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@ My beautiful regret

© A supposedly fun game I'll play again
© A graphic novel

© The joy of convex

© The joy of convex (without the gradient)
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Machine learning

Classification/regression tasks

@ Predictive models h mapping data instances X to labels Y
(e.g., binary classifier)

e Training data St = ((Xq,Y1),..., (X1, Y7))
(e.g., email messages with spam vs. nonspam annotations)

@ Learning algorithm A (e.g., Support Vector Machine) maps
training data St to model h = A(St)

Evaluate the risk of the trained model h with respect to a given loss
function
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Two notions of risk
View data as a statistical sample: statistical risk

E[loss(A(S1), (X, V)]
S

trained test
model example

Training set St = ((X1, Y1), ..., (X, Y7)) and test example (X, Y) drawn
i.i.d. from the same unknown and fixed distribution

View data as an arbltrary sequence: sequential risk

| N\

Z loss( A(S¢—1), (X¢, Ye))

trained test
model example

Sequence of models trained on growing prefixes
St = ((X1,Y1),..., (X, Yi)) of the data sequence
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Regrets, I had a few

Learning algorithm A maps datasets to models in a given class H

Variance error in statistical learning

E[loss(A(S1), (X, Y))| - inf E[loss(h, (X, V)]

compare to expected loss of best model in the class

Regret in online learning

Zloss (Se-1), (X, V1)) — inf Zloss , (X, Ye))

t 1

compare to cumulative loss of best model in the class
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Incremental model update

A natural blueprint for online learning algorithms

© Apply current model h;_; to next data element (X, Y¢)
@ Update current model: hy_; — hy € H

Goal: control regret

Zloss heo1, (Xe, Ye)) — mf Zloss (X¢, Ye))
t=1 t=1

View this as a repeated game between a player generating predlctors
h¢ € H and an opponent generating data (X, Y¢)
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© A supposedly fun game I'll play again
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Theory of repeated games

E
b l al
¥ @% #

James Hannan David Blackwell
(1922-2010) (1919-2010)

Learning to play a game (1956)
Play a game repeatedly against a possibly suboptimal opponent
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Zero-sum 2-person games played more than once

1 2 ... M N x M known loss matrix
1]¢1,1) €L2) ... @ Row player (player)
2 14(2,1) €22 ... has N actions
: : : % @ Column player (opponent)
N has M actions

For each gameround t =1,2,...

@ Player chooses action i; and opponent chooses action y

@ The player suffers loss {(i, y¢) (= gain of opponent)

Player can learn from opponent’s history of past choices yy,...,y¢—1
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Prediction with expert advice

t=1 t=2
1] 61 &)
2| t(2) ©(2)

N GN) G(N)

Volodya Vovk Manfred Warmuth

Opponent’s moves yj, Yz, ... define a sequential prediction problem
with a time-varying loss function £(i¢, y¢) = € (it) J
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Playing the experts game

N actions

O 0 0 0 0 0 o o O

© Loss (¢ (i) € [0,1] is assigned to every actioni=1,...,N
(hidden from the player)
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Playing the experts game

N actions

O 0 0 0 0 o o o @

© Loss (¢ (i) € [0,1] is assigned to every actioni=1,...,N
(hidden from the player)

@ Player picks an action I; (possibly using randomization) and
incurs loss ¢ (1)
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Playing the experts game

N actions

OEOONONONMONMONONO,

Fort=1,2,...

© Loss (¢ (i) € [0,1] is assigned to every actioni=1,...,N
(hidden from the player)

@ Player picks an action I; (possibly using randomization) and
incurs loss ¢ (1)

@ Player gets feedback information: £¢(1),...,{¢(N)
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Oblivious opponents

Losses £¢(1),...,£(N) forallt =1,2,... are fixed beforehand, and
unknown to the (randomized) player J

Oblivious regret minimization
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Bounds on regret [Experts’ paper, 1997]

Lower bound using random losses

@ ((i) — L¢(i) € {0,1} independent random coin flip

.
-
> Lt(It)] =35

t=1

e For any player strategy [E

@ Then the expected regret is

T
igll,?i(N (;—Ldi))] =(1—o(1)) T1121N

E
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Exponentially weighted forecaster

At time t pick action I; = i with probability proportional to

t—1
exp (—n 5 w)
s=1

the sum at the exponent is the total loss of action i up to now

Regret bound [Experts’ paper, 1997]

TInN

@ Ifn=+/(InN)/(8T)then Rt < >

@ Matching lower bound including constants

@ Dynamic choice n¢= /(InN)/(8t) only loses small constants
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The bandit problem: playing an unknown game

N actions

ONOONONONONONMONGO

Fort=1,2,...

© Loss (¢ (i) € [0,1] is assigned to every actioni=1,...,N
(hidden from the player)
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The bandit problem: playing an unknown game

N actions

ONOONONONONONMONGO,

Fort=1,2,...

© Loss (¢ (i) € [0,1] is assigned to every actioni=1,...,N
(hidden from the player)

@ Player picks an action I; (possibly using randomization) and
incurs loss ¢ (1)

@ Player gets feedback information: Only £ () is revealed
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The bandit problem: playing an unknown game

ONOONONONONONMONGO,

Fort=1,2,...

© Loss (¢ (i) € [0,1] is assigned to every actioni=1,...,N
(hidden from the player)

@ Player picks an action I; (possibly using randomization) and
incurs loss ¢ (1)

@ Player gets feedback information: Only £ () is revealed

Many applications

Ad placement, dynamic content adaptation, routing, online auctions

|
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© A graphic novel

chi (UNIMI) Online Approach to ML



Relationships between actions

Undirected Directed
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A graph of relationships over actions
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A graph of relationships over actions
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A graph of relationships over actions
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Recovering expert and bandit settings

Experts: clique Bandits: empty graph
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Exponentially weighted forecaster — Reprise

Player's strategy [Alon, C-B, Gentile, Mannor, Mansour and Shamir, 2013]

t—1
o Pi(ly =1) o exp (—nZ@(i)> i=1,...,N
s=1

£ (i) o
1 fe b d
o {(i) = ¢ TP¢(C(i) observed) L T olbreiie
0 otherwise

| \

Importance sampling estimator

E, [@tm] — 0, (1) unbiased
-~ 1
E¢ [0:(1)?] < i trol
t [ ¢(1) ] Py (t:(3) observed) variance contro
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Independence number x(G)

The size of the largest independent set
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Independence number x(G)

The size of the largest independent set
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Regret bounds
Analysis (undirected graphs)

< x(G)

T N
Rt < lnnN + % Z Z P(I¢ =i £ (i) observed)
=1i=1
= /x(G)TInN by tuning n
If graph is directed, then bound worsens only by log factors

”
Special cases

@ Experts: «(G) =1 <
@ Bandits: «(G) =N Rt < vVTNInN
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Reactive opponents [Dekel, Koren and Peres, 2014]

The loss of action i at time t depends on the player’s past m actions
et(l) — I—t(It—ml" 'IIt—lli‘) J

Adaptive regret
T T
da . . 2 g
Ria[' =E ; I—t(It—m/ ceey It—1/ It) - in,lr}]( ; Lt(lr ey l)

Minimax adaptive regret (for any constant m > 1)

Rgll_da _ @(TZ/C’))
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Partial monitoring: not observing any loss
Dynamic pricing: Perform as the best fixed price

@ Post a T-shirt price
@ Observe if next customer buys or not
@ Adjust price

Feedback does not reveal the player’s loss

1 2 3 4 5 1 2 3 4 5
1/0 1 2 3 4 1/1 1 1 1 1
2le O 1 2] 8 210 1.1 1 1
3|c ¢c 0 1 2 3/10 0 1 1 1
4|c ¢c ¢ 0 1 410 0 0 1 1
5/¢c ¢ ¢ ¢ O 5/0 0 0 0 1

Loss matrix Feedback matrix
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A characterization of minimax regret

Multiarmed bandits: loss and feedback matrix are the same

A general gap theorem [Bartok, Foster, Pél, Rakhlin and Szepesvari, 2013]

@ A constructive characterization of the minimax regret for any pair
of loss/feedback matrix
@ Only three possible rates for nontrivial games:
@ Easy games (e.g., bandits): ©(/T)
@ Hard games (e.g., revealing action): ©(T%/3)
© Impossible games: O(T)
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© The joy of convex

chi (UNIMI) Online Approach to ML



A game equivalent to prediction with expert advice
Online linear optimization in the simplex

@ Play point p, from the N-dimensional simplex Ay
@ Incur linear loss E ¢ (I)] = p{ IR
© Observe loss gradient Et

v

Regret: compete against the best point in the simplex
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From game theory to machine learning

GUESSED

LABEL
TRUE LABEL
>
UNLABELED
DATA
CLASSIFICATION

SYSTEM

@ Opponent’s moves y; are viewed as values or labels assigned to
observations x; € R4 (e. g., categories of documents)

o A repeated game between the player choosing an element w; of a
linear space and the opponent choosing a label y for x

@ Regret with respect to best element in the linear space
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Online convex optimization

@ Play point w; from a convex linear space S
© Incur convex loss £ (W)

© Observe loss gradient V{ (wy)

© Update point: wy = w1 €S

[Zinkevich, 2003]

| A

Example

@ Regression with square loss: {{(w) = (wat —yt)z yr € R

o Classification with hinge loss: {{ (W) = [1 — Y w
yt S {_1/ +1}

T

Xt] n

T
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Finding a good online algorithm

Follow the leader

t
Wiy = arginf Z ls(w)
weS =il

Regret can be linear due to lack of stability

S =[-1,+1] G(w) =1+ % £ (w) = { —w if tiseven

+w iftisodd
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Regularized online learning

Strong convexity

® : S — Ris B-strongly convex w.r.t. anorm || - || if for allu,v € S

W) > Ow) + Vo) (v + & fu—v?

1
Example: ®(v) = 5 [v|*

Follow the regularized leader

[Shalev-Shwartz, 2007; Abernethy, Hazan and Rakhlin, 2008]

Wi y1 = argmin |1 Z€ )+ O (w)
wes s=1

® is a strongly convex regularizer defined on S
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Deriving an incremental update
Linearization of convex losses

e (W) — L (1) < V& (wi) Twy — Vi (we) Tu
—— ——

(Zt et

v

Follow the regularized leader with linearized losses

t
Wi = argmin| ZESTW + ®(w) | = argmax (—nOtTw — @(w))
weS s=il weS

o = VO* (-1 0y)

®* is the convex dual of ©®

N. Cesa-Bianchi (UNIMI) Online Approach to ML



The Mirror Descent algorithm  [Nemirovsky and Yudin, 1983]

t
Wi = VO*(-m0y) = VO* <—n Z Ws(ws)>

s=1

Online Mirror Descent

| \

Parameters: Strongly convex regularizer @ and learning raten > 0
Initialize: 61 =0 // primal parameter

Fort=1,2,...
Q Use wy = VO*(0y) // dual parameter (via mirror step)
© Suffer loss £ (Wy)
@ Observe loss gradient V¢ (wy)

© Update 041 =0 —Vil(wy) // dgradient step

V.
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Some examples

d
@ Exponentiated gradient: S = Ay and @ (w) = Z w; Inw;
[Kivinen and Warmuth, 1997] =l
1
@ Online Gradient Descent: S = R¢ and ®(w) = 5 [w|?
[Zinkevich, 2003]
1 2
@ p-norm Gradient Descent: S = R and ®(w) = w
. (W) = =5 Iwil
[Gentile, 2003]
@ Matrix gradient descent
[Cavallanti, C-B and Gentile, 2010; Kakade, Shalev-Shwartz and Tewari,
2012]
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General regret bound

Analysis relies on smoothness of ®* in order to bound increments
O*(0¢41) — ©*(0¢) via | Ve (wy)|

Oracle bound [Kakade, Shalev-Shwartz and Tewari, 2012]
T T = X
> - O (u Vi (wy
te(we) < inf § e (u) + o) o E Ve wo) [l
t=1 t=1 —_—— =1
cumulative loss model fit model cost

(1,0, ... are arbitrary convex losses

o If gradients are bounded, then Rt = O( VT )
@ This is optimal for general convex losses (¢

o If all £ are strongly convex, then Ry = O(InT)
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Regularization via stochastic smoothing

Follow the perturbed leader

argmin <n92—w + ZTW>
wes

wi1=E

@ The distribution of Z must be “stable” (small variance and small
average sensitivity)

@ For some choices of Z, FPL becomes equivalent to OMD
[Abernethy, Lee, Sinha and Tewari, 2014]
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Adaptive regularization

Online Ridge Regression [Vovk, 2001; Azoury and Warmuth, 2001]
! 2 ! 2 T
Z(wjxt —yt)” < inf Z(uTxt —y) +uff | +dIn (1 + )

t—1 uecRd 1 d

1
D (w) = 5 Hw||§\t Ay =1+ sz Xq

\
| A

More examples

@ Online Newton Step [Hazan, Agarwal and Kale, 2007]
Logarithmic regret for exp-concave loss functions
@ AdaGrad [Duchi, Hazan and Singer, 2010]

Competitive with “optimal” fixed regularizer

@ Scale-invariant algorithms [Ross, Mineiro and Langford, 2013]
Regret invariant w.r.t. rescaling of single features
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Shlftmg regret [Herbster and Warmuth, 2001]

Nonstationarity

o If data source is not fitted well by any model in the class, then
comparing to the best model u € S is trivial

o Compare instead to the best sequence uy, uy, - - - € S of models

Shifting Regret for Online Mirror Descent [Zinkevich, 2003]

T T T
4 < inf — U i
; w) < inf ;et(ut) + 2 llue — ]| + diam(s) + O

S, UWT E
1 T t—1

cumulative loss model fit shifting model cost
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Online active learning

TRUE LABEL
(UPON REQUEST)
I I I GUESSED
LABEL
>
UNLABELED

DATA
CLASSIFIER
@ Observing the data process is cheap

@ Observing the label process is expensive
— need to query the human expert

Question

How much better can we do by subsampling adaptively the label
process?
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A game with the opponent [C-B, Gentile, Zaniboni, 2006]

Opponent avoids causing
mistakes on documents far
away from decision surface

vectorized ®
document @(W

&&@o Probability of querying a

document proportional to
inverse distance to decision
surface

Binary classification performance guarantee remains identical (in
expectation) to the full sampling case
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Experiments on document categorization

8,75 T T T T T T

F-neasure

Honadaptive
) Rdaptiug

1 L L
8,85 a.1 8.15 8,2 8,25 8.3 8,35

Fraction of queried labels
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Stochastic Online Mirror Descent

Parameters: Strongly convex regularizer ® and learning raten > 0

Initialize: 6, =0 // primal parameter
Fort=1,2,...
Q@ Usew; = VOD*(0,) // mirror step with projection on S

@ Suffer loss £ (wy)
@ Compute estimate g, of loss gradient V{ (wy)

Q Update 01,1 = 6+ —ng, // gradient step

Typically, ®(w %||w|| (stochastic OGD)
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Attribute efficient learning  [C-B, Shamir, Shalev-Shwartz, 2011]

l Obtain a few attributes
from each training example J

original sampled

@ Use Stochastic OGD with square loss  {¢(w) = %(wat — yt)2
(*] Vﬁt(w) = (WTXt —yt)xt

Unbiased estimate of square loss gradient using attributes

@ Estimate of w ' x: query x; according to p(i) =

@ Estimate of x: query x; uniformly at random

@ Gradient estimate: g = <||w||1 sgn(wy) x4 —y)dxjej
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© The joy of convex (without the gradient)
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Online convex optimization with bandit feedback

© Play point w; from a convex linear space S
@ Incur and observe convex loss {¢ (W)
@ Update point: wy - w1 €S
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Gradient descent without a gradient

[Flaxman, Kalai and McMahan, 2004]

@ Run stochastic OGD using a perturbed version of wi: we +8U
(U is a random unit vector and & > 0)

~ d
@ Gradient estimate g = 3 Lwe+0U)U

@ Fact (Stokes” Theorem): If £, were differentiable, then
lE[@t] =VE [!Zt(wt + 0 B)}
where B is a random vector in the unit ball

@ g estimates the gradient of a

locally smoothed version of {¢
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Guarantees

@ If ¢, is Lipschitz, then the smoothed version is a good
approximation of ¢

@ Radius ¢ of perturbation controls bias/variance trade-off

| \

Regret of stochastic OGD for convex and Lipschitz loss sequences

Ry = 0(T%4)
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Guarantees

@ If ¢, is Lipschitz, then the smoothed version is a good
approximation of ¢

@ Radius ¢ of perturbation controls bias/variance trade-off

v

Regret of stochastic OGD for convex and Lipschitz loss sequences

Ry = 0(T%4)

v

The linear case

@ Assume losses are linear functions on S, ¢ (w) = (’,tTw

@ Can we achieve a better rate?
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Self—concordant functions [Abernethy, Hazan and Rakhlin,

@ Run stochastic OGD regularized with a self-concordant function
for S

@ Variance control through the associated Dikin ellipsoid
o Loss estimate {; obtained via perturbed point Wi £ e; VAL

{ei, Ai}is a randomly drawn eigenvector-eigenvalue pair of Dikin
ellipsoid

g Regret for linear functions

Rr=0 <d3/2 \/HT)
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Algorithm GeometricHedge [Dani, Hayes and Kakade, 2008]

@ Build an ¢-cover Sy C S of size ¢ ¢

@ Use experts algorithm (e.g., exponential weights) to draw actions

W; € Sp and use unbiased linear estimator for the loss

6 =P "W, Wil where Py=E[W, W]

@ Mix exponential weights with exploration distribution p over the

actions in the cover:

pew) =1 —-v)qew)+ yuw)  (0<y<1)
~—
exp. distrib.

@ u controls the variance of the loss estimates by ensuring all
directions are sampled often enough
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Analysis [C-B and Lugosi, 2010]

Regret bound

1
Rr=0 (d\/(dxmm —|—1) TlnT)

Amin = smallest eigenvalue of [E,, [W WT]

@ Al is proportional to the variance of loss estimates

@ When Apin = % we get the optimal bound G (d VTIn T)

o If pis uniform over all actions, the above happens when action
space is approximately isotropic
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Good exploration bases [Bubeck, C-B and Kakade, 2012]

Choose a basis under which the action set looks isotropic

o There are at most O(d?) contact points between Sy and Léwner
ellipsoid (the min volume ellipsoid enclosing S)

Put exploration distribution i on these contact points
This ensures that E,,[W W ] is isotropic: Amin = &

Exploration on contact points of Lowner ellipsoid achieves
optimal regret

Rr =0 (d\/TInT>

However, this construction is not efficient in general

An efficient construction uses volumetric ellipsoids
[Hazan, Gerber and Meka, 2014]
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Conclusions

More applications

@ Portfolio management
@ Matrix completion
o Competitive analysis of algorithms

@ Recommendation systems

Some open problems

@ Exact rates for bandit convex optimization
o Trade-offs between regret bounds and running times
@ Online tensor and spectral learning

@ Problems with states
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