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1 Lie symmetries of Differential Equations and their

extension

Sophus Lie (1842 – 1899) introduced the notion of continuous group of transformations

to unify the various techniques for solving ODE’s. He was motivated by the work of

Evariste Galois (1811– 1832) for solving algebraic equations.

A one–parameter Lie group of transformations x̃ = F(x, ε) is defined by the following

axioms:

1. Closure property: ˜̃x = F(x̃, δ) = F(x, φ(ε, δ))

2. Associativity property: F(x, φ(a, φ(b, c))) = F(x, φ(φ(a,b), c)).

3. Identity element: x = F(x, e).

4. Inverse element: x = F(x̃, δ−1) = F(x, φ(δ, δ−1)).

5. F is differentiable in x and analytic in ε.

6. φ(ε, δ) is analytic in ε and δ.
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ε is a continuous parameter and we can always take ε = 0 as the identity.

Infinitesimal transformation: x̃ = x + ε
[
∂F
∂ε |ε=0

]
+O(ε2)

Infinitesimal coefficient: ξ(x) =
[
∂F
∂ε |ε=0

]
Infinitesimal generator: X̂ = ξ(x)∂x =

∑n
i=0 ξi(x)∂xi

First Lie Theorem There exists a parametrization τ(ε) such that the Lie group of

transformations F is equivalent to the solution of an initial value problem for a system

of first order ODE’s

(1)
dx̃

dτ
= ξ(x̃)

with x̃ = x when τ = 0.

τ(ε) is a well defined function of ε given by:

τ(ε) =

∫ ε

0

Γ(η)dη,

Γ(η) =
∂φ(α, β)

∂β

∣∣∣
(α,β)=(η−1,η)

.
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In terms of the infinitesimal generators the First Lie Theorem can be written as

Theorem: The one–parameter Lie group of transformations is equivalent to

(2) x̃ = eεX̂x =
∞∑
k=0

εk

k!
X̂
k
x.

The expression (2) is called the Lie series.

Corollary: If f(x) is an infinitely differentiable function, then its transformed f(x̃),

under a one–parameter Lie group F, is:

(3) f(x̃) = f(eεX̂x) = eεX̂f(x).

1.1 Invariant functions

An infinitely differentiable function f(x) is an invariant function of the one–parameter

Lie group of transformations iff f(x̃) = f(x). The invariant function f(x) is called an

invariant of the one–parameter Lie group of transformations F and we may also say

that f(x) is invariant under the one–parameter Lie group of transformations F.
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Theorem: f(x) is invariant under the one–parameter Lie group of transformations F

iff

(4) X̂f(x) = 0

1.2 Invariant surface

A surface F(x) = 0 is invariant under the one parameter Lie group of transformations

of infinitesimal generator X̂ if

X̂F(x) = 0 when F(x) = 0
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1.3 Evolutionary form of the infinitesimal generators and

higher order transformations

Let us consider a symmetry of a system characterized by a dependent variable u(x) and

an independent x (u and x could be vectors too). The infinitesimal generator for the

Lie point symmetry for such a system will be given by

X̂ = ξ(x, u)∂x + η(x, u)∂u

An infinitesimal generator of a 1–parameter Lie group of transformations will be in

evolutionary or characteristic form if it is written as:

X̂ = [η(x, u)− u1ξ(x, u)]
∂

∂u

By the First Lie Theorem the Lie Group will be obtained by solving the following

system of coupled first order differential equations

dx̃

dε
= ξ(x̃, ũ),

dũ

dε
= η(x̃, ũ).(5)
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In the evolutionary form we have

∂x̃

∂ε
= 0,

∂ũ

∂ε
= η(x̃, ũ)− ∂ũ

∂x̃
ξ(x̃, ũ)(6)

i.e. a partial differential equation which, on the characteristics, provide the same

solutions as the system (5).

The evolutionary form is a natural starting point to extend the transformations.

We generalize the infinitesimal coefficient of the Lie point symmetries in the

evolutionary form by introducing a dependence on derivatives of u up to order

k:

X̂ = η(x, u, u1, . . . , uk)
∂

∂u

Then the group transformations are obtained by solving the differential equation
∂ũ
∂ε = η(x, ũ, ũ1, . . . , ũk). This is a PDE of order k, maybe nonlinear, which, even if

it is of first order in the group parameter ε, in general it will not be solvable.

Formally we can solve it by exponentiating and obtain the corresponding

one–parameter group of transformations acting on the space of the function u(x),
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x̃ = x, ũ = u+ εη +O(ε2). To get the coefficient of ε2, one needs to prolong X̂ so as to

be able to act on the variable u1, u2, . . . , uk appearing in η. If we look for the higher

order terms in the ε expansion we need to prolong still further. So to preserve the

contact condition we will need to use

X̂
(∞)

=
∞∑
j=0

Djη
∂

∂uj

with u0 = u, and thus

x̃ = x, ũ = u+
∞∑
j=1

εj

j!
(X̂

(∞)
)j−1η.

If η = η(x, u, u1) and d2η
du2

1
6= 0 then we say that the one–parameter Lie transformation is

a contact transformation.

The meaning of contact transformations can be clarified by considering them in the

standard formalism. In this case

X̂ = ξ(x, u, u1)∂x + φ(x, u, u1)∂u + φ(1)(x, u, u1, u2)∂u1
.
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In general, as φ and ξ contain u1 the coefficient of the first prolongation will contain u2.

A contact transformation is such that φ(1) depends just on u1. This gives a

constraint φu1 = u1ξu1 . A contact transformation exists only if ξu1 6= 0.

Contact transformations exist only if we have a scalar differential equations.

For systems of differential equations, contact transformations reduce to point

transformations (the group of contact transformations reduce to the first prolongation

of a group of point transformations).

Bäcklund proved that group of transformations containing derivatives of

order higher than one, are infinite [42].
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2 Symmetries of equations defined on a lattice

2.1 Lattices and equations defined on them

By a difference equation we mean a functional relation, linear or non-linear,

between functions calculated at different points of a lattice [2, 5, 27,48,85].

These systems appear in many applications. First of all they can be written down as

discretizations of a differential equation when one is trying to solve it with a

computer. In such a case one reduces the differential equation to a recurrence relation:

du

dx
= f(x, u) ⇒ v(n+ 1) = g(n, v(n)).

On the other hand we can consider dynamical systems defined on a lattice, i.e.

systems where the real independent fields depend on a set of independent variables

which vary partly on the integers and partly on the reals. For example we can consider

d2u(n, t)

dt2
= F (t, u(n, t), u(n− 1, t), .., u(n− a, t), u(n+ 1, t), .., u(n+ b, t)).

These kind of equations can appear in many different setting. Among them they are
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associated to the evolution of many body problems, to the study of crystals, to

biological and economical systems, etc. .

As an example of possible applications we consider the problem of the transmission

of energy in one dimensional molecular system, problem which is of particular

relevance for understanding the functioning of physical systems of biological

interest [15]. This is a particularly hot topic as some relevant biological processes

require the transport of energy with low dispersion along essentially one dimensional

chains, such as the spines in an α helix [25]. A mechanism for the nondispersive

transport of vibrational energy along hydrogenon bonded chains was proposed by

Davydov and its continuous limit for small lattice spacing gave rise to a Nonlinear

Schrödinger equation (NLS) which has soliton solutions [81]. If such soliton like

solutions are valid also at biological temperatures is an open problem.

In the case of diatomic nonlinear lattices we can describe such systems by the equations

M1ẍn − k1(yn − xn) + k2(xn − yn−1)− εβ1(yn − xn)2 + εβ2(xn − yn−1)2 = 0

M2ÿn + k1(yn − xn)− k2(xn+1 − yn) + εβ1(yn − xn)2 − εβ2(xn+1 − yn)2 = 0

where M1 and M2 are the different values of the two atomic masses, ε is a small
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parameter while k1, k2, β1 and β2 are four constants of order 1. When k2 � k1 these

equation represent a molecular chain with intramolecular interaction stronger than the

intermolecular one. This is the case, for example, of an hydrogen-bonded

polypeptide chain.

Further examples are connected to Quantum Gravity (QG), where one of the most

fruitful recent approaches to the problem are based on the discretization of

space–time. In this way one hopes to obtain a non–trivial theory without the use of

perturbation expansions. In the approach to QG introduced by Gambini and

Pullin [33] one considers a discrete action S =
∑N
n=1 L(qn, qn+1). The Lagrange

equation of motion are given by ∂S
∂qn

= ∂L(qn−1,qn)
∂qn

+ ∂L(qn,qn+1)
∂qn

= 0 and a simple

example of Lagrangian is given by L = m
2τ (qn+1 − qn)2 − τV (qn). In this approach

one then quantizes the systems by a discrete canonical transformation and then looks

for the consequences of the theory by performing a quantum continuum limit.

Further examples of discrete equations are provided by recurrence relations. For an

example one can consider the logistic map which describe the growth of a population:

xn+1 = rxn(1− xn). These maps can appear as approximations of differential equations

(see up above) or as functional equations in various fields as statistics, engineering,
12



etc. . The problem of solving functional equations has been discussed by many

mathematicians, see for example, D’Alambert, Cauchy, Abel, Hilbert, etc. [3].

Summing up difference equations either appear in themselves and we would like

to use Lie theory to get classes of exact solutions or we obtain them by

discretizing the continuum equation in such a way to preserve the

symmetries (Dorodnitsyn, and collaborators), i.e. we create sets of discrete equations

which provide numerical schemes approximating the continuum equation.

For simplicity in the following I will consider just the case of a scalar equation in at

most two independent variables but, similar results can be obtained in the case of N

independent and M dependent variables.

A discrete equation in R2 is thus a functional relation for a field u at different points Pi

in R2, i.e. E = E(x, t, u(P1), . . . , u(PL)) = 0. A differential difference equation is

obtained by considering the points Pi uniformly spaces in one direction, say t, with

spacing ht, in such a way that we are allowed to consider the continuous limit when ht

goes to zero.
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The points Pi in R2 can be labeled by two discrete indexes, the computational

variables, which characterize the points with respect to two independent directions,

Pn,m and can be displayed on lines characterized by the constancy of one index.
Discretization of partial differential equations preserving their physical symmetries 9767
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Figure 1. The (x, t) coordinates of points on a two-dimensional lattice.

and the fact that the corresponding group transformations (3) will take solutions into solutions
is assured by imposing

pr V[Ea]|E1=E2=0 = 0, a = 1, 2. (6)

This approach has proven to be fruitful for large classes of ordinary difference schemes
(O�Ss) [8, 9, 14, 21]. It provides exact discretizations of first-order ODEs [21] (i.e. O�Ss
that have exactly the same solutions as their continuous limits) and second-order O�Ss that
can be exactly solved [8, 9]. As pointed out earlier [15, 18, 24], the use of point symmetries
on fixed, nontransforming lattices is much less fruitful.

In section 2 we present the general symmetry preserving discretization of a scalar PDE
with two independent variables. In spirit the method is the same as used for ODEs [8, 9] and
it leads to a system of three difference equations (rather than two as for ODEs). Sections 3, 4
and 5 are devoted to examples. The linear heat equation is treated in section 3, the Burgers and
Korteweg–de Vries equations in sections 4 and 5, respectively. The final section 6 is devoted
to some conclusions and the future outlook.

2. Invariant discretization of a partial differential equation

For simplicity of notation we restrict ourselves to a PDE involving one scalar function of two
variables u(x, t). It will be approximated by a difference equation on a symmetry adapted
lattice. The lattice consists of points distributed in a plane. We will label these points by
an ordered pair of integers Pm,n. We also introduce continuous coordinates in the plane and
call them (x, t), though they do not necessarily correspond to space and time and are not
necessarily Cartesian coordinates. The coordinates of the point Pm,n will be

(xm,n, tm,n), (m, n) ∈ Z2; (7)

see figure 1.
The actual partial difference scheme will be a set of relations between the variables

(xm,n, tm,n, um,n) evaluated at a finite number of points on the lattice. The first question is:
how many relations and how many points do we need?

We start from a given PDE

E(x, t, u(n)(x, t)) = 0, (8)

In cartesian coordinates we have:

(7) Pn,m = (xn,m, tn,m)

and the function u(P ) reads

(8) uPn,m
= u(xn,m, tn,m) = un,m.

A difference scheme will be a set of relations among the values of {x, t, u(x, t)} at a
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finite number, say L, of points in R2 {P1, . . . , PL} around a reference point, say P1.

Some of these relations will define where the points are in R2 and others how u(P )

transforms in R2. In our case, as we have one only dependent variable and two

independent variables we expect to have at most five equations, four which define the

two independent variables in the two independent directions in R2, and one the

dependent variable in terms of the lattice points:

Ea({xn+j,m+i, tn+j,m+i, un+j,m+i}) = 0(9)

1 ≤ a ≤ 5; −i1 ≤ i ≤ i2, −j1 ≤ j ≤ j2 (i1, i2, j1, j2)εZ

i1 + i2 = N, j1 + j2 = M.

System (9) must be such that, starting from L points we are able to calculate {x, t, u}
in all points of interest. So if we give four equations for the lattice, two for each

independent direction, then these equations must be compatible among themselves. If

the lattice is not defined a priory then we can have less equations. Three equations may

be sufficient if we solve a Cauchy Problem.
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Example: discrete u,xt = 0

1

tm+1,n − tm,n

[um+1,n+1 − um+1,n

xm+1,n+1 − xm+1,n
− um,n+1 − um,n
xm,n+1 − xm,n

]
= 0,(10)

tm,n+1 − tm,n = 0, xm+1,n − xm,n = 0,(11)

whose solution is given by um,n = f(xm,n) + g(tm,n) with tm,n = αm and xm,n = βn. If

we define the functions tm,n and xm,n by two other equations, for example

tm+1,n − tm,n = hn, xm,n+1 − xm,n = km,(12)

the compatibility of eqs. (11, 12) implies hn+1 = hn and km+1 = km, i.e. hn and km
constants.

If a continuous limit of (9) exists, then one of the equations will go over to a partial

differential equation and the others will be identically satisfied (generically 0 = 0). We

can also do partial continuous limits when only one of the independent variables

become continuous while the other is still discrete. In this case only part of the lattice

equations are identically satisfied and we obtain a differential difference equation for

the dependent variable and an equation for the lattice variable.
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Lie point symmetries are characterized by transformations of the form:

x̃ = Fg(x, t, u) = x+ g ξ(x, t, u) + . . .(13)

t̃ = Gg(x, t, u) = t+ g τ(x, t, u) + . . .

ũ = Hg(x, t, u) = u+ g φ(x, t, u) + . . .

where g, as before, is a group parameter. The transformation (13) is such that if

{x, t, u} satisfy the difference scheme Ea = 0, {x̃, t̃, ũ} will be a solution of the same

scheme. Such a transformation acts on the whole space of the independent and

dependent variables {x, t, u}, at least in some neighborhood of P1 including all points

up to PL. This means that the set of functions Fg, Gg and Hg must be well

behaved in the region where PL are defined and will determine the transformation

in all points of the scheme. In the point P1 we define the infinitesimal generator as:

(14) X̂P1
= ξ(x, t, u)∂x + τ(x, t, u)∂t + φ(x, t, u)∂u

and then we prolong it to all other L− 1 points of the scheme. Since the

transformation is given by the same set of functions {Fg, Gg, Hg} at all points, the

prolongation of X̂Pj is obtained simply by evaluating X̂P1 at the corresponding
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points involved in the scheme. So

(15) prX̂ =
L∑
i=1

X̂Pi
.

Consequently the invariance condition for the difference scheme is:

(16) prX̂Ea|Ea=0 = 0.

Eq.(16) is a set of functional equations whose solution is obtained, following Abel [1],

by turning them into differential equations by successive derivation with respect to the

independent variables {x, t, u} at the different points of the lattice [3].

The solution of (16) provide the function ξ(x, t, u), τ(x, t, u) and φ(x, t, u), the

infinitesimal coefficients of the local Lie point symmetry group. The transformation is

obtained by integrating the vector field, i.e. by solving the following system of
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differential equations:

dx̃

dg
= ξ(x̃, t̃, ũ), x̃|g=0 = x,

dt̃

dg
= τ(x̃, t̃, ũ), t̃|g=0 = t,(17)

dũ

dg
= φ(x̃, t̃, ũ), ũ|g=0 = u.

In general we expect the infinitesimal coefficients ξ and τ to be determined

by the lattice equations. So according to the form of the lattice, different

symmetries can appear.

Example: the discrete heat equation on a uniform orthogonal lattice:

un+1,m − un,m
tn+1,m − tn,m

=
un,m+2 − 2un,m+1 + un,m

(xn,m+1 − xn,m)2
(18)

xn,m+1 − xn,m = hx; tn,m+1 − tn,m = 0(19)

xn+1,m − xn,m = 0; tn+1,m − tn,m = ht,

where hx, ht are two a priory fixed constants which define the spacing between two
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neighboring points in the two directions of the orthogonal lattice. By applying the

infinitesimal generator (14) to the lattice equations we get:

ξ(xn,m+1, tn,m+1, un,m+1) = ξ(xn,m, tn,m, un,m);

ξ(xn+1,m, tn+1,m, un+1,m) = ξ(xn,m, tn,m, un,m).

From (18) un,m+1, un+1,m and un,m can be chosen as independent functions

and thus we get ξ = ξ(x, t). As tn,m+1 = tn,m and xn,m+1 6= xn,m we get ξ = ξ(t).

As xn+1,m = xn,m and tn+1,m 6= tn,m we get that the only possible value is

ξ=costant. In a similar fashion we derive that also τ must be a constant and that

φ=u+ s(x, t), where s(x, t) is a solution of the discrete heat equation (18), the linear

superposition formula. Summarizing we get that the infinitesimal generators of the

symmetries for the discrete heat equation (18) are given by

(20) P̂0 = ∂t; P̂1 = ∂x; Ŵ = u∂u; Ŝ = s(x, t)∂u.
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Let us prove, in the case of ordinary difference equations when we have just one

discrete independent variable xn and one dependent variable un(xn) that the

prolongation formula given above (15) has the proper continuous limit.

To do so we show that it can be recast in a form which corresponds to the well know to

you continuous formula. We consider a prolonged vector field

pr1X̂n = ξ(xn, un)∂xn
+ φ(xn, un)∂un

(21)

+ ξ(xn+1, un+1)∂xn+1 + φ(xn+1, un+1)∂un+1 ,

depending on two neighboring points xn, un, xn+1 and un+1 as we want to

approximate a first derivative. We can define the new variables x̃n, ũn, hn+1 and

ux,n+1, given by the incremental ratio

x̃n = xn, ũn = un, hn+1 = xn+1 − xn, ux,n+1 =
un+1 − un
xn+1 − xn

.(22)
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Rewriting the prolonged vector field (21) in the new variables, we get:

pr1X̂n = ξ(x̃n, ũn)∂x̃n
+ φ(x̃n, ũn)∂ũn

(23)

+ [ξ(x̃n + hn+1, ũn + hn+1ux,n+1)− ξ(x̃n, ũn)]∂hn+1

+
[φ(x̃n + hn+1, ũn + hn+1ux,n+1)− φ(x̃n, ũn)

hn+1

− ux,n+1
ξ(x̃n + hn+1, ũn + hn+1ux,n+1)− ξ(x̃n, ũn)

hn+1

]
∂ux,n+1

.

When hn+1 → 0 eq. (23) gives the first continuous prolongation in term of derivatives:

lim
hn+1→0

pr1X̂n = ξ(x, u)∂x + φ(x, u)∂u + [Dxφ− uxDxξ]∂ux
.

Equation (23) gives a formula for the discrete prolongation

φ(1) =
[φ(x̃n + hn+1, ũn + hn+1ux,n+1)− φ(x̃n, ũn)

hn+1
(24)

− ux,n+1
ξ(x̃n + hn+1, ũn + hn+1ux,n+1)− ξ(x̃n, ũn)

hn+1

]
.
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In the following we will show that

1. Given a discrete equation we can apply to it the same procedures as for

differential equations.

2. Given a differential equation with symmetries we can construct a

difference scheme which approximate it while preserving the symmetries.

2.1.1 Symmetries of the discrete–time Toda lattice

Let us consider the discrete–time Toda lattice (the Hirota equation)

F = eun,m−un,m+1 − eun,m+1−un,m+2(25)

− α2
[
eun−1,m+2−un,m+1 − eun,m+1−un+1,m

]
= 0,

and the associated non–transformable orthogonal lattice

L = [xn,m − n · σx, tn,m −m · σt] = [0, 0] = 0.(26)

where σx and σt are given real constants.
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Let us define t = tn,m, vn(t) = un,m and α = σ2
t . Then the limit of (25) when σt → 0,

m→∞ such that t is finite gives the Toda lattice equation

v̈n = evn−1−vn − evn−vn+1 .(27)

The infinitesimal generator for (25, 26) is

X̂n,m = ξn,m∂xn,m
+ τn,m∂tn,m

+ φn,m∂un,m
,

and the invariance condition

prX̂n,mF
∣∣∣
F=0,L=0

= 0, prX̂n,mL
∣∣∣
F=0,L=0

= 0.

As the lattice is non–transformable with a given origin ξn,m = 0 and τn,m = 0. In (25)

one can take un,m, un,m+1, un,m+2, un+1,m as independent and can express un−1,m+2

in term of them. Then the determining equation reads

eun,m−un,m+1 [φn,m − φn−1,m+2](28)

+ eun,m+1−un,m+2 [φn−1,m+2 + φn,m+2 − 2φn,m+1]

− α2eun,m+1−un+1,m [φn−1,m+2 + φn+1,m − 2φn,m+1] = 0.
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Differentiating (28) with respect to un,m+2 and eliminating a non–zero multiplicative

factors we get

dφn,m+2

dun,m+2
=
dφn−1,m+2

dun−1,m+2
+ φn,m+2 + φn−1,m+2 − 2φn,m.(29)

Differentiating (29) with respect to un,m we get
dφn,m+2

dun,m+2
+ φn,m+2 = c1, i.e.

φn,m = c0 + c1e
−un,m where c0 and c1 are integration constants and thus are arbitrary

functions of n and m. Introducing this result in (28) we get c1(n,m) = 0 and

c0(n,m) = c0.

So the only point symmetry of the equation F = 0 on a nontransformable uniform

lattice is a translation in un,m as the equation depends on differences.

The discrete time Toda lattice admits generalized symmetries. One of these symmetries

is

X̂n,m = Q(un,m, un−1,m+1, un,m+1)∂un,m
,(30)

Q = αeun−1,m+1−un,m +
1

α
eun,m−un,m+1 .
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A symmetry reduction with respect to the generalized symmetry (30) is obtained by

requiring the simultaneous solution of F = 0 and Q = 0. Taking into account Q = 0 the

nonlinear equation F = 0 reduces to ∆n∆mun,m = 0 where ∆nun,m = un+1,m − un,m
and similarly for ∆m. So un,m = gm + fn and introducing this result into the equation

Q = 0 we get as a solution un,m = u0 + n log(k0) +m log(k1) with α2k0 + k1 = 0.

2.1.2 From symmetries of discrete equations to symmetries of differential

difference equations

We consider here scalar difference equations where one of the independent variable is

continuous, i.e. vn(t).

E(v̈n, v̇n, {vn+i}ibi=ia) = 0, ib ≥ ia.(31)

The symmetry generator will have the form:

X̂ = τn(t, vn)∂t + φn(t, vn)∂vn(t)
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Any symmetry generator as X̂ can be rewritten in an equivalent evolutionary form as

X̂e = Qn(t, vn, v̇n)∂vn , Qn = φn(t, vn)− τn(t, vn)v̇n.

From Lie theorem we deduce that the existence of a symmetry for the equation E = 0 is

equivalent to commuting flows

E = 0,
dvn(t, ε)

dε
= Qn(t, vn(t, ε), v̇n(t, ε)).

The compatibility of the two equations implies a determining equation

E,v̈nQ̈n + E,v̇nQ̇n +

ib∑
i=ia

E,vn+i
Qn+i

∣∣∣
E=0

= 0(32)

Taking into account the explicit form of Qn in term of τn we get from the last term of

(32) that the following equation must be satisfied

τn(t, vn) = τn+ia(t, vn+ia)(33)

By proper differentiation this last equation implies that τn(t, vn) = τ(t).

So, the symmetries of any differential difference equation of the form (31) will be given
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by a symmetry generator

X̂n = τ(t)∂t + φn(t, vn(t))∂vn .(34)

As an example we construct the symmetries of the Toda lattice equation (27). The

determining equation is

φ(2)n −
[
evn−1−vn

(
φn−1 − φn

)
(35)

− evn−vn+1
(
φn − φn+1

)]∣∣∣
v̈n=e

vn−1−vn−evn−vn+1
.

where φ
(2)
n = φ̈n + [2φ̇n,vn − τ̈ ]v̇n +[φn,vn − 2τ̇ ]v̈n. As vn±1 are independent fields we get

by differentiating with respect to them the following four dimensional symmetry algebra

D̂ = t∂t + 2vn∂vn , T̂ = ∂t,(36)

Ŵ = t∂vn , Û = ∂vn .

Non–trivial solutions for the Toda lattice (27), different from the soliton solutions, can

be obtained by symmetry reduction with respect respectively to the symmetries
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T̂ + cŴ and D̂ + dÛ :

vn = p− 1

2
ct2 −

n∑
j=1

log(q − cj),(37)

vn = p+ 2(n+ d) log t−
n∑
j=0

log[q + (2d− 1)j + j2],

where p and q are some integration constants. Conditional symmetries will provide in

this case new special solutions [58].

2.1.3 Symmetry preserving discretization of differential equations

In this Section we consider a given differential equation, for example an ODE

E(x, u, u̇, ü, . . .) = 0 and its point symmetries, X̂ = ξ(x, u)∂x + φ(x, u)∂u. We want to

construct a discrete equation whose continuous limit gives the differential

equation E = 0 at a certain order in the lattice parameter approximation and

which has the same symmetry group X̂ or one of its nontrivial subgroups.
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For simplicity we limit our discussion to the case of ODEs but similar results can be

presented also in the case of PDEs.

• Discretizations which preserve the symmetry group, also preserve the set of exact

solutions.

• The discrete scheme can be implemented on a computer and it represents a

symmetry preserving numerical discretization scheme.

If the continuous equation has ξ 6= 0 then the lattice spacing cannot be constant

and the differential equation will be represented by a difference scheme, where the

lattice is described by a difference equation, possibly giving an orthogonal

coordinate system.

We describe here in general the procedure necessary to discretize an ODE and

write down the discrete scheme and then we will present with all details an

example.

If E = 0 is an ODE of order N then the simplest scheme ∆ = 0 we can construct which

describe it must involve essentially N + 1 lattice points for the independent and

dependent variables {xj , uj ; j = 1, 2, ·, N + 1} to be able to reconstruct the first
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approximation to the N–derivative.

i We consider the M infinitesimal generators X̂j , j = 1, · · · ,M of the symmetry

algebra L of the Lie point symmetries of the equation E = 0 and we prolong them

to the N + 1 points of the lattice.

ii We construct a basis given by all the invariant obtainable from the prolonged

generators. This basis will include K functionally independent invariants

Ia = Ia(x1, x2, . . . , xN+1, u1, . . . , uN+1), 1 ≤ a ≤ K,(38)

obtained as constant of integration when solving the invariance equations

prX̂jIa = 0, j = 1, . . . ,M.(39)

We need at least two independent invariants to be able to construct an invariant

scheme ∆ = 0 which in the continuous limit gives the ODE E = 0. If the number of

invariants is not sufficient we can consider also the invariant varieties, i.e. those

invariant equations which are identically satisfied when the difference scheme is

satisfied.
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iii We perform the continuous limit of the constructed invariants. Taking the

continuous limits into account we construct a difference scheme whose continuous

limit gives the continuous ODE we want to discretize. If we want a better

approximation we have to increase the number of points involved.

Example [12]

Let us consider the second order nonlinear ordinary differential equation

x2u,xx + 4xu,x + 2u = (2xu+ x2u,x)
k−2
k−1 , k 6= 0,

1

2
, 1, 2.(40)

The choice of the parameter k is such that the equation is non–singular, non–linear and

not linearizable. For these values of k the equation has a three dimensional symmetry

algebra given by

X̂(1) = ∂x −
2u

x
∂u, X̂(2) =

1

x2
∂u,(41)

X̂(3) = x∂x + (k − 2)u∂u,

[X̂1, X̂2] = 0, [X̂1, X̂3] = X̂1, [X̂2, X̂3] = kX̂2.
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As the equation is an ODE of second order and has a three dimensional symmetry

group which has an Abelian subalgebra, it will be solvable and its general solution is

u =
(

1
k−1

)k−1 1
k
x−x0

x2 +u0

x .

As the equation is of second order the minimum number of point necessary to describe

it is three: (x, x+, x−), (u, u+, u−), where x = xn, x+ = xn+1 and x− = xn−1. The

invariance condition reads:

prX̂F (x−, x, x+, u−, u, u+) = 0,(42)

where F , an apriori arbitrary function of its arguments, is an invariant and eq. (42)

must be satisfied by F for the prolongation of all generators X̂ given by eq. (41)

prX̂(1) = X̂(1) + ∂x− −
2u−
x−

∂u− + ∂x+
− 2u+

x+
∂u+

, etc..(43)

An invariant of X̂1, X̂2 and X̂3 depending only on the lattice is given by ξ1 = x+−x
x−x−

.

Other invariants are obtained by solving among the equations prX̂(1)F = 0 the

characteristic differential equation du
dx = −ux and its shifted ones. We get

ξ2 = x2u−(x+)2u+

(x+−x)k and ξ3 = (x−)2u−−x2u
(x−x−)k

as an invariant.
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When we perform the continuous limit, hn+1 = h+ and hn = h go to zero while

u+ = u(x+) = u(x) + h+u̇+
(h+)2

2!
ü+O((h+)3),(44)

u− = u(x−) = u(x)− hu̇+
h2

2!
ü+O(h3)

Combining ξ1, ξ2 and ξ3 we get in the continuous limit

2ξ1
ξ1 + 1

(
ξ2 −

ξ2

ξk−11

)
= (h+)2−k

[
(x2ü+ 4xu̇+ 2u) +(45)

+
1

3
(h+ − h)(x2 ˙̇u̇+ 6xü+ 6u̇) +O(h2)

]
,

1

2

(
ξ2 +

ξ3

ξk−11

)(k−2)/(k−1)
= (h+)2−k(x2u̇+ 2xu)(k−2)/(k−1)

[
1 + (h+ − h)

k − 2

k − 1

x2ü+ 4xu̇+ 2u

x2u̇+ 2xu
+O(h2)

]
.
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We can thus write down in terms of the invariants ξ1, ξ2 and ξ3 the difference equation

2ξ1
ξ1 + 1

(
ξ2 −

ξ2

ξk−11

)
=

1

2

(
ξ2 +

ξ3

ξk−11

)(k−2)/(k−1)
,(46)

which, taking into account (45), will approximate up to order h2 the differential

equation (40). The only invariant dependent just on the lattice variable is ξ1 and thus

an admissible lattice is given by

ξ1 = K.(47)

When K 6= 1 (47) will give a lattice up to order h. When K = 1 the lattice equation

represent a uniform lattice and will approximate the continuous case up to order h2.

Let us compare the discrete scheme provided by eqs. (46, 47), for k = 3 and K = 1

x2+u+ − 2x2u+ x2−u− =
h

3
2√
2

(x2+u+ − x2−u−)
1
2

x+ − 2x+ x− = 0
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with a Runge–Kutta defined on the same number of points

(ũ+ − 2ũ+ ũ−)x̃2 + 2x̃h̃(ũ+ − ũ−) + 2h̃2ũ = h̃2(2x̃ũ+ x̃2
ũ+ − ũ−

2h̃
)

1
2 .

In both schemes the problem of obtaining u+ from u and u− is nonlinear and to solve it

we need to apply a fixed point iteration up to convergence.

If we choose x ∈ [1, 3] with u(1) = 13
12 and u̇(1) = −1, the exact solution of (40) is

u(x) = x
12 + 1

x2 . In the discrete scheme we consider the initial condition

u0 = u(x = 1) = 13
12 and u1 = u(x = 1 + h) = 1+h

12 + 1
(1+h)2 . In the following figure we

present the differences of the discretization errors of the two methods with respect to

the exact result. Both schemes have the same accuracy but the best result is obtained

in the symmetry preserving scheme.
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Figure 1. Discretization errors for the symmetry preserving scheme and the standard

scheme, Example 1.
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3 From point symmetries to generalized symmetries

for discrete equations

We have shown up to now that for a given discrete equation very few symmetries are

present.

To overcome this problem in the previous Sections we considered the point symmetries

of a difference scheme where we allow for a variable lattice. In the following we will

analyze the structure of the generalized symmetries for a difference equation. We limit

ourselves to consider just partial difference equations (with two independent

variables) where the lattice is fixed and non–transformable.

I will just present an example of construction of generalized symmetries for

completely discrete equations. The derivation is more complicate as the points on

the lattice are no more all independent but are related by the discrete equation. For

more results the diligent reader can see the relevant references [34,35,60,61,65,66].
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3.1 Direct construction of generalized symmetries for partial

difference equations on the square lattice: an example

Let us consider the class of nonlinear partial difference equations defined on a square:

E1(un,m, un+1,m, un,m+1, un+1,m+1) = 0,(48)

where the function E1 is solvable with respect to all its variables.

un,m un+1,m

un+1,m+1un,m+1

Figure 1: A square lattice

Let us consider a generalized symmetry generator depending on 9 points defined on a

square of vertices un−1,m−1, un−1,m+1, un+1,m+1 and un+1,m−1. By taking into account

the difference equation (48), we can express the extremal points un−1,m−1, un−1,m+1,
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un+1,m+1 and un+1,m−1 in terms of the remaining five points un−1,m, un+1,m, un,m,

un,m−1 and un,m+1. In this way the most general n,m–independent 9 points generator

is represented by the infinitesimal symmetry generator

X̂ = Q(un−1,m, un+1,m, un,m, un,m−1, un,m+1)∂un,m ,

and the prolongation necessary to construct the determining equation is given by

prX̂ =
∑
i=0,1

∑
j=0,1

Q(un−1+i,m+j , un+1+i,m+j , un+i,m+j , un+i,m−1+j ,

un+i,m+1+j)∂un+i,m+j
.

Applying the prolonged vector field onto eq. (48), we get:

(49) Q
∂E1
∂un,m

+ [T1Q]
∂E1

∂un+1,m
+ [T2Q]

∂E1
∂un,m+1

+ [T1T2Q]
∂E1

∂un+1,m+1
= 0,

where T1fn,m = fn+1,m and T2fn,m = fn,m+1. Eq. (49) contains un+i,m+j with

i = −1, 0, 1, 2, j = −1, 0, 1, 2.

The invariance condition requires that (49) be satisfied on the solutions of (48). To be

able to do so, as (48) is a relation between points on a square, we need to choose a set
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of independent variables (not on a square) for which (49) must be identically

satisfied. A natural choice is to take as independent variables the values on the two

axis, i.e. un,m+2, un,m+1, un,m−1, un,m, un+2,m, un+1,m and un−1,m. An’other choice is

given by putting the independent variables on an infinite staircase.

By substituting the equation (48) and its shifted consequences

• un+2,m+1 → (un+2,m, un+1,m+1, un+1,m),

• un+1,m+1 → (un+1,m, un,m+1, un,m),

• un−1,m+1 → (un−1,m, un,m+1, un,m),

etc., we reduce the determining equation to an equation, written just in terms of

independent variables, which thus must be identically satisfied. Differentiating (49)

with respect to un,m+2 and to un+2,m, we get

(50)
∂2T 1T 2Q

∂un+2,m+1∂un+1,m+2
= T 1T 2 ∂2Q

∂un+1,m∂un,m+1
= 0.

Consequently the symmetry generator coefficient Q is the sum of two simpler functions,

Q = Q0(un−1,m, un+1,m, un,m, un,m−1) +Q1(un−1,m, un,m, un,m−1, un,m+1).
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Introducing this result into the determining equation (49) and differentiating it with

respect to un,m+2 and to un−1,m, we have that Q1 reduces to

Q1 = Q10(un−1,m, un,m, un,m−1) +Q11(un,m, un,m−1, un,m+1). In a similar way, if we

differentiate the resulting determining equation with respect to un+2,m and to un,m−1,

we have that Q0 reduces to

Q0 = Q00(un−1,m, un,m, un,m−1) +Q01(un−1,m, un+1,m, un,m). Combining these results

and taking into account that ∂2Q
∂un−1,m∂un,m−1

= 0 we obtain the following form for Q:

Q = Q0(un,m−1, un,m, un,m+1) +Q1(un−1,m, un,m, un+1,m).

So, the infinitesimal symmetry coefficient is the sum of functions that either involve

shifts only in n with m fixed or only in m with n fixed [60, 76].

Let us consider the case when the symmetry generator is given by

dun,m
dε

= Q1(un−1,m, un,m, un+1,m).(51)

This is a differential difference equation depending parametrically on m. Setting

un,m = un and un,m+1 = ũn, a different solution, the compatible partial difference

equation (48) turns out to be an ordinary difference equation for a new solution ũn of
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eq. (51),

E1(un, un+1, ũn, ũn+1) = 0,

i.e. a Bäcklund transformation [53] for (51). A similar result is obtained in case of Q0.

The same splitting will also appear for higher order symmetries of this class of

equations.

To find the specific form of Q1 we have to differentiate the determining equation (49)

with respect to the independent variables and get some further necessary

conditions on its shape. If, for example, we differentiate with respect to un+2,m,

∂E1
∂un+1,m

∂T1Q1

∂un+2,m
+

∂E1
∂un+1,m+1

∂T1T2Q1

∂un+2,m
= 0.

Dividing by ∂E1
∂un+1,m

and differentiating the resulting expression with respect to un,m+1,

we get

∂

∂un,m+1

[ ∂E1
∂un+1,m+1

∂E1
∂un+1,m

∂T1T2Q1

∂un+2,m

]
= 0.
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This is a partial differential equation for Q1 which constrains its shape, and by solving

it it will give an expression in terms of functions of lower number of independent

variables and possibly some integration constants. Proceeding further in the general

study of the class of equations possessing generalized symmetries is extremely hard. So

we go over to the construction of generalized symmetries for given equations.

In the specific case when

E1 = α(un,mun+1,m + un+1,m+1un,m+1)

− β(un,mun,m+1 + un+1,m+1un+1,m) + δ(α2 − β2),

where α, β and δ are constants, we get

Q1 =
un,m(un+1,m + un−1,m) + 2δα

un+1,m − un−1,m
.

This generalized symmetry was complicate to derive. It would be extremely complicate

to derive in this way generalized symmetries involving higher number of points. So we

need a different procedure to get them in compact form. They can be derived, using

the Recursion Operator, which can be derived from the linear problem associated to the

nonlinear discrete equation.
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4 Generalized symmetries from the integrability

properties

Equations with generalized symmetries are rare. Here we present results on the

discrete–time Toda Lattice or Hirota equation, as for this equation the integrability is

well known and well studied.

4.1 Construction of the discrete-time Toda lattice hierarchy

We start from the discrete Schrödinger Spectral Problem

(52) ψn−1,m + an,mψn+1,m + bn,mψn,m ≡ Ln,mψn,m = λψn,m,

where an,m and bn,m, for any m reduce to 1 and 0 respectively , as n goes to ∞. In

eq.(52) λ is an m-independent spectral parameter. An integrable nonlinear

difference-difference equation can be written in operator form as

(53) Ln,m+1 − Ln,m = Ln,m+1Mn,m −Mn,mLn,m
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in terms of the operator Mn,m which governs the discrete “time” evolution of the wave

function ψn,m of eq.(52)

(54) ψn,m+1 = ψn,m −Mn,mψn,m.

Let us notice that for the operator Ln,m given by eq.(52) we can write:

(55) Ln,m+1 − Ln,m = (an,m+1 − an,m)E+
n + bn,m+1 − bn,m,

where E+
n is the shift operator in the n-variable such that E+

n fn,m = fn+1,m for any

function fn,m.

We use the by now standard Lax technique [13]. We construct a hierarchy of nonlinear

partial discrete equations by requiring that an operator Mn,m and two scalar functions

Un,m and Vn,m satisfy

(56) Ln,m+1Mn,m −Mn,mLn,m = Un,mE
+
n + Vn,m.

We then construct new functions Ũn,m and Ṽn,m and a new operator M̃n,m, using the

following formulas:

(57) Ln,m+1M̃n,m − M̃n,mLn,m = Ũn,mE
+
n + Ṽn,m
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(58) M̃n,m = Ln,m+1Mn,m + Fn,mE
+
n +Gn,m,

where Fn,m and Gn,m are two scalar functions. Imposing the compatibility condition of

eqs.(52, 56 - 58) we get the following hierarchy of equationsan,m+1 − an,m
bn,m+1 − bn,m

 = f1m(Ln,m)

(bn,m+1 − bn+1,m)
πn,m+1

πn+1,m

πn−1,m+1

πn,m
− πn,m+1

πn+1,m

(59)

+f2m(Ln,m)

an,m+1 − an,m
bn,m+1 − bn,m

 .

Here f1m and f2m are entire functions of their argument and L is the recursion operator
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of the hierarchy, obtained from eqs.(52,56-58) and given by:

Ln,m

pn,m
qn,m

 =

 an,m+1Sn+2,m − an,mSn,m
pn−1,m + Σn−1,m

πn−1,m+1

πn,m
− Σn,m

πn,m+1

πn+1,m

(60)

+

bn,m+1pn,m + (bn,m+1 − bn+1,m)Σn,m
πn,m+1

πn+1,m

+bn,m+1qn,m + (bn,m+1 − bn,m)Sn,m

 .

The starting points

(bn,m+1 − bn+1,m)
πn,m+1

πn+1,m

πn−1,m+1

πn,m
− πn,m+1

πn+1,m

 and

an,m+1 − an,m
bn,m+1 − bn,m

 are obtained

as coefficients of the integration constants for the functions Fn,m and Gn,m. The

function πn,m is given by

(61) πn,m = Π∞j=naj,m,
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while Sn,m and Σn,m are defined as the bounded solutions of the equations

Sn+1,m − Sn,m = qn,m(62)

Σn+1,m − Σn,m = −pn+1,m
πn+2,m

πn+1,m+1

The boundedness of the solutions of eqs.(62) it is necessary to get a hierarchy of

nonlinear difference-difference equations with well defined evolution of the spectra.

Let us define the reflection and transmission coefficients Rm(z) and Tm(z) in terms of

the asymptotic behavior of the function ψn,m

lim
n−>∞

ψn,m(z) = φm(z−n +Rmz
m),(63)

lim
n−>−∞

ψn,m(z) = φmTmz
−n,

where φm is an appropriate normalization function depending just on m. In the case of

a generic equation of the discrete Toda lattice hierarchy (59) the discrete evolution of

the reflection coefficient turns out to be

(64) Rm+1 =
1− f2m(λ)− zf1m(λ)

1− f2m(λ)− f1
m(λ)
z

Rm.
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The transmission coefficient Tm does not evolve in m.

Let us notice that, as opposed to the usual case of hierarchies of partial differential or

differential-difference equations, the recursion operator (60) depends on both the

functions (an,m, bn,m) and (an,m+1, bn,m+1). Thus, in order to write the nonlinear

partial difference equation as an evolution equation in which we explicitate the fields at

the time m+ 1 in terms of those at the time m, we must write down explicitly the

complete system of equations and then solve for the fields at the time m+ 1. It is not

guaranteed that this can always be carried out since the equation can represent an

implicit evolution in the discrete time.

4.1.1 The discrete Toda lattice

Choosing f2m = 0 and f1m = α in eq.(59) we get:

an,m+1 − an,m = α(bn,m+1 − bn+1,m)
πn,m+1

πn+1,m
,(65)

bn,m+1 − bn,m = α(
πn−1,m+1

πn,m
− πn,m+1

πn+1,m
).(66)
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Solving eqs. (65, 66) for bn+1,m − bn,m and taking into account the boundary

conditions for the fields an,m and bn,m, we get:

(67) bn,m = α+
1

α
− απn−1,m+1

πn,m
− πn,m
απn,m+1

.

Substituting eq.(67) into eq.(65) we obtain a single equation of higher order for the field

πn,m:

(68) ∆Toda = πn−1,m+2 −
1

α2
πn,m − π2

n,m+1(
1

πn+1,m
− 1

α2πn,m+2
) = 0,

which, for πn,m = eun,m reads

(69) eun,m−un,m+1 − eun,m+1−un,m+2 = α2(eun−1,m+2−un,m+1 − eun,m+1−un+1,m),

i. e. the well known discrete-time Toda lattice equation [39]. On the left hand side of

eq.(69) we can easily obtain the second difference of the function un,m with respect to

the discrete-time m. Thus, defining

(70) t = mσ; vn(t) = un,m; α = σ2
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we find that eq.(69) reduces to the continuous-time Toda lattice equation:

(71) v̈n = evn−1−vn − evn−vn+1 +O(σ).

Eq.(69) has the following Lax pair:

ψn−1,m + (α+
1

α
− αeun−1,m+1−un,m − eun,m−un,n+1

α
)ψn,m +(72)

+eun,m−un+1,mψn+1,m = λψn,m

ψn,m+1 = ψn,m − αeun,m+1−un+1,mψn+1,m(73)

From eq.(64) we get the evolution of the reflection coeffcient Rm and Tm:

Rm+1 =
1− αz
1− α

z

Rm.(74)
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4.2 Isospectral and non-isospectral generalized symmetries for

the discrete-time Toda lattice

Infinitesimal symmetries for the discrete-time Toda lattice can be obtained as

commuting flows, i.e. an infinitesimal symmetry is obtained when its flow in the

group parameter and the discrete time evolution commute. These are represented by

the hierarchy of nonlinear differential-difference equations associated to the

Schrödinger Spectral Problem (52). We can also consider the nonlinear

discrete-time difference equations commuting with the discrete-time Toda

lattice, but these turn out not to form a group of symmetry transformations associated

to (69). As we shall see later, they provide us with its Bäcklund transformations.

To discuss these issues, it is easier to work in the space of the spectral parameter

where the nonlinear evolution of the fields is substituted by the linear evolution of

the reflection coefficient. The two spaces are in one to one correspondence for fields

which are asymptotically bounded. In such a situation the discrete-time Toda lattice

equation is represented in the spectral space by the following evolution of the reflection

coefficient Rm(z, ε) (the transmission coefficient Tm(z, ε) is invariant under the m
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evolution):

(75) Rm+1(z, ε) =
1− zα
1− α

z

Rm(z, ε).

where ε is the infinitesimal group parameter (see eq.(74)).

Any isospectral deformation ( dz
dεk

= 0) of the discrete Schrödinger Spectral Problem

(52) is given by

(76)

an,m
bn,m


,εk

= (L̃)k

an,m(bn,m − bn+1,m)

an−1,m − an,m

 .

The recursion operator L̃ is

L̃

pn,m
qn,m

 =

pn,mbn+1,m + an,m(qn,m + qn+1,m) + (bn,m − bn+1,m)sn,m

bn,mqn,m + pn,m + sn−1,m − sn,m

(77)

with sn,m given by an asymptotically bounded solution of the inhomogeneous first
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order equation

(78) sn+1,m =
an+1,m

an,m
(sn,m − pn,m).

The index k of εk denotes the fact that this group parameter is associated to the kth

equation of the Toda lattice hierarchy (76). In correspondence with eq. (76) we have an

evolution (in εk) of the reflection coefficient associated to the discrete Schrödinger

Spectral Problem (52), i.e.

(79)
dRm(z, εk)

dεk
= µλkRm(z, εk)

with

(80) λ = z +
1

z
; µ =

1

z
− z

It is easy to prove that the flows (65) and (76) commute by checking that the

corresponding flows of the reflection coefficients, given by eq. (75) and (79), commute.

A less obvious calculation has to be done to get the nonisospectral symmetries of the
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discrete-time Toda lattice equation. In this case we have:an,m
bn,m


,εk

= fkm(L̃)

an,m(bn,m − bn+1,m)

an−1,m − an,m


+L̃k

 an,m[(2n+ 3)bn+1,m − (2n− 1)bn,m]

b2n,m − 4 + 2[(n+ 1)an,m − (n− 1)an−1,m]

 .(81)

The function fkm(λ) depends on the equation under consideration and, for the

discrete-time Toda lattice, is obtained as a solution of the difference equation:

(82) fkm+1(λ)− fkm(λ) = −2λk
2α2 − αλ

1 + α2 − αλ.

Up to an arbitrary inessential constant the function fkm(λ) is given by:

(83) fkm(λ) = −2mλk
2α2 − αλ

1 + α2 − αλ.

The proof that the flow (81) with fkm given by (83) commutes with that of eq.(65) is

easily obtained in the space of the spectrum, where the reflection coefficient associated
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to eq. (81) satisfies the equation

(84)
dRm(z, εk)

dεk
= µfkm(λ)Rm(z, εk), λεk = µ2λk.

On the l.h.s. we have the total derivative of Rm(z, εk) with respect to εk.

Both the isospectral (for k 6= 0) and nonisospectral symmetries involve the

dependent variable in different points of the lattice and they are effectively

generalized symmetries. As such they are not integrable. They can be used to

provide solutions via symmetry reduction. As an example of these symmetries we write

down the simplest nonisospectral symmetry obtained for k = 0 and α = 1 and given by:an,m
bn,m


,ε0

= −2m

an,m(bn,m − bn+1,m)

an−1,m − an,m

(85)

+

 an,m[(2n+ 3)bn+1,m − (2n− 1)bn,m]

b2n,m − 4 + 2[(n+ 1)an,m − (n− 1)an−1,m]

 .
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Taking into account eq. (61), we can rewrite eq. (85) as:

(πn,m),ε0 = πn,m{−(2m+ 2n+ 1)bn,m + 2
∞∑
j=n

bj,m}(86)

(bn,m),ε0 = b2n,m − 4 + 2[(n+m+ 1)an,m − (n+m− 1)an−1,m].

In view of eq.(67), bn,m can be rewritten in terms of πn,m and its shifted values.

A symmetry reduction with respect to the symmetry given by eq.(86) is obtained by

solving the discrete time Toda lattice (68) together with the equation we get by

equating to zero the r.h.s. of eq.(86), i.e.

(2m+ 2n− 1)bn,m − (2m+ 2n+ 3)bn+1,m = 0,(87)

an,m[2(n+ 1) + 2m]− an−1,m[2(n− 1) + 2m] = 4− b2n,m.
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The general solution is given by

bn,m =
b0m

(2m+ 2n− 1)(2m+ 2n+ 1)
,(88)

an,m =
1

(2n+ 2m+ 2)(2n+ 2m)
[a0m + 4n(2m+ 1 + n) +

(b0m)2

4(2m+ 2n+ 1)2
].

Using

an,m+1 − an,m = α(bn,m+1 − bn+1,m)
πn,m+1

πn+1,m
,(89)

bn,m+1 − bn,m = α(
πn−1,m+1

πn,m
− πn,m+1

πn+1,m
).(90)

with α = 1, we get two equations for b0m and a0m, the reduced equations.
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4.3 Bäcklund Transformations and Symmetries

Bäcklund transformations are obtained by the same kind of formulas as those used to

get the difference-difference equations when the new functions (ãn,m, b̃n,m) are defined

as

(91) ãn,m = an,m+1; b̃n,m = bn,m+1.

With this identification the class of Bäcklund transformations associated to the

discrete-time Toda lattice hierarchy reads:

δ(Λ)

(b̃n,m − bn+1,m)
π̃n,m

πn+1,m

π̃n−1,m

πn,m
− π̃n,m

πn+1,m

 = γ(Λ)

ãn,m − an,m
b̃n,m − bn,m

 ,(92)
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where Λ is the Bäcklund recursion operator, obtained in the same way as L, and given

by:

Λ

pn,m
qn,m

 =

ãn,m(qn,m + qn+1,m) + (an,m − ãn,m)P̃n,m

pn,m + Σ̃n−1,m − Σ̃n,m + b̃n,mqn,m

(93)

+

bn+1,mpn,m + (b̃n,m − bn+1,m)Σ̃n,m

(bn,m − b̃n,m)P̃n,m

 .

Above, Σ̃n,m and P̃n,m are now defined as the bounded solutions to the following

difference equations:

P̃n,m − P̃n+1,m = qn,m(94)

Σ̃n,m
πn+1,m

π̃n,m
− Σ̃n+1,m

πn+2,m

π̃n+1,m
= pn,m

πn+1,m

π̃n,m
.

γ and δ are entire functions of their arguments. Eq. (93) corresponds asymptotically to

(95) R̃m =
γ(λ)− zδ(λ)

γ(λ)− δ(λ)
z

Rm.
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The simplest Bäcklund transformation is obtained by choosing γ = 1 and δ constant

and reads:

ãn,m − an,m = δ(b̃n,m − bn+1,m)
π̃n,m

πn+1,m
,(96)

b̃n,m − bn,m = δ[
π̃n−1,m

πn,m
− π̃n,m

πn+1,m
].

It is worthwhile to recall that while the composition of two Bäcklund

transformations is still a Bäcklund transformation, however of higher order, the

Bäcklund transformations do not form a Lie group as the product of two

Bäcklund transformations does not give a Bäcklund transformation of the

same form as the original ones.

Any Bäcklund transformation can be written as a superposition of an infinite number

of symmetries and a symmetry as a superposition of an infinite number of Bäcklund.

Similar results on the generalized symmetries of the lattice potential KdV

(p− q + un,m+1 − un+1,m)(p+ q − un+1,m+1 + un,m)− (p2 − q2) = 0.

have been published in J. Phys. A (2007), but more on this is still to be done.
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entre deux variables, Magazin for Naturvidenskaberne Aargang 1, Bind 1,

Christiania 1823.

[2] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform,

(SIAM, Providence, R.I., 1981).

[3] see J. Aczel, Lectures on Functional Equations and their Applications, (AP, New

York 1966) expecially chapter IV and references therein included.

[4] V. E. Adler, A.B. Shabat and R. Yamilov, 2000 Symmetry Approach to the

Integrability Problem Theor. Math. Phys. 125 1603-1661.

[5] R. P. Agarwal, Difference equations and inequalities: theory, methods and

applications, (Dekker, New York 1992).

[6] R.L. Anderson and N.H. Ibragimov, 1979 Lie-Bäcklund Transformations in
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