Peer Consistency Mechanisms

Boi Faltings

AI Laboratory, EPFL boi.faltings@epfl.ch http://liawww.epfl.ch/

2016

< 同 ▶

≪ ≣ ⊁

æ

Peer Consistency Mechanisms

- Scoring rule mechanisms require that ground truth becomes known.
- Alternative idea: use reports of peers as ground truth! Reward = Pay(A,g) where g = report of a randomly chosen peer.
- Truthtelling becomes an equilibrium: if peers are truthful, truthtelling is the best response.
- Weaker concept, but more broadly applicable:
 - community sensing.
 - product reviews.
 - preferences, opinions, etc.
- Mechanisms are for reporting a value, not a distribution.

Types of Peer Consistency Mechanisms

There is no peer consistency mechanism for arbitrary belief systems!

Mechanisms depend on belief systems:

- Output Agreement: categorical (uncorrelated) distribution of values.
- Peer Prediction: homogeneous agent population with identical and known belief structure.
- Shadowing Mechanisms: weaken need for common posterior.
- Peer Truth Serum: common prior beliefs, but heterogenous belief updates.

Output Agreement Mechanisms

Term coined by von Ahn for Image Labeler:

- ask people to label an image.
- pay a reward if two people give the same label.
- Q: When does this incentivize truthfulness/maximum effort? A: When agents believe that honest peers are most likely to obtain the same value.

Setting

- agent gets observation o of the image.
- agent submits answer $a \in \{x_1, ..., x_N\}$.
- center randomly selects reference report b submitted by a peer.
- center pays agent C if a = b, 0 otherwise.

Assume peer is truthful \Rightarrow report *a* that maximizes Pr(a|o)

< ∃ >

Limitations of Output Agreement

Many possible labels:

Empire State Building Manhattan New York City Skyscraper City America

Equilibrium strategy depends on modeling peer's knowledge and beliefs.

Doesn't always encourage most specific answer.

Limitations of Output Agreement

- Suppose agents report the quality of service of Blue Star Airlines, with very high reputation.
- My plane is late and baggage lost.
- Q: Should I report poor service?
- A: no, because most people enjoy good service, so my report will not match the peer!
- Compensation needs to depend on probability of matching!

Peer Prediction Method

- Rather than reward the most likely value...
- ...reward accurate report of posterior distribution!
- Peer prediction method (MRZ 2005):
 - each value for answer a = x_i is associated with a posterior distribution Pr(x|x_i)
 - use proper scoring rule to score this posterior against peer report.

Reporting poor service...

With peer prediction method:

- Answer= good service: $\hat{Pr}(good) = 0.9, \hat{Pr}(bad) = 0.1$
- Answer = bad service: $\hat{Pr}(good) = 0.8$, $\hat{Pr}(bad) = 0.2$
- \Rightarrow
 - if 80% (or less) of peer reports are "good", "bad" will be the best answer.
 - if 90% (or more) of peer reports are "good", "good" will be the best answer.

Numerical example

- Let prior Pr(good) = 0.85, Pr(bad) = 0.15 (85% positive reviews)
- Agent *a_i* observes bad service.
- With output agreement: E[Payoff("good")] = 0.8, E[Payoff("bad")] = 0.2 ⇒ best to report "good"
- Assume quadratic scoring rule $(2p(x) \sum p(x)^2)$:

 $E[Payoff("good") = 0.8(2 \cdot 0.9 - 0.82) + 0.2(2 \cdot 0.1 - 0.82) = 0.66$ $E[Payoff("bad") = 0.8(2 \cdot 0.8 - 0.68) + 0.2(2 \cdot 0.2 - 0.68) = 0.68$

 \Rightarrow truthful reporting is more profitable, even though it's not the most likely answer!

(日)

Improving peer prediction

2 issues:

- general scoring rules generate inefficient payments.
 ⇒ generate simpler and more efficient rules using automated mechanism design.
- uninformative equilibria are focal.
 - \Rightarrow score against distribution of multiple peer reports.

Automated mechanism design

We need to find payments Pay(g,g) and Pay(b,b) such that:

In this example, assuming $\epsilon_g = \epsilon_b = 0.1$:

$$0.9Pay(g,g) > 0.1Pay(b,b) + 0.1$$

 $0.2Pay(b,b) > 0.8Pay(g,g) + 0.1$

Solution by linear program

Minimize expected expenditure Pr(g)Pay(g,g) + Pr(b)Pay(b,b), here: 0.85Pay(g,g) + 0.15Pay(b,b) \Rightarrow solution: pay(g,g) = 0.3, pay(b,b) = 1.7Expected payment = 0.28 (vs. 0.799 w/scoring rule)

Uninformative equilibria

3 pure equilibria:

- truthful: expected payment = 0.28
- 2 always reporting "good": expected payment = 0.3
- (a) always reporting "bad": expected payment = 1.7
- \Rightarrow truthfulness is not attractive!

Eliminating uninformative equilibria

Use 3 reference reports and count the number of "g"s:

pr(b = g o)	0	1		2		3	
b	0.008	0.0	96	0.38	4	0.512	
g	0.001	0.0	27	0.24	3	0.729	
pay(o,	b = g)	0	1	2	3		
b		0	10	0	ϵ	_	
g		ϵ	0	2	0		

Truthtelling is a strict equilibrium:

$$o = bad : E[Pay("bad")] = 0.96 > E[Pay("good")] = 0.768$$

 $o = good : E[Pay("bad")] = 0.27 < E[Pay("good")] = 0.468$

but all "good" or all "bad" is not a strict or weak equilibrium.,

Shadowing Mechanisms

- Peer prediction requires a $\hat{Pr}(\cdot|x_i)$ for every value of x_i
- Construct from prior distribution $\hat{Pr}(\cdot)$ by letting $\hat{Pr}(y|x_i) = \hat{Pr}(y) + \delta$ and renormalizing distribution.
- As long as agent's posterior is shifted in the same way, scoring rule will give highest expected reward for a truthful report.

Common Prior Mechanisms

- Peer Prediction requires agents to have common posterior beliefs Pr for each measurement.
- They may have very different proficiency and confidence in their observations, making posteriors different.
- However, agents have the same prior information ⇒ prior is likely to be the same.
- Can we use the shadowing idea to get a more general mechanism?

Desiderata

- Agents have a common prior Pr.
- Shadow posteriors:

$$\hat{Pr}(x_i|x_i) = Pr(x_i) + \delta$$

 $\hat{Pr}(x_j|x_i) = Pr(x_j) - \delta/(N-1); x_j \neq x_i$

• Logarithmic scoring rule $Pay(A,g) = \ln A(g) \Rightarrow$

$$Pay(\hat{Pr}(x_i|x_i), x_i) - Pay(Pr(x_i), x_i) \simeq \frac{\delta}{Pr(x_i)}$$

Reporting randomly according to the prior should have reward
 0 ⇒ matching peer at value x_i should have reward
 proportional to ¹/_{Pr(x_i)}.

Peer Truth Serum

- Center knows distribution R; assume agent prior is close to R.
- Reward agreement with peer report on value x_i with $Pay(x_i, x_i) = 1/R(x_i)$, 0 otherwise.
- Incentive Compatibility Condition:

$$E_{Pr(r|x_i)}[Pay(x_i, r)] = Pr(x_i|x_i)Pay(x_i, x_i) = Pr(x_i|x_i)/R(x_i)$$

> $E_{Pr(r|x_i)}[Pay(x_j, r)] = Pr(x_j|x_i)Pay(x_j, x_j) = Pr(x_j|x_i)/R(x_j)$

• when R = Pr, translates to *self-predicting* condition:

$$rac{Pr(x_i|x_i)}{Pr(x_i)} > rac{Pr(x_j|x_i)}{Pr(x_j)}$$

Helpful Reporting

What if $R \neq Pr$ (for example, on initializing the mechanism)? Consider that Pr is more *informed*, i.e. closer to true distribution Q than R.

- \Rightarrow agents partition values into:
 - under-reported: $R[x] < Pr[x] \Leftrightarrow R[x] < Q[x]$
 - over-reported: $R[x] \ge Pr[x] \Leftrightarrow R[x] \ge Q[x]$

Non-truthful strategy: report x instead of y:

- Always profitable if x under-reported and y over-reported.
- Never profitable if x over-reported and y under-reported

Helpful strategy: never report over-reported x for under-reported y.

Asymptotic Accuracy

- Assume center maintains *R* as an aggregate over reports received over time (for example histogram).
- Asymptotically accurate: R converges to true distribution Q.
- Theorem: Any mechanism that induces helpful reporting is asymptotically accurate. (<= never falsely report over-reported value)
- Theorem: Peer Truth Serum admits equilibria in helpful strategies.

Other equilibria...

- All agents report x with smallest R[x].
- \Rightarrow equilibrium with highest possible payoff.
 - Will lead to uniformative, uniform distribution.
 - However, can be detected: distribution of reports varies a lot over time.
 - Can also be thwarted if R is not public.

Peer Truth Serum for Crowdsourcing (PTSC)

- Idea: collect *R* from agents' reports, but keep it private.
- R = histogram of reports from a set of many *similar* tasks.
- Peer report is chosen from reports on the same task.
- Agent should believe that Pr ~ R (in the limit of infinitely many tasks).
- But that for its own task, Pr(o|o)/R[o] is maximized for its own observation o.

Algorithm (PTSC)

- **(**) collect answers to a set of similar tasks \mathcal{T} from crowdworkers.
- (a) for worker w, calculate $R_w(x) = \frac{num(x)}{\sum_y num(y)}$, where reports by worker w are excluded.
- for each task t_w carried out by worker w, select a peer worker p that has solve the same task. If they gave the same answer x, reward w with α(1/R_w(x) 1), otherwise charge α.

Properties (PTSC)

- truthful equilibrium when agents' beliefs satisfy self-predicting condition.
- expected payoff = 0 for random answers according to R
- expected payoff < 0 for random answers according to another distribution.
- truthful equilibrium has the highest payoff.

Example (PTSC)

Task	Answers for the task					
t_1	<u></u> , а, а, с	Answer	а	Ь	с	
t_2	b, b, b, a	Count	20	12	4	
t ₃	а,а,b,а	R	0.50	0.30	0.1	
t4	a,d,a,a	R _w	0.50	0.29	0.105	(
t5	с,с,а,Ь	t7:				
t ₆	d,a,d,d	honest: E	[pay(a)] = 4/2	3-1 = 1	/3
t ₇	a , 🛛 , c , a	strategic:	E[pay(d)] = 0)	
t ₈	b, b, a, b	random:				
t9	а,а,а,а	E[pay] =	1/6-0.3	3+0.7/3	3-0.1=0	
<i>t</i> ₁₀	b,b,a,b					

æ

イロン イロン イヨン イヨン

d 4 0.1 0.105

Self-Predicting Assumption

Correct		Observed answer				
answer		а	Ь	с	d	
а	Count(a)	15	2	2	1	
	freq $(\cdot a)$	0.75	0.1	0.1	0.05	
b	Count(b)	3	9	0	0	
	$freq(\cdot b)$	0.25	0.75	0	0	
С	Count(c)	1	1	2	0	
	freq $(\cdot c)$	0.25	0.25	0.5	0	
d	Count(d)	1	0	0	3	
	$freq(\cdot d)$	0.25	0	0	0.75	
	Count	20	12	4	4	
	R	0.5	0.3	0.1	0.1	

æ

<ロ> <部> < 部> < き> < き> <</p>

Summary

- Ground truth is never known \Rightarrow replace by report of a random peer.
- Constant reward: report most common answer.
- Peer prediction: use proper scoring rule to scale rewards: report truthfully even uncommon answers.
- However, *posterior* distributions needs to be common and known!
- Peer Truth Serum: *prior* distribution needs to be common and known, updates need to satisfy *self-predicting* condition.
- Peer Truth Serum for Crowdsourcing: no need for common prior, but requires set of similar tasks.

∃ >

References

R. Jurca and B. Faltings: An incentive compatible reputation mechanism, IEEE International Conference on e-commerce. IEEE, 2003. pp. 285-292, 2003. N. Miller, P. Resnick, R. Zeckhauser: *Eliciting informative feedback: The* peer-prediction method, Management Science 51(9), pp. 1359-1373, 2005. L. Von Ahn, L. Dabbish: Designing games with a purpose, Communications of the ACM 51(8) pp. 58-67, 2008. R. Jurca and B. Faltings: Mechanisms for making crowds truthful, Journal of Artificial Intelligence Research 34(1) pp. 209-253, 2009 R. Jurca and B. Faltings: Incentives for answering hypothetical questions, Workshop on Social Computing and User Generated Content, EC-11, 2011. J. Witkowski and D. Parkes: Peer prediction without a common prior, Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 964-981, 2012. S.-W. Huang and W.-T. Fu: Enhancing reliability using peer consistency

S.-W. Huang and W.-T. Fu: Enhancing reliability using peer consistency evaluation in human computation, Proceedings of the 2013 conference on Computer supported cooperative work, pp. 639-648, 2013 G.Radanovic et al.: Incentives for Effort in Crowdsourcing using the Peer Truth

Serum, ACM TIST, 2016