}}+x_{\alpha_{n}-1}}=-\left(2 x_{\alpha_{n}}^{2}+t\right)
$$

No continuous limit was derived!

Brézin \& Kazakov (1990) Field-theoretical model of 2-D gravity Recursion relation of Shohat
Computed the continuous limit!
Obtained $w^{\prime \prime}=6 w^{2}+t$, i.e. Painlevé I
Periwal \& Shevitz (1990)
Obtained

$$
x_{n+1}+x_{n-1}=\frac{z_{n} x_{n}}{1-x_{n}^{2}}
$$

Continuous limit $w^{\prime \prime}=2 w^{3}+t w$, i.e. Painlevé II
Nijhoff \& Papageorgiou (1991)
Since similarity reduction of $\mathrm{mKdV} \rightarrow \mathrm{P}_{\mathrm{II}}$
Similarity reduction of disrete mKdV should give d-P P_{II}
They found the same as Periwal \& Shevitz

Derivation of discrete Painlevé equations
Start from QRT mapping:

$$
x_{n+1}=\frac{f_{1}\left(x_{n}\right)-x_{n-1} f_{2}\left(x_{n}\right)}{f_{2}\left(x_{n}\right)-x_{n-1} f_{3}\left(x_{n}\right)}
$$

and deautonomize

Rewrite QRT as:

$$
f_{3}\left(x_{n}\right) \Pi-f_{2}\left(x_{n}\right) \Sigma+f_{1}\left(x_{n}\right)=0
$$

where $\Sigma=x_{n+1}+x_{n-1}, \Pi=x_{n+1} x_{n-1}$
Ask that this equation go over to c-Painlevé equation

Lattice parameter ϵ and obtain:

$$
\Sigma=2 x+\epsilon^{2} x^{\prime \prime}+\mathcal{O}\left(\epsilon^{4}\right), \quad \Pi=x^{2}+\epsilon^{2}\left(x x^{\prime \prime}-x^{2}\right)+\mathcal{O}\left(\epsilon^{4}\right)
$$

Derivative part at continuous limit, $\epsilon \rightarrow 0$:

$$
x^{\prime \prime}=\frac{f_{3}(x)}{x f_{3}(x)-f_{2}(x)} x^{\prime 2}+g(x)
$$

Proper choice of f_{2}, f_{3}
For P_{I} and $\mathrm{P}_{\text {II }}$ we have $f_{3}=0$

$$
x_{n+1}+x_{n-1}+x_{n}=a+\frac{\alpha n+\beta+\gamma(-1)^{n}}{x_{n}}
$$

and

$$
x_{n+1}+x_{n-1}=\frac{x_{n}(\alpha n+\beta)+\delta+\gamma(-1)^{n}}{1-x_{n}^{2}}
$$

For $\mathrm{P}_{\text {III }}$ take $f_{2}=0$

$$
x_{n+1} x_{n-1}=\frac{\kappa(n) x_{n}^{2}+\zeta(n) x_{n}+\mu(n)}{x_{n}^{2}+\beta(n) x_{n}+\gamma(n)}
$$

rewrite as

$$
x_{n+1} x_{n-1}=\frac{a b\left(x_{n}-c q_{n}\right)\left(x_{n}-d q_{n}\right)}{\left(x_{n}-a\right)\left(x_{n}-b\right)}
$$

where a, b, c, and d are constants
From singularity confinement

$$
q_{n}=q_{0} \lambda^{n}
$$

Neglecting even-odd dependence, the continuous limit is $\mathrm{P}_{\text {III }}$ (if we do not, we get PVI, as shown by Jimbo and Sakai)

Not a difference equation, but a q - (multiplicative) mapping

For d-P ${ }_{\text {IV }}$

$$
\left(x_{n+1}+x_{n}\right)\left(x_{n-1}+x_{n}\right)=\frac{\left(x_{n}^{2}-a^{2}\right)\left(x_{n}^{2}-b^{2}\right)}{\left(x_{n}+z_{n}\right)^{2}-c^{2}}
$$

a, b and c are constants
Algebraic entropy approach
Start from autonomous: if z_{n} is constant degrees: $d_{n}=0,1,3,6,11,17,24, \ldots$,
quadratic growth
For a generic z_{n}, sequence $d_{n}=0,1,3,6,13, \ldots$,
Condition for $d_{4}=11$
z linear in n

Lax pairs
Difference equations
linear isospectral deformation problem:

$$
\begin{aligned}
& \zeta \Phi_{n, \zeta}=L_{n}(\zeta) \Phi_{n} \\
& \Phi_{n+1}=M_{n}(\zeta) \Phi_{n}
\end{aligned}
$$

Compatibility condition:

$$
\zeta M_{n, \zeta}=L_{n+1} M_{n}-M_{n} L_{n}
$$

Multiplicative equations q-difference linear isospectral problem:

$$
\begin{gathered}
\Phi_{n}(\lambda \zeta)=L_{n}(\zeta) \Phi_{n}(\zeta) \\
\Phi_{n+1}=M_{n}(\zeta) \Phi_{n}(\zeta)
\end{gathered}
$$

Compatibility condition:

$$
M_{n}(\lambda \zeta) L_{n}(\zeta)=L_{n+1}(\zeta) M_{n}(\zeta)
$$

For $\mathrm{d}-\mathrm{P}_{\mathrm{I}}$ we start from Lax pair:

$$
L_{n}=\left(\begin{array}{ccc}
0 & x_{n} & 1 \\
\zeta & z_{n} & x_{n+1}+z_{n} / x_{n} \\
\zeta x_{n-1} & \zeta & z_{n+1}
\end{array}\right)
$$

and

$$
M_{n}=\left(\begin{array}{ccc}
-z_{n} / x_{n} & 1 & 0 \\
0 & 0 & 1 \\
\zeta & 0 & 0
\end{array}\right)
$$

where $z_{n}=n / 2+\beta$
Consistency conditions:

$$
x_{n+2}+z_{n+1} / x_{n+1}=x_{n-1}+z_{n} / x_{n}
$$

Integrate (a is the integration constant)

$$
x_{n+1}+x_{n-1}+x_{n}-\frac{z_{n}}{x_{n}}=a
$$

A multiplicative equation

$$
L_{n}=\left(\begin{array}{cccc}
0 & 0 & \frac{k_{n}}{x_{n}} & 0 \\
0 & 0 & x_{n-1} & q x_{n-1} \\
h x_{n} & 0 & 1 & q \\
0 & \frac{h k_{n-1}}{x_{n-1}} & 0 & 0
\end{array}\right)
$$

and

$$
M_{n}=\left(\begin{array}{cccc}
0 & \frac{x_{n}}{k_{n}\left(x_{n}+1\right)} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{x_{n}} & \frac{q}{x_{n}} \\
h & 0 & 0 & 0
\end{array}\right)
$$

Compatibility:

$$
x_{n+1} x_{n-1}=k_{n} k_{n+1}\left(x_{n}+1\right) / x_{n}^{2}
$$

where $k_{n+1}=q k_{n-1}$
q-Painlevé I

$$
q-\mathrm{P}_{\mathrm{V}}\left(q_{n}=q_{0} \lambda^{n}\right)
$$

$$
\left(x_{n+1} x_{n}-1\right)\left(x_{n} x_{n-1}-1\right)=\frac{\left(x_{n}-a\right)\left(x_{n}-1 / a\right)\left(x_{n}-b\right)\left(x_{n}-1 / b\right)}{\left(1-c x_{n} q_{n}\right)\left(1-x_{n} q_{n} / c\right)}
$$

$$
\delta-\mathrm{P}_{\mathrm{V}}\left(z_{n}=\alpha n+\beta\right)
$$

$$
\frac{\left(x_{n}+x_{n+1}-z_{n}-z_{n+1}\right)\left(x_{n}+x_{n-1}-z_{n}-z_{n-1}\right)}{\left(x_{n}+x_{n+1}\right)\left(x_{n}+x_{n-1}\right)}
$$

$$
=\frac{\left(\left(x_{n}-z_{n}\right)^{2}-a^{2}\right)\left(\left(x_{n}-z_{n}\right)^{2}-b^{2}\right)}{\left(x_{n}^{2}-c^{2}\right)\left(x_{n}^{2}-d^{2}\right)}
$$

$q-\mathrm{P}_{\mathrm{VI}}\left(q_{n}=q_{0} \lambda^{n}\right)$

$$
\begin{aligned}
& \frac{\left(x_{n} x_{n+1}-q_{n} q_{n+1}\right)(}{}\left(x_{n} x_{n-1}-q_{n} q_{n-1}\right) \\
&\left(x_{n} x_{n+1}-1\right)(\left.x_{n} x_{n-1}-1\right) \\
&=\frac{\left(x_{n}-a q_{n}\right)\left(x_{n}-q_{n} / a\right)\left(x_{n}-b q_{n}\right)\left(x_{n}-q_{n} / b\right)}{\left(x_{n}-c\right)\left(x_{n}-1 / c\right)\left(x_{n}-d\right)\left(x_{n}-1 / d\right)}
\end{aligned}
$$

Canonical forms of discrete Painlevé equations
Are they essentially symmetric? Not true!
Form singularity confinement obtain terms of the form $(-1)^{n}$, but also j^{n} where $j^{3}=1, i^{n}$ etc.

They should not be discarded because "they do not possess a continuous limit"

- They indicate that the equation is better written as a system of two, three, etc. equations
- They also introduce one or more extra, parameters
- They lead to richer continuous limits

Profusion of asymmetric forms terminology with qualifier "asymmetric"

The limit of asymmetric d- P_{II} is $\mathrm{P}_{\text {III }}$
Of asymmetric q - $\mathrm{P}_{\mathrm{III}}$ is P_{VI} (Jimbo \& Sakai)
The limits of asym. d- $\mathrm{P}_{\mathrm{IV}}, q-\mathrm{P}_{\mathrm{V}}, \mathrm{d}-\mathrm{P}_{\mathrm{V}}$ and $q-\mathrm{P}_{\mathrm{VI}}$ are P_{VI}
Higher number of components:

$$
x_{n+1} x_{n-1}=a\left(x_{n}-1\right)
$$

From singularity confinement (with $j^{3}=1$):

$$
\log a_{n}=k n+p+r j^{n}+s j^{2 n}+t(-1)^{n}
$$

Can be written as a second-order system of six equations

Properties of discrete Painlevé equations
The discrete Painlevé equations have many special properties
Most are analogues of properties of continuous Painlevé equations

- Lax pairs (already discussed)
- Degeneration through coalescence

Convention
'higher' equation in capital letters
'lower' equation in lowercase letters
Introduce the coalescence limit: δ

From d- $\mathrm{P}_{\mathrm{II}} \rightarrow \mathrm{d}-\mathrm{P}_{\mathrm{I}}$
Start with the equation:

$$
X_{n+1}+X_{n-1}=\frac{Z_{n} X_{n}+A}{1-X_{n}^{2}}
$$

Put $X=1+\delta x$:

$$
4+2 \delta\left(x_{n+1}+x_{n-1}+x_{n}\right)=-\frac{Z_{n}\left(1+\delta x_{n}\right)+A}{\delta x_{n}}
$$

$Z=-A-2 \delta^{2} z$ to cancel A up to order δ
$\mathcal{O}\left(\delta^{0}\right)$ term in rhs must cancel 4 of lhs
so $A=4+2 \delta a$
At $\delta \rightarrow 0$:

$$
x_{n+1}+x_{n-1}+x_{n}=\frac{z_{n}}{x_{n}}+a
$$

precisely d- P_{I}

Degeneration of $\mathrm{d}-\mathrm{P}_{\mathrm{III}}$ to $\mathrm{d}-\mathrm{P}_{\text {II }}$
Start from:

$$
X_{n+1} X_{n-1}=\frac{A B\left(X_{n}-P_{n}\right)\left(X_{n}-Q_{n}\right)}{\left(X_{n}-A\right)\left(X_{n}-B\right)}
$$

Aansatz for $X:, X=1+\delta x$. For the remaining quantities we find:

$$
\begin{gathered}
A=1+\delta, \quad B=1-\delta \\
P=1+\delta+\delta^{2}(z+a) / 2+\mathcal{O}\left(\delta^{3}\right) \\
Q=1-\delta+\delta^{2}(z-a) / 2+\mathcal{O}\left(\delta^{3}\right)
\end{gathered}
$$

At the limit $\delta \rightarrow 0$:

$$
x_{n+1}+x_{n-1}=\frac{z_{n} x_{n}+a}{1-x_{n}^{2}}
$$

exactly d-P ${ }_{\text {II }}$

In the case of $q-\mathrm{P}_{\mathrm{V}}$:

$$
\begin{aligned}
& \left(X_{n+1} X_{n}-1\right)\left(X_{n} X_{n-1}-1\right) \\
& \quad=\frac{\left(X_{n}-A\right)\left(X_{n}-1 / A\right)\left(X_{n}-B\right)\left(X_{n}-1 / B\right)}{\left(1-C X_{n} Q_{n}\right)\left(1-X_{n} Q_{n} / C\right)}
\end{aligned}
$$

two different limits exist
Limit to disrete P_{IV}
Put $X=1+\delta x, \lambda=1-\alpha \delta$ and take:

$$
\begin{aligned}
A=1+\delta a, & B=1-\delta b \\
C=1+\delta c, \quad Q_{n} & =1-\delta z_{n}
\end{aligned}
$$

At the limit $\delta \rightarrow 0$ we find $d-\mathrm{P}_{\mathrm{IV}}$

$$
\left(x_{n+1}+x_{n}\right)\left(x_{n}+x_{n-1}\right)=\frac{\left(x_{n}^{2}-a^{2}\right)\left(x_{n}^{2}-b^{2}\right)}{\left(x_{n}-z_{n}\right)^{2}-c^{2}}
$$

Limit to discrete $\mathrm{P}_{\mathrm{III}}$
Put $X=x / \delta$ and take:

$$
C=c, \quad Q_{n}=\frac{q_{n}}{\delta}, \quad A=\frac{a}{\delta}, \quad B=\frac{b}{\delta}
$$

We find then at the limit $\delta \rightarrow 0$:

$$
x_{n+1} x_{n-1}=\frac{\left(x_{n}-a\right)\left(x_{n}-b\right)}{\left(1-c x_{n} q_{n}\right)\left(1-x_{n} q_{n} / c\right)}
$$

precisely q - $\mathrm{P}_{\text {III }}$

- Special solutions

Elementary solutions for specific values of the parameters Special functions (of hypergeometric type) or rational
Example q - P_{V}
$\left(x_{n+1} x_{n}-1\right)\left(x_{n} x_{n-1}-1=\frac{p r\left(x_{n}-u\right)\left(x_{n}-1 / u\right)\left(x_{n}-v\right)\left(x_{n}-1 / v\right)}{\left(x_{n}-p\right)\left(x_{n}-r\right)}\right.$
Factorization

$$
\begin{gathered}
x x_{n+1}-1=\frac{p(x-u)(x-v)}{u v(x z-p)} \\
x x_{n-1}-1=\frac{u v r(x-1 / u)(x-1 / v)}{(x z-r)}
\end{gathered}
$$

Compatibility $\quad u v=p / r \lambda$
\rightarrow discrete Riccati

$$
z\left(x x_{n+1}-1\right)=p x_{n+1}+\lambda r(x-u-v)
$$

Linearization

$$
x_{n+1}=\frac{\lambda r(x-u-v)+z}{z x-p}
$$

Cole-Hopf $x=B / A$

$$
A_{n+2}+(p-r) A_{n+1}-\left(\lambda z^{2}-z r(u+v)+p r\right) A_{n}=0
$$

discrete form of confluent hypergeometric

Rational solutions
$x= \pm 1$ when u or v equal ± 1
Nontrivial solutions

$$
x= \pm 1+(p+r) / z
$$

for $u($ or $1 / u)=\mp 1 / \lambda$
and $v($ or $1 / v)=\mp p / r($ or $u \leftrightarrow v)$
Also

$$
x=(p+r) / z
$$

for $u=\sqrt{\lambda}, v=-\sqrt{\lambda}$

Solutions by direct linearisation
Instead of discrete Riccati equation

$$
x_{n+1}=-\frac{\alpha x_{n}+\beta}{\gamma x_{n}+\delta}
$$

when γ or β vanishes
we get linear equation for x_{n} or $1 / x_{n}$
Some further constraint must be satisfied
integration of the linear equation

$$
\delta_{n} x_{n+1}+\alpha_{n} x_{n}+\beta_{n}=0
$$

First solution, ξ_{n} of the homogeneous equation

$$
\delta_{n} x_{n+1}+\alpha_{n} x_{n}=0
$$

Formally

$$
\xi_{n}=A \prod_{k=0}^{n-1}\left(-\alpha_{k} / \delta_{k}\right)
$$

With "variation of constant"

$$
A_{n+1}-A_{n}=\frac{\beta_{n}}{\alpha_{n} \prod_{k=0}^{n-1}\left(-\alpha_{k} / \delta_{k}\right)}
$$

Formally (c is the integration constant)

$$
A_{n}=\sum_{n} \beta_{n} /\left(\alpha_{n} \prod_{k=0}^{n-1}\left(-\alpha_{k} / \delta_{k}\right)\right)+c
$$

If $\beta \gamma=0$ is impossible we must find one special solution η_{n} of the Riccati equation We set $x=\eta+1 / y$ and y satisfies the linear equation,

$$
\left(\gamma_{n} \eta_{n+1}+\alpha_{n}\right) y_{n+1}+\left(\gamma_{n} \eta_{n}+\delta_{n}\right) y_{n}+\gamma_{n}=0
$$

q-discrete $\mathrm{P}_{\text {III }}\left(z_{n}=\lambda^{n}\right)$

$$
x_{n+1} x_{n-1}=\frac{\left(x_{n}-a\right)\left(x_{n}-b\right)}{\left(1-x_{n} z_{n} / c\right)\left(1-x_{n} z_{n} / d\right)}
$$

Linearisability condition $a d=b c \lambda$ leads to

$$
x_{n+1}=\frac{d}{\lambda} \frac{a-x_{n}}{c-x_{n} z_{n}}
$$

Solutions in terms of discrete Bessel functions

This Riccati cannot be reduced to a linear
But can obtain one special solution
We find $x_{n}=\sqrt{a c / z_{n}}$ provided $c \sqrt{\lambda}+d=0$ is satisfied Putting $x_{n}=k / \sqrt{z_{n}}+1 / y_{n}$ we find

$$
y_{n+1}\left(\sqrt{a z_{n} / c}+1\right)+\mu y_{n}\left(\sqrt{a z_{n} / c}-1\right)+\mu z_{n} / c=0
$$

Solution from

$$
A_{n+1}-A_{n}=\frac{\sqrt{z}_{n}}{\left(\sqrt{a c z_{n}}-c\right) \prod^{n-1} \tanh \frac{1}{4} \ln \left(\frac{c}{a z_{k}}\right)}
$$

Formally discrete quadrature needed
At the continuous limit the special solution goes precisely to the special solution of $\mathrm{P}_{\text {III }}$ in the form of a tangent

- Miura/auto-Bäcklund/Schlesinger transformations

The discrete Painlevé equations have many interrelations

- Miura transformations: relate two different equations
- auto-Bäcklund relate solutions of the same equation with different values of the parameter
- Schlesinger transformations are particular auto-Bäcklund transformations

Continuous Schlesingers relate solutions corresponding to the same monodromy data except for integer differences in the monodromy exponents

In the discrete case the analogy requires a proper parametrisation (auto-Bäcklund with elementary changes of the parameters can be dubbed Schlesinger)

Miura transformations for $\mathrm{d}-\mathrm{P}_{\mathrm{II}}$ Introduce the system:

$$
\begin{gathered}
y_{n}=\left(1+x_{n}\right)\left(1-x_{n+1}\right)-z_{n+1 / 2} / 2 \\
x_{n}=\frac{m+y_{n}-y_{n-1}}{y_{n}+y_{n-1}}
\end{gathered}
$$

Eliminating y we obtain $d-\mathrm{P}_{\mathrm{II}}$:

$$
x_{n+1}+x_{n-1}=\frac{m-\left(z_{n+1}-z_{n}\right) / 2+z_{n} x_{n}}{1-x_{n}^{2}}
$$

Eliminating x we find

$$
\left.\left(y_{n+1}+y_{n}\right)\left(y_{n}+y_{n-1}\right)=\frac{4 y_{n}^{2}-m^{2}}{y_{n}+z_{n+1 / 2} / 2}\right)
$$

Discrete form of the equation $34\left(\mathrm{~d}-\mathrm{P}_{34}\right)$ in the Painlevé/Gambier classification

Miura transformations for $\mathrm{d}-\mathrm{P}_{\mathrm{I}}$:

$$
x_{n+1}+x_{n-1}=\frac{z_{n}}{x_{n}}+\frac{a}{x_{n}^{2}}
$$

Miura $y_{n}=x_{n} x_{n+1}$ leads to:

$$
\left(y_{n}+y_{n-1}-z_{n}\right)\left(y_{n}+y_{n+1}-z_{n+1}\right)=\frac{a^{2}}{y_{n}}
$$

Another form of d-P P_{I}
Miura $y_{n}=x_{n+1} / x_{n}$ on discrete derivative of $\mathrm{d}-\mathrm{P}_{\mathrm{I}} \rightarrow 4$-point eq.

$$
\frac{y_{n+1} y_{n}+1-y_{n+1}^{2} y_{n}\left(y_{n+2} y_{n+1}+1\right)}{y_{n} y_{n-1}+1-y_{n}^{2} y_{n-1}\left(y_{n} y_{n+1}+1\right)}=\frac{y_{n+1} z_{n+2}-z_{n+1}}{y_{n} z_{n+1}-z_{n}} \frac{1}{y_{n} y_{n-1}}
$$

Continuous limit $w w^{\prime \prime \prime}=\left(w^{\prime \prime}-1\right) w^{\prime}+12 w^{3}$ Integrate to

$$
\left(w^{\prime \prime}-1\right)^{2}-24 w^{2}\left(w^{\prime}-t\right)=0
$$

i.e. Cosgrove's equation SD_{V} (modified P_{I})

How can one find auto-Bäcklund transformations for a given d-P?
General principle

- Obtain a Miura that transforms the equation into a new one
- Use invariance of the latter under some discrete transformation
- Implement these transformations and return to the initial equation

In the process the parameters of initial equation have been modified
The chain of transformations defines an auto-Bäcklund
Clue: all known Miura's are homographic mappings

- Quadratic, "folding", relations
$\mathrm{d}-\mathrm{P}_{\mathrm{I}}$ equation

$$
x_{n+1}+x_{n-1}+x_{n}=\frac{z_{n}}{x_{n}}+t
$$

Take $t=0$ and multiply by x_{n}
Introduce $X_{n}=x_{n}^{2}$ and $y_{n}=x_{n} x_{n+1}$
Find $y_{n}+y_{n-1}+X_{n}=z_{n}$ and $X_{n} X_{n+1}=y_{n}^{2}$
Eliminating X

$$
\left(y_{n+1}+y_{n}-z_{n+1}\right)\left(y_{n}+y_{n-1}-z_{n}\right)=y_{n}^{2}
$$

Another special form of a d-P P_{I}

The asymmetric d- P_{II}

$$
\begin{gathered}
y_{n}+y_{n-1}=\frac{z_{n} x_{n}+a}{x_{n}^{2}-1} \\
x_{n}+x_{n+1}=\frac{z_{n+1 / 2} y_{n}+b}{y_{n}^{2}-1}
\end{gathered}
$$

Folding when $a=b=0$

$$
v_{n-1}+v_{n+1}=\frac{z_{n} v_{n}}{v_{n}^{2}-1}
$$

Multiply by v_{n} and introduce

$$
X_{n}=v_{n}^{2} \quad \text { and } \quad W_{n}=v_{n} v_{n+1}
$$

$$
\begin{aligned}
W_{n}+W_{n-1} & =\frac{z_{n} X_{n}}{X_{n}-1} \\
X_{n} X_{n+1} & =W_{n}^{2}
\end{aligned}
$$

Eliminate X to find an equation for W :

$$
\frac{\left(W_{n}+W_{n+1}-z_{n+1}\right)\left(W_{n}+W_{n-1}-z_{n}\right)}{\left(W_{n}+W_{n+1}\right)\left(W_{n}+W_{n-1}\right)}=\frac{1}{W_{n}^{2}}
$$

Miura transformed of the "alternate d- P_{II} "

$$
\frac{z_{n+1}}{1+u_{n} u_{n+1}}+\frac{z_{n}}{1+u_{n} u_{n-1}}=u_{n}-\frac{1}{u_{n}}+z_{n}+\mu
$$

Contiguity relations
Start from continuous $\mathrm{P}_{\text {III }}$

$$
w^{\prime \prime}=\frac{w^{\prime 2}}{w}-\frac{w^{\prime}}{t}+\frac{1}{t}\left(\alpha w^{2}+\beta\right)+w^{3}-\frac{1}{w}
$$

Relations

$$
\begin{gathered}
w(-\alpha,-\beta)=-w(\alpha, \beta) \\
\left.w(-\beta,-\alpha)=w^{-1}(\alpha, \beta)\right) \\
w(-\beta-2,-\alpha-2)=w(\alpha, \beta)\left(1+\frac{2+\alpha+\beta}{t\left(\frac{w^{\prime}}{w}+w+\frac{1}{w}\right)-1-\beta}\right)
\end{gathered}
$$

Assume further $\alpha \neq \beta$

Start from $w(-\beta,-\alpha)$ find $w(\alpha-2, \beta-2)$ and eliminate w^{\prime}
Obtain a relation between $w(\alpha-2, \beta-2), w(\alpha, \beta)$ and $w(\alpha+2, \beta+2)$
One-dimensional 3-point mapping on the (α, β)-plane
Introduce independent variable $z=(\alpha+\beta+2) / 4$ and parameters $\mu=(\beta-\alpha-2) / 4, \kappa=-i t / 2$

Choose $x=i / w$ and

$$
\frac{z_{n}}{x_{n+1} x_{n}+1}+\frac{z_{n-1}}{x_{n} x_{n-1}+1}=\kappa\left(-x_{n}+\frac{1}{x_{n}}\right)+z_{n}+\mu
$$

Contiguity relation for the solutions of $\mathrm{P}_{\text {III }}$ This is the "alternate" discrete Painlevé II

Alt- $\mathrm{dP}_{\text {II }}$ is a (discrete) Painlevé equation
So it must have Schlesinger transformations and contiguities What is the evolution along the parameters?
Schlesinger transform of alt-d- $\mathrm{P}_{\text {II }}$

$$
x_{n}(\mu-1)=\frac{1}{x_{n}}+\frac{\mu\left(1+x_{n} x_{n-1}\right)}{\kappa\left(1+x_{n} x_{n-1}\right)-z_{n-1} x_{n}}
$$

Similarly

$$
x_{n}(\mu+1)=\left(x_{n}-\frac{(\mu+1)\left(1+x_{n} x_{n-1}\right)}{\kappa\left(1+x_{n} x_{n-1}\right)-z_{n-1} x_{n-1}}\right)^{-1}
$$

Eliminate x_{n-1}
μ is now the independent variable (z is now a parameter)

$$
\frac{\mu+1}{x_{\mu} x_{\mu+1}-1}+\frac{\mu}{x_{\mu} x_{\mu-1}-1}=\kappa\left(x_{\mu}+\frac{1}{x_{\mu}}\right)-\mu-z
$$

Again the alternate d- $\mathrm{P}_{\text {II }}$ itself (self-duality).

Try to understand the underlying mathematical structures
Hamiltonian approach for Painlevé equations

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{\partial H}{\partial p} \\
\frac{d p}{d t} & =-\frac{\partial H}{\partial x}
\end{aligned}
$$

Hamiltonians for Painlevé II:

$$
H(x, p)=p^{2} / 2-p\left(x^{2}+t / 2\right)-(\alpha+1 / 2) x
$$

Hamiltonian equations are Miura relations:
Eliminate p find P_{II} equation for x
Eliminate x and find P_{34} for p

Geometrical description of Painlevé equations
Consider their birational transformations
Start $H(\alpha)$ for P_{II}

$$
\tilde{x}=-x+\frac{\alpha-1 / 2}{p}, \quad \tilde{p}=-p
$$

Solution of $\mathrm{P}_{\text {II }}$ corresponding to Hamiltonian $H(\alpha-1)$
Birational transformation is an auto-Bäcklund for P_{II}
Group generated by the transformations $\alpha \rightarrow 1-\alpha$ and $\alpha \rightarrow-\alpha$. Realisation of the affine Weyl group with root system of type $A_{1}^{(1)}$

Okamoto: result valid for all Painlevé equations
$\mathrm{P}_{\mathrm{II}}-A_{1}^{(1)}, \mathrm{P}_{\mathrm{III}}-\left(2 A_{1}^{(1)}\right), \mathrm{P}_{\mathrm{IV}}-A_{2}^{(1)}, \mathrm{P}_{\mathrm{V}}-A_{3}^{(1)}, \mathrm{P}_{\mathrm{VI}}-D_{4}^{(1)}$

Fundamental notion (Okamoto): τ-function
Relation to the Hamiltonian :

$$
\frac{d}{d t} \log \tau=H
$$

For Painlevé equations:
τ-function: entire function on the complex plane of the ind. variable
Birational transformations expressed in terms of the τ-function

$$
x=\frac{d}{d t} \log \frac{\tau(\alpha-1)}{\tau(\alpha)}
$$

Successive application of auto-B̈'s: sequence of τ-functions
\rightarrow translation in the space of parameters

Okamoto: "space of initial conditions"
Continuous Painlevé equations: 2nd differential equations Space of initial conditions should be \mathbb{C}^{2}
For some t_{0} solution specified by data of function and derivative (precautions for singular coefficients)

But there exist solutions diverging at t_{0}
Must compactify \mathbb{C}^{2}
It may happen that several solutions pass through the point at ∞
We must then separate themt through a blowing-up of the space (introducing local coordinates making the divergence disappear)

Sakai: geometrical description of discrete Painlevé equations
Rational surfaces obtained by successive blow-ups of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ studied through connection between Weyl groups and the gr. of Cremona isometries on the Picard gr. of the surfaces

When 8 points in generic position in projective plane are blown up group of Cremona isometries isomorphic to Weyl group $E_{8}^{(1)}$

Sakai studied the case where the 8 points are not in generic position
Birational (bi-meromorphic) mappings on $\mathbb{P}^{1} \times \mathbb{P}^{1}$
are obtained by interchanging the procedure of blow-downs
Discrete Painlevé equations:
birational mappings corr. to translations of affine Weyl groups

Classification of discrete Painlevé equations
Degeneration pattern:

Upper index e: a discrete equation involving elliptic functions
Upper index q : equation of q-type
Upper index δ : difference equation not related continuous equation Upper index c: difference equation, contiguity of continuous Painlevé P_{VI} for $D_{4}^{(1)}, \mathrm{P}_{\mathrm{V}}$ for $A_{3}^{(1)}, \mathrm{P}_{\mathrm{IV}}$ for $A_{2}^{(1)}, \mathrm{P}_{\text {III }}$ for $2 A_{1}^{(1)}, \mathrm{P}_{\text {II }}$ for the $A_{1}^{(1)}$ on the last line and $\mathrm{P}_{\text {III }}^{1}$ for the $A_{1}^{(1)}$ on the line above last

Sakai's construction is a global one
To construct explicit examples one must specify a periodically repeated nonclosed pattern in the appropriate space and obtain the corresponding discrete Painlevé equation

New definition of "discrete Painlevé equation"
A discrete Painlevé equation is the mapping obtained by the periodic repetition of a non-closed pattern on a lattice associated to an affine Weyl groups belonging to the degeneration cascade of $E_{8}^{(1)}$

Consequence:
the potential number of discrete Painlevé equations is infinite any pattern, compatible with the above definition
in each of the affine Weyl groups of the degeneration pattern would lead to a different discrete Painlevé equation

Important finding of Sakai:
elliptic discrete Painlevé equations
Example:

$$
\begin{aligned}
& \operatorname{cn}\left(\gamma_{n}\right) \operatorname{dn}\left(\gamma_{n}\right)\left(1-k^{2} \operatorname{sn}^{4}\left(z_{n}\right)\right) x_{n}\left(x_{n+1}+x_{n-1}\right) \\
& \quad-\operatorname{cn}\left(z_{n}\right) \operatorname{dn}\left(z_{n}\right)\left(1-k^{2} \operatorname{sn}^{2}\left(z_{n}\right) \operatorname{sn}^{2}\left(\gamma_{n}\right)\right)\left(x_{n}^{2}+x_{n+1} x_{n-1}\right) \\
& \quad+\operatorname{cn}\left(z_{n}\right) \operatorname{dn}\left(z_{n}\right)\left(\operatorname{cn}^{2}\left(z_{n}\right)-\operatorname{cn}^{2}\left(\gamma_{n}\right)\right)\left(1+k^{2} x_{n}^{2} x_{n+1} x_{n-1}\right)=0
\end{aligned}
$$

$z_{n}=\left(\gamma_{e}+\gamma_{o}\right) n+z_{0}$ and $\gamma_{n}=\gamma_{e, o} n$-parity dependent
Sakai provided link between singularity confinement and the construction of the space of initial conditions
All d-Painlevé equations have a max. of 8 confined singularities
They can be described by a maximum of 8 blow-ups
Procedure first advocated by Kruskal

