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Abstract

Gossip has always been a thrust area on academic cam-

puses. Taking advantage of my greying hair and aging

brain cells, I shall indulge in that favourite pastime of

academic dotards - some random, distorted gossip.

To add a veneer of culture (of sorts), I shall draw occa-

sional parallels with thoughts expressed by some leading

poet-philosophers of the last century.
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Thoughts of poet-philosophers will appear in red.



CLASSICAL GOSSIP



‘Gossip’ algorithm

xi(n+ 1) =
d∑

j=1
p(j|i)xj(n), n ≥ 0.

P = [[p(j|i)]]1≤i,j≤d irreducible stochastic matrix with

unique stationary distribution π =⇒ x(n)→ πTx(0)1.

Research focus on rate of convergence: Design a ‘good’

P ((doubly) stochastic, low |second eigenvalue|, · · ·) (Boyd,

Shah, Ghosh, · · ·)

Ref: ‘Gossip Algorithms’, D. Shah, NOW Publishers,

2009.



Often a component of a ‘larger’ scheme:

xi(n+ 1) = (1− a)xi(n) + a
d∑

j=1
p(j|i)xj(n) + · · · , n ≥ 0.

Examples: Distributed computation, Synchronization,

‘Flocking’, Coordination of mobile agents

The objective often is ‘consensus’.

Well, I try my best to be just like I am,

but everybody wants you to be just like them.

(Bob Dylan)



The DeGroot model

Models opinion formation in society.

xi(n+ 1) = (1− a)xi(n) + a
d∑

j=1
p(j|i)xj(n), n ≥ 0.

New opinion a convex combination of own previous opin-

ion and opinions of neighbors/peers/friends.

Convergence =⇒ asymptotic agreement.

I get by with a little help from my friends.

(Lennon-McCartney)



The DeGroot model

Models opinion formation in society.

xi(n+ 1) = (1− a)xi(n) + a
d∑

j=1
p(j|i)xj(n), n ≥ 0.

New opinion a convex combination of own previous opin-

ion and opinions of neighbors/peers/friends.

Convergence =⇒ asymptotic agreement.

I get by with a little help from my friends,

I get high with a little help from my friends.

(Lennon-McCartney)



RANDOM GOSSIP



What about random gossip?

xi(n+ 1) = (1− a)xi(n) + axξn+1(i)(n),

where ξn(i) IID ≈ p(·|i).

Convergence?



What about random gossip?

xi(n+ 1) = (1− a)xi(n) + axξn+1(i)(n),

where ξn(i) IID ≈ p(·|i).

Convergence?

Yes!! And consensus: x(n) → c1, but c may not be

πTx(0)!

Jaatey the Japaan pahoonch gaye Cheen, samaz gaye

na?

(Majrooh Sultanpuri)



Analysis based on re-writing the iteration as

xi(n+ 1) = (1− a)xi(n) + a
d∑

j=1
p(j|i)xj(n) + aMj(n+ 1),

where {M(n)} is a martingale difference sequence. This

is a ‘constant step-size stochastic approxima-
tion’.

Fact: Standard ‘intuition’ would suggest asymptotically

a random walk along the degenerate direction c1, c ∈ R,

but we still get convergence because ‘noise’ {M(n)} is

also killed asymptotically at a fast enough rate.

But what if we want the actual average πTx(0)?



Alternative scheme based on the ‘Poisson equation’:

for f(i) = x(0),

V (i) = f(i)− β +
∑
j
p(j|i)V (j), 1 ≤ j ≤ d. (1)

Solution (V (·), β) satisfies: β unique, = πTf , V unique

up to additive scalar.

Can solve (1) by the ‘relative value iteration’

V n+1(i) = f(i)− V n(i0) +
∑
j
p(j|i)V n(j), n ≥ 0.

The ‘offset’ V n(i0) stabilizes the iteration, other choices

are possible (e.g., 1
d
∑
k V

n(k)).



‘Reinforcement learning’: stochastic approximation

version of RVI – for a simulated chain {Xn} ≈ p(·|·).

V n+1(i) = (1− a(n)I{Xn = i})V n(i) +

a(n)I{Xn = i}(k(i)− V n(i0) + V n(Xn+1)).

Then V n(i0) → β a.s. (Not fully decentralized: needs

V n(i0) to be broadcast. Can replace it by 1
d
∑
k V

n(k)

which can be calculated in a distributed manner by an-

other gossip on a faster time scale.)

With every mistake we must surely be learning

(George Harrison)



NONLINEAR GOSSIP



‘Multiplicative’ analog of the previous case: for f(i) > 0,

choose V 0(i) > 0 ∀ i and do:

V n+1(i) =
f(i)

∑
j p(j|i)V n(j)

V n(i0)
, n ≥ 0.

More generally, for irreducible nonnegative Q = [[q(i, j)]],

set

f(i) =
∑
k
q(i, k), p(j|i) =

q(i, j)

q(i)
.

Then V n(i0) → the Perron-Frobenius eigenvalue of Q,

V n→ the corresponding eigenvector.

(‘power’ method)

Applications : ranking, risk-sensitive control



‘Learning’ version: for V 0(·) > 0,

V n+1(i) = (1− a(n)I{Xn = i})V n(i) +

a(n)I{Xn = i}
f(i)V n(Xn+1)

V n(i0)

 .

Numerically better even when the eigenvalue is known!

(The first term on RHS scales slower than the second.)

Similar evolution occurs in models of emergent networks

(Jain - Krishna)



For tracking in slowly varying environment:

Decreasing stepsize =⇒

learning eventually slower than environment =⇒

cannot track =⇒ use constant stepsize a(n) ≡ a > 0.

And the first one now will later be last,

For the times, they are a-changin’

(Bob Dylan)



Tsitsiklis model: Distributed stochastic approxima-

tion (e.g., stochastic gradient scheme) with consensus

objective.

xi(n+ 1) =
N∑
j=1

p(j|i)xj(n) + a(n)[hi(x(n)) +Mi(n+ 1)].

P = [[p(j|i)]] irreducible stochastic matrix.

Standard paradigm for network-based computation,

particularly optimization, e.g., over sensor networks

Come together right now, over me.

(Lennon-McCartney)



A ‘quasi’-linear version:

xi(n+1) =
∑
j
px(n)(j|i)xj(n)+a(n) [hi(x(n)) +Mi(n+ 1)]

Px := [[px(j|i)]] stochastic irreducible with unique sta-

tionary distribution πx.

Asymptotically, decouples into identical trajectories of

ẏ(t) =
∑
i
πy(t)1(i)hi(y(t)).

Jahaan bhi le jaaye raahen, hum sang hain.

(Shailendra)



Application: ‘leaderless swarm optimization’ by a swarm

of n agents.

Let N(i) := { neighbors of i} with |N(i)| = n.

Also, i ∈ N(j)⇐⇒ j ∈ N(i). Let for T > 0,

h(x) = −∇F (x),

px(j|i) =
1

n
e−(F (xj)−F (xi))+/T , j ∈ N(i),

= 0, j /∈ N(i) ∪ {i},

= 1−
∑

k∈N(i)
p(k|i), j = i.



Then πx(i) = e
−F (xi)

T∑
k e
−F (xk)

T

which concentrates on

the ‘best’ j.

Empirical experiments on standard functions (Rastrigin,

Rosenbrock, Griewank, Shwefel) show much better result

compared to the single agent case (global minimum, or

at least a very good local minimum).

Ek akela thak jaayega, milkar kadam badhana.

(Sahir Ludhianvi)



Fully nonlinear case:

xi(n+ 1) = Fi(x(n)) + a(n) [hi(x(n)) +Mi(n+ 1)] .

Suppose:

F (n) := F ◦ F ◦ · · · ◦ F (n times)
n↑∞→ F̌ ,

I := the invariant set of F̌ .

Then under suitable technical hypotheses, limiting

dynamics ≈ the o.d.e. restricted to I.



Application: x(n + 1) = F (x(n)) can be a recursive

scheme for calculating projection to a constraint set C.

Then I = C.

Examples: 1. alternating projections for C = intersection

of subspaces

2. Iusem-De Pierro variant of the Boyle-Dykstra-Han

algorithm for C = intersection of convex sets

3. Optimization on matrix manifolds????



OPTIMAL GOSSIP



Gossip for opinion manipulation (e.g., advertising):

P1 := submatrix of P corresponding to n −m rows and

corresponding columns,

P2 := submatrix of P corresponding to the same n −m

rows and remaining m columns.

These m columns correspond to nodes whose ‘opinion’

is frozen at x∗. Then we have (in Rn−m):

x(n+ 1) = x(n) + a(n)
[
P1x(n) + P2x

∗1
]
.



Assume P1 strictly sub-stochastic, irreducible. Then:

x(n)→ x∗1 exponentially at rate λ := the Perron-Frobenius

eigenvalue of P1.

=⇒ consensus on a pre-specified value.

Jo tumko ho pasand wohi baat karenge.

Tum din ko agar raat kaho raat kahenge.

(Indeevar)



Objective: Minimize λ over all subsets of cardinality m

(i.e., find the m most important nodes for information

dissemination)

Hard combinatorial problem, even the nonlinear program-

ming relaxation is highly non-convex and the projected

gradient scheme with multi-start does not do too well.

Christ, you know it ain’t easy,

you know how hard it can be.

(Lennon)



=⇒ Use ‘engineer’s licence’:

For τ := the first passage time to frozen nodes,

λ = − limt↑∞
1
t logP (τ > t) and E[τ ] =

∑∞
t=0P (τ ≥ t).

=⇒ Use E[τ ] as a surrogate cost.

This is monotone and supermodular =⇒ greedy scheme

is
(
1− 1

e

)
-optimal (Nemhauser-Wolsey-Fisher)

Important observation: best m nodes 6= top m nodes

according to individual merit!



What about controlling the transition probabilities?

Consider controlling the nonlinear o.d.e.

ẋ(t) = α(Pu(t)
1 − I)x(t) + αP

u(t)
2 (x∗1) + (1− α)F (x(t))

with ‘cost’

E

∫ ∞
0

e−βt
∑
i
|xi(t)− x∗|2dt

 .
Here Pu· = [[p(j|i, u)]].



Can write down the corresponding Hamilton-Jacobi-Bellman

equation and verification theorem.

=⇒ Optimal

u∗i (t) ∈ Argmax

n−m∑
j=1

p(j|i, ·)x∗j(t) + x∗
n∑

j=n−m+1
p(j|i, ·)


for x < x∗, and,

u∗i (t) ∈ Argmin

n−m∑
j=1

p(j|i, ·)x∗j(t) + x∗
n∑

j=n−m+1
p(j|i, ·)


for x > x∗.

(=⇒ greatest ‘push’ towards x∗.)
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I get by with a little help from undergrads/interns.

(V. Borkar)

· · · · · · and I say, it’s all right.

(George Harrison)



It’s all over now, baby blue.

(Bob Dylan)

And I do appreciate you being around.

(Lennon-McCartney)


