The Online Approach to Machine Learning

Nicolò Cesa-Bianchi

Università degli Studi di Milano

N. Cesa-Bianchi (UNIMI)

1 My beautiful regret

- 2 A supposedly fun game I'll play again
- 3 A graphic novel
 - 4 The joy of convex
- 5 The joy of convex (without the gradient)

1 My beautiful regret

- 2 A supposedly fun game I'll play again
- 3 A graphic novel
- The joy of convex
- 5 The joy of convex (without the gradient)

Classification/regression tasks

- Predictive models h mapping data instances X to labels Y (e.g., binary classifier)
- Training data $S_T = ((X_1, Y_1), ..., (X_T, Y_T))$ (e.g., email messages with spam vs. nonspam annotations)
- Learning algorithm A (e.g., Support Vector Machine) maps training data S_T to model $h = A(S_T)$

Evaluate the **risk** of the trained model **h** with respect to a given **loss function**

Two notions of risk

View data as a statistical sample: statistical risk

$$\mathbb{E}\left[loss(\underline{A}(\underline{S_{\mathsf{T}}}), \underbrace{(X, Y)}_{trained}) \right]$$

Training set $S_T = ((X_1, Y_1), \dots, (X_T, Y_T))$ and test example (X, Y) drawn i.i.d. from the same unknown and fixed distribution

View data as an arbitrary sequence: sequential risk

$$\sum_{t=1}^{l} loss(\underbrace{A(S_{t-1})}_{model}, \underbrace{(X_t, Y_t)}_{test})$$

Sequence of models trained on growing prefixes $S_t = ((X_1, Y_1), \dots, (X_t, Y_t))$ of the data sequence

N. Cesa-Bianchi (UNIMI)

Learning algorithm A maps datasets to models in a given class ${\boldsymbol{\mathfrak H}}$

Variance error in statistical learning

$$\mathbb{E}\left[\log(A(S_{\mathsf{T}}), (X, Y))\right] - \inf_{\mathsf{h} \in \mathcal{H}} \mathbb{E}\left[\log(\mathsf{h}, (X, Y))\right]$$

compare to expected loss of best model in the class

Regret in online learning

$$\sum_{t=1}^{T} loss \big(A(S_{t-1}), (X_t, Y_t) \big) - \inf_{h \in \mathcal{H}} \sum_{t=1}^{T} loss \big(h, (X_t, Y_t) \big)$$

compare to cumulative loss of best model in the class

A natural blueprint for online learning algorithms

For t = 1, 2, ...

- Apply current model h_{t-1} to next data element (X_t, Y_t)
- **2** Update current model: $h_{t-1} \rightarrow h_t \in \mathcal{H}$

View this as a repeated game between a player generating predictors $h_t \in \mathcal{H}$ and an opponent generating data (X_t, Y_t)

1 My beautiful regret

2 A supposedly fun game I'll play again

- 3 A graphic novel
- 4 The joy of convex
- 5 The joy of convex (without the gradient)

Theory of repeated games

James Hannan (1922–2010)

David Blackwell (1919–2010)

Learning to play a game (1956)

Play a game repeatedly against a possibly suboptimal opponent

N. Cesa-Bianchi (UNIMI)

Zero-sum 2-person games played more than once

$N \times M$ known loss matrix

- Row player (player) has N actions
- Column player (opponent) has M actions

For each game round t = 1, 2, ...

- Player chooses action it and opponent chooses action yt
- The player suffers loss $l(i_t, y_t)$

(= gain of opponent)

Player can learn from opponent's history of past choices y_1, \ldots, y_{t-1}

Prediction with expert advice

	t = 1	t = 2	
1	$\ell_1(1)$	$\ell_2(1)$	
2	$\ell_1(2)$	$\ell_2(2)$	
÷	:	:	÷.,
Ν	$\ell_1(N)$	$\ell_2(N)$	

Volodya Vovk

Manfred Warmuth

Opponent's moves $y_1, y_2, ...$ define a sequential prediction problem with a time-varying loss function $\ell(i_t, y_t) = \ell_t(i_t)$

Playing the experts game

N actions

For t = 1, 2, ...

• Loss $l_t(i) \in [0, 1]$ is assigned to every action i = 1, ..., N(hidden from the player)

Playing the experts game

N actions

For t = 1, 2, ...

- Loss $l_t(i) \in [0, 1]$ is assigned to every action i = 1, ..., N(hidden from the player)
- O Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

Playing the experts game

N actions

For t = 1, 2, ...

- Loss $l_t(i) \in [0, 1]$ is assigned to every action i = 1, ..., N(hidden from the player)
- $\ensuremath{\mathfrak{O}}$ Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- Player gets feedback information: $\ell_t(1), \ldots, \ell_t(N)$

Losses $\ell_t(1), \ldots, \ell_t(N)$ for all $t = 1, 2, \ldots$ are fixed beforehand, and unknown to the (randomized) player

Oblivious regret minimization

$$R_{\mathsf{T}} \stackrel{\text{def}}{=} \mathbb{E}\left[\sum_{\mathsf{t}=1}^{\mathsf{T}} \ell_{\mathsf{t}}(\mathsf{I}_{\mathsf{t}})\right] - \min_{\mathsf{i}=1,\ldots,\mathsf{N}} \sum_{\mathsf{t}=1}^{\mathsf{T}} \ell_{\mathsf{t}}(\mathsf{i}) \stackrel{\text{want}}{=} \mathsf{o}(\mathsf{T})$$

Lower bound using random losses

- $\ell_t(\mathfrak{i}) \to L_t(\mathfrak{i}) \in \{0,1\}$ independent random coin flip
- For any player strategy

$$E\left[\sum_{t=1}^{T} L_t(I_t)\right] = \frac{T}{2}$$

• Then the expected regret is

$$\mathbb{E}\left[\max_{\mathfrak{i}=1,\dots,N}\sum_{t=1}^{T}\left(\frac{1}{2}-L_{t}(\mathfrak{i})\right)\right]=\left(1-o(1)\right)\sqrt{\frac{T\ln N}{2}}$$

Exponentially weighted forecaster

At time t pick action $I_t = i$ with probability proportional to

$$\exp\left(-\eta\sum_{s=1}^{t-1}\ell_s(\mathfrak{i})\right)$$

the sum at the exponent is the total loss of action i up to now

N actions

 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 <td

For t = 1, 2, ...

• Loss $l_t(i) \in [0, 1]$ is assigned to every action i = 1, ..., N (hidden from the player)

N actions ? <td

For t = 1, 2, ...

- Loss $l_t(i) \in [0, 1]$ is assigned to every action i = 1, ..., N (hidden from the player)
- 2 Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

N actions

? 3 ? ? ? ? ? ? ?

For t = 1, 2, ...

- Loss $\ell_t(i) \in [0,1]$ is assigned to every action $i=1,\ldots,N$ (hidden from the player)
- O Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- **9** Player gets feedback information: Only $\ell_t(I_t)$ is revealed

N actions

? ? ? ? ? ? ? ?

For t = 1, 2, ...

- Loss $l_t(i) \in [0, 1]$ is assigned to every action i = 1, ..., N (hidden from the player)
- O Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- I Player gets feedback information: Only $l_t(I_t)$ is revealed

Many applications

Ad placement, dynamic content adaptation, routing, online auctions

V. BIRHY

1 My beautiful regret

2 A supposedly fun game I'll play again

3 A graphic novel

- 4 The joy of convex
- 5 The joy of convex (without the gradient)

Relationships between actions

[Mannor and Shamir, 2011]

Undirected

Directed

A graph of relationships over actions

A graph of relationships over actions

A graph of relationships over actions

Recovering expert and bandit settings

Experts: clique Bandits: empty graph З 6 ? ? 9

Exponentially weighted forecaster — Reprise

Importance sampling estimator

$$\begin{split} \mathbb{E}_t \Big[\widehat{\ell}_t(\mathfrak{i}) \Big] &= \ell_t(\mathfrak{i}) & \text{unbiased} \\ \mathbb{E}_t \Big[\widehat{\ell}_t(\mathfrak{i})^2 \Big] &\leqslant \frac{1}{\mathbb{P}_t \big(\ell_t(\mathfrak{i}) \text{ observed} \big)} & \text{variance control} \end{split}$$

Independence number $\alpha(G)$

The size of the largest independent set

Independence number $\alpha(G)$

The size of the largest independent set

Regret bounds

Analysis (undirected graphs)

$$\begin{split} & \underset{R_{T} \leq \frac{\ln N}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} \mathbb{P}(I_{t} = i \mid \ell_{t}(i) \text{ observed}) \\ & = \sqrt{\alpha(G)T \ln N} \quad \text{by tuning } \eta \end{split}$$

If graph is directed, then bound worsens only by log factors

Special cases• Experts:
$$\alpha(G) = 1$$
 $R_T \leq \sqrt{T \ln N}$ • Bandits: $\alpha(G) = N$ $R_T \leq \sqrt{TN \ln N}$

The loss of action i at time t depends on the player's past m actions $\ell_t(i) \to L_t(I_{t-m},\ldots,I_{t-1},i)$

Minimax adaptive regret (for any constant m > 1)

 $R_{T}^{ada} = \Theta(T^{2/3})$

N. Cesa-Bianchi (UNIMI)

Partial monitoring: not observing any loss

Dynamic pricing: Perform as the best fixed price

- Post a T-shirt price
- Observe if next customer buys or not
- Adjust price

Feedback does not reveal the player's loss

Loss matrix

Feedback matrix

A characterization of minimax regret

Special case

Multiarmed bandits: loss and feedback matrix are the same

A general gap theorem [Bartok, Foster, Pál, Rakhlin and Szepesvári, 2013]

- A constructive characterization of the minimax regret for any pair of loss/feedback matrix
- Only three possible rates for nontrivial games:
 - Easy games (e.g., bandits): $\Theta(\sqrt{T})$
 - 2 Hard games (e.g., revealing action): $\Theta(T^{2/3})$
 - 3 Impossible games: $\Theta(\mathsf{T})$

My beautiful regret

- 2 A supposedly fun game I'll play again
- 3 A graphic novel
- 4 The joy of convex
- 5 The joy of convex (without the gradient)

A game equivalent to prediction with expert advice

Online linear optimization in the simplex

- **1** Play point \mathbf{p}_t from the N-dimensional simplex Δ_N
- 2 Incur linear loss $\mathbb{E}[\ell_t(I_t)] = \mathbf{p}_t^\top \widetilde{\ell}_t$
- 3 Observe loss gradient ℓ_t

Regret: compete against the best point in the simplex

$$\sum_{t=1}^{T} \mathbf{p}_{t}^{\top} \widetilde{\ell}_{t} - \underbrace{\min_{\mathbf{q} \in \Delta_{N}} \sum_{t=1}^{T} \mathbf{q}^{\top} \widetilde{\ell}_{t}}_{= \min_{i=1,\dots,N} \frac{1}{T} \sum_{t=1}^{T} \widetilde{\ell}_{t}(i)}$$

From game theory to machine learning

- Opponent's moves y_t are viewed as values or labels assigned to observations $x_t \in \mathbb{R}^d$ (e.g., categories of documents)
- A repeated game between the player choosing an element w_t of a linear space and the opponent choosing a label y_t for x_t
- Regret with respect to best element in the linear space

Online convex optimization

- Play point w_t from a convex linear space S
- 2 Incur convex loss $\ell_t(w_t)$
- Observe loss gradient $\nabla \ell_t(w_t)$
- (Update point: $w_t \rightarrow w_{t+1} \in S$

Example

• Regression with square loss: $\ell_t(\boldsymbol{w}) = (\boldsymbol{w}^\top \boldsymbol{x}_t - \boldsymbol{y}_t)^2 \quad \boldsymbol{y}_t \in \mathbb{R}$

• Classification with hinge loss: $\ell_t(w) = [1 - y_t w^\top x_t]_+ y_t \in \{-1, +1\}$

Regret

$$\sum_{t=1}^{T} \ell_t(w_t) - \inf_{u \in S} \sum_{t=1}^{T} \ell_t(u)$$

N. Cesa-Bianchi (UNIMI)

Finding a good online algorithm

Follow the leader

$$w_{t+1} = \operatorname{arginf}_{w \in S} \sum_{s=1}^{t} \ell_s(w)$$

Regret can be linear due to lack of stability

Example $S = [-1, +1] \qquad \ell_1(w) = 1 + \frac{w}{2} \qquad \ell_t(w) = \begin{cases} -w & \text{if t is even} \\ +w & \text{if t is odd} \end{cases}$

Regularized online learning

Strong convexity

 $\Phi:S\to \mathbb{R}$ is $\beta\text{-strongly convex w.r.t. a norm }\|\cdot\|$ if for all $u,v\in S$

$$\Phi(\mathbf{v}) \ge \Phi(\mathbf{u}) + \nabla \Phi(\mathbf{u})^{\top} (\mathbf{v} - \mathbf{u}) + \frac{\beta}{2} \|\mathbf{u} - \mathbf{v}\|^2$$

Example: $\Phi(\mathbf{v}) = \frac{1}{2} \|\mathbf{v}\|^2$

Follow the regularized leader [Shalev-Shwartz, 2007; Abernethy, Hazan and Rakhlin, 2008]

$$w_{t+1} = \underset{w \in S}{\operatorname{argmin}} \left[\eta \sum_{s=1}^{t} \ell_s(w) + \Phi(w) \right]$$

 Φ is a strongly convex regularizer defined on S

Linearization of convex losses

$$\ell_{t}(\boldsymbol{w}_{t}) - \ell_{t}(\boldsymbol{u}) \leqslant \underbrace{\nabla \ell_{t}(\boldsymbol{w}_{t})}_{\widetilde{\ell}_{t}}^{\top} \boldsymbol{w}_{t} - \underbrace{\nabla \ell_{t}(\boldsymbol{w}_{t})}_{\widetilde{\ell}_{t}}^{\top} \boldsymbol{u}$$

Follow the regularized leader with linearized losses

$$w_{t+1} = \underset{w \in S}{\operatorname{argmin}} \left(\eta \sum_{\substack{s=1 \\ \theta_t}}^t \widetilde{\ell}_s^\top w + \Phi(w) \right) = \underset{w \in S}{\operatorname{argmax}} \left(-\eta \theta_t^\top w - \Phi(w) \right)$$
$$= \nabla \Phi^* \left(-\eta \theta_t \right)$$

 Φ^* is the convex dual of Φ

Recall:

$$\boldsymbol{w}_{t+1} = \nabla \Phi^* \left(-\eta \, \boldsymbol{\theta}_t \right) = \nabla \Phi^* \left(-\eta \sum_{s=1}^t \nabla \ell_s(\boldsymbol{w}_s) \right)$$

Online Mirror Descent

For t = 1, 2, ...

- Use $w_t = \nabla \Phi^*(\theta_t)$ // dual parameter (via mirror step)
- 2 Suffer loss $\ell_t(w_t)$
- Observe loss gradient $\nabla \ell_t(w_t)$

// gradient step

- Exponentiated gradient: $S = \Delta_N$ and $\Phi(w) = \sum_{i=1}^{n} w_i \ln w_i$ [Kivinen and Warmuth, 1997]
- Online Gradient Descent: $S = \mathbb{R}^d$ and $\Phi(w) = \frac{1}{2} ||w||^2$ [Zinkevich, 2003]
- p-norm Gradient Descent: $S = \mathbb{R}^d$ and $\Phi(w) = \frac{1}{2(p-1)} ||w||_p^2$ [Gentile, 2003]
- Matrix gradient descent [Cavallanti, C-B and Gentile, 2010; Kakade, Shalev-Shwartz and Tewari, 2012]

General regret bound

Analysis relies on smoothness of Φ^* in order to bound increments $\Phi^*(\theta_{t+1}) - \Phi^*(\theta_t) \text{ via } \|\nabla \ell_t(\boldsymbol{w}_t)\|_*^2$

- If gradients are bounded, then $R_T = O(\sqrt{T})$
- $\bullet\,$ This is optimal for general convex losses ℓ_t
- If all ℓ_t are strongly convex, then $R_T = O(\ln T)$

ST. BIRDY

- The distribution of Z must be "stable" (small variance and small average sensitivity)
- For some choices of Z, FPL becomes equivalent to OMD [Abernethy, Lee, Sinha and Tewari, 2014]

Adaptive regularization

Online Ridge Regression

Vovk, 2001; Azoury and Warmuth, 2001]

$$\begin{split} \sum_{t=1}^{T} \left(\boldsymbol{w}_{t}^{\top} \boldsymbol{x}_{t} - \boldsymbol{y}_{t} \right)^{2} &\leq \inf_{\boldsymbol{u} \in \mathbb{R}^{d}} \left(\sum_{t=1}^{T} \left(\boldsymbol{u}^{\top} \boldsymbol{x}_{t} - \boldsymbol{y}_{t} \right)^{2} + \|\boldsymbol{u}\|^{2} \right) + d \ln \left(1 + \frac{T}{d} \right) \\ \Phi_{t}(\boldsymbol{w}) &= \frac{1}{2} \left\| \boldsymbol{w} \right\|_{A_{t}}^{2} \qquad A_{t} = I + \sum_{s=1}^{t} \boldsymbol{x}_{s} \boldsymbol{x}_{s}^{\top} \end{split}$$

More examples

- Online Newton Step [Hazan, Agarwal and Kale, 2007] Logarithmic regret for exp-concave loss functions
- AdaGrad [Duchi, Hazan and Singer, 2010] Competitive with "optimal" fixed regularizer
- Scale-invariant algorithms [Ross, Mineiro and Langford, 2013] Regret invariant w.r.t. rescaling of single features

Nonstationarity

- If data source is not fitted well by any model in the class, then comparing to the best model $u \in S$ is trivial
- Compare instead to the best sequence $\mathbf{u}_1, \mathbf{u}_2, \dots \in S$ of models

Online active learning

- Observing the data process is cheap
- Observing the label process is expensive
 - \rightarrow need to query the human expert

Question

How much better can we do by subsampling adaptively the label process?

N. Cesa-Bianchi (UNIMI)

A game with the opponent

Opponent avoids causing mistakes on documents far away from decision surface

Probability of querying a document proportional to inverse distance to decision surface

Binary classification performance guarantee remains identical (in expectation) to the full sampling case

Experiments on document categorization

N. Cesa-Bianchi (UNIMI)

Online Approach to ML

42/53

Parameters: Strongly convex regularizer Φ and learning rate $\eta > 0$ Initialize: $\theta_1 = 0$ // primal parameter For t = 1, 2, ... Use $w_t = \nabla \Phi^*(\theta_t)$ // mirror step with projection on S Suffer loss $\ell_t(w_t)$ Compute estimate \hat{g}_t of loss gradient $\nabla \ell_t(w_t)$ Update $\theta_{t+1} = \theta_t - \eta \hat{g}_t$ // gradient step

Typically, $\Phi(w) = \frac{1}{2} ||w||^2$ (stochastic OGD)

Attribute efficient learning [C-B, Shamir, Shalev-Shwartz, 2011]

Use Stochastic OGD with square loss l_t(w) = ½(w^Tx_t - y_t)²
∇l_t(w) = (w^Tx_t - y_t)x_t

Unbiased estimate of square loss gradient using two attributes

- Estimate of $w^{\top}x$: query x_i according to $p(i) = \frac{|w_i|}{||w||_1}$
- 2 Estimate of x: query x_j uniformly at random

(a) Gradient estimate: $\widehat{\mathbf{g}} = \left(\|\mathbf{w}\|_1 \operatorname{sgn}(\mathbf{w}_i) \mathbf{x}_i - \mathbf{y} \right) d\mathbf{x}_j \mathbf{e}_j$

1 My beautiful regret

- 2 A supposedly fun game I'll play again
- 3 A graphic novel
- 4 The joy of convex
- 5 The joy of convex (without the gradient)

Online convex optimization with bandit feedback

For T = 1, 2, ...

- Play point w_t from a convex linear space S
- 2 Incur and observe convex loss $l_t(w_t)$
- **③** Update point: $w_t \rightarrow w_{t+1} \in S$

Regret

$$R_{T} = \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}(\boldsymbol{w}_{t})\right] - \inf_{\boldsymbol{u} \in S} \sum_{t=1}^{T} \ell_{t}(\boldsymbol{u})$$

Gradient descent without a gradient [Flaxman, Kalai and McMahan, 2004]

Run stochastic OGD using a perturbed version of *w*_t: *w*_t + δ U
 (U is a random unit vector and δ > 0)

Gradient estimate
$$\widehat{g}_t = \frac{d}{\delta} \ell_t (w_t + \delta \mathbf{U}) \mathbf{U}$$

• Fact (Stokes' Theorem): If ℓ_t were differentiable, then $\mathbb{E}[\widehat{g}_t] = \nabla \mathbb{E}[\ell_t(w_t + \delta B)]$

where **B** is a random vector in the unit ball

 \hat{g}_t estimates the gradient of a locally smoothed version of ℓ_t

- If l_t is Lipschitz, then the smoothed version is a good approximation of l_t
- $\bullet\,$ Radius $\delta\,$ of perturbation controls bias/variance trade-off $\,$

Regret of stochastic OGD for convex and Lipschitz loss sequences $R_T = O \bigl(T^{3/4} \bigr)$

- If l_t is Lipschitz, then the smoothed version is a good approximation of l_t
- $\bullet\,$ Radius $\delta\,$ of perturbation controls bias/variance trade-off $\,$

Regret of stochastic OGD for convex and Lipschitz loss sequences

 $\mathsf{R}_{\mathsf{T}} = \mathcal{O}\big(\mathsf{T}^{3/4}\big)$

The linear case

- Assume losses are linear functions on S, $l_t(w) = l_t^\top w$
- Can we achieve a better rate?

Self-concordant functions [Abernethy, Hazan and Rakhlin, 2008]

- Run stochastic OGD regularized with a self-concordant function for S
- Variance control through the associated Dikin ellipsoid
- Loss estimate $\hat{\ell}_t$ obtained via perturbed point $W_t \pm e_i \sqrt{\lambda_i}$ $\{e_i, \lambda_i\}$ is a randomly drawn eigenvector-eigenvalue pair of Dikin ellipsoid

- Build an ε -cover $S_0 \subseteq S$ of size ε^{-d}
- Use experts algorithm (e.g., exponential weights) to draw actions $W_t \in S_0$ and use unbiased linear estimator for the loss

 $\widehat{\boldsymbol{\ell}}_{t} = \mathsf{P}_{t}^{-1} W_{t} \frac{W_{t}^{\top} \boldsymbol{\ell}_{t}}{W_{t}^{\top} \boldsymbol{\ell}_{t}} \quad \text{where} \quad \mathsf{P}_{t} = \mathbb{E} \big[W_{t} \, W_{t}^{\top} \big]$

• Mix exponential weights with exploration distribution μ over the actions in the cover:

$$p_{t}(\boldsymbol{w}) = (1 - \gamma) \underbrace{q_{t}(\boldsymbol{w})}_{\text{exp. distrib.}} + \frac{\gamma \mu(\boldsymbol{w})}{\gamma \mu(\boldsymbol{w})} \qquad (0 \leq \gamma \leq 1)$$

μ controls the variance of the loss estimates by ensuring all directions are sampled often enough

Regret bound

$$R_{T} = \mathcal{O}\left(d\sqrt{\left(\frac{1}{d\lambda_{\min}} + 1\right)T\ln T}\right)$$

 $\lambda_{\min} = \text{smallest eigenvalue of } \mathbb{E}_{\mu} [WW^{\top}]$

- λ_{\min}^{-1} is proportional to the variance of loss estimates
- When $\lambda_{\min} \approx \frac{1}{d}$ we get the optimal bound $\Theta\left(d\sqrt{T \ln T}\right)$
- If μ is uniform over all actions, the above happens when action space is approximately isotropic

Choose a basis under which the action set looks isotropic

- There are at most $O(d^2)$ contact points between S_0 and Löwner ellipsoid (the min volume ellipsoid enclosing S_0)
- Put exploration distribution μ on these contact points
- This ensures that $\mathbb{E}_{\mu}[WW^{\top}]$ is isotropic: $\lambda_{\min} = \frac{1}{d}$
- Exploration on contact points of Löwner ellipsoid achieves optimal regret

$$\mathsf{R}_{\mathsf{T}} = \mathfrak{O}\left(\mathsf{d}\,\sqrt{\mathsf{T}\,\mathsf{ln}\,\mathsf{T}}\right)$$

- However, this construction is not efficient in general
- An efficient construction uses volumetric ellipsoids [Hazan, Gerber and Meka, 2014]

Conclusions

More applications

- Portfolio management
- Matrix completion
- Competitive analysis of algorithms
- Recommendation systems

Some open problems

- Exact rates for bandit convex optimization
- Trade-offs between regret bounds and running times
- Online tensor and spectral learning
- Problems with states

