Revenue Maximisation with Tatkal Seva

D. Manjunath

Joint work with Rajat Talak and Alexandre Proutiere

Indian Institute of Technology Bombay

Background

- Server is available for fixed durations or serves a fixed number of customers, e.g., concerts and plays, and some restaurants.
- Another view: congestion events last for finite durations; transient analysis are of interest.
- Cost to customer has many components; waiting time, time at which service is completed, price paid for higher service grade.

Background

• Heterogeneous customers

- Different customers weight different costs differently and hence make their choices strategically.
- Server can exploit customer heterogeneity and offer different service grades and enhance revenue.

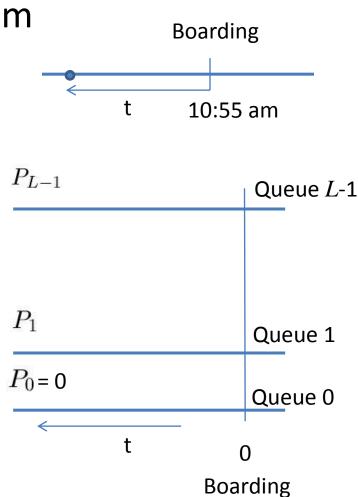
Resource Allocation

- Simple Priority Server
 - Server floats different service grades
 - Server prices the service grades
 - Customer chooses a service grade

- Complex Priority Server
 - Customers choose two priority parameters
 - They jointly determine the service grade
 - Server prices the priority parameters

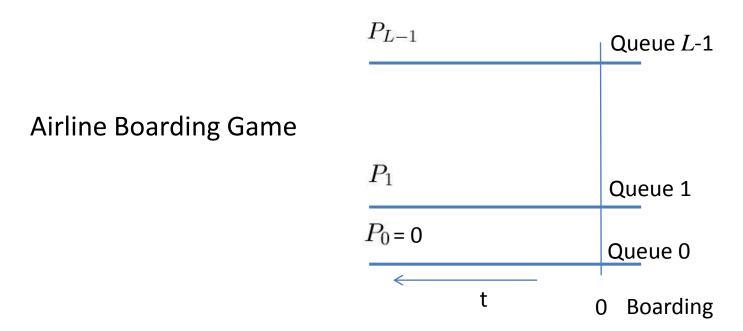
Anchor Problem: Airline Boarding

- Boarding begins at time 10:55 am
- Passenger: when to arrive?
 - Too late: bad seat
 - Too early: long waiting time
- Airline: Can we earn revenue?
 - Put a `high priority' (tatkal seva) P₀=0 queue and charge for it
 - Customer parameters: arrival time and the queue to join



Airline Boarding Problem

- Complex Priority System
 - Customers choose two priority parameters
 - They jointly determine service grade
 - Server prices the priority parameters



Simple Priority Server

Simple Priority Server

- Heterogeneous population
 - Customer type $v \in \mathcal{V} = [A, B]$ where $0 \leq A < B \leq \infty$
 - Continuous distribution C(v)
- Single priority parameter: $0 \le w \le 1$
- Price function: P(w) is \uparrow in w, P(0) = 0
- Cost for type v customer to pay price P is $m_v P$
 - $-m_v$ is a decreasing function

Customer's Cost Function

- Customer v chooses priority w(v)
- Total cost for a type v customer

$$c_{v}(w(v)) = m_{v}P(w(v)) + h(F(w(v)))$$

cost of priority fraction with better
priority
where $F(w(v)) = \int \mathbb{1}_{w(x) > w(v)} dC(x)$

- -h is any increasing function
- this makes the second term general!

Nash Equilibrium

Total cost for a type v customer is

 $c_v(w(v)) = m_v P(w(v)) + h(F(w(v)))$

where w(v) is his priority choice

Definition 1. $A \ w^{NE}(v)$ is a stable, or a Nash Equilibrium, policy if for all $v \in [A, B]$,

$$w^{NE}(v) = \operatorname*{argmin}_{0 \le w \le 1} c_v(w).$$

Structure of Nash Equilibrium

 $c_v(w(v)) = m_v P(w(v)) + h(F(w(v)))$

• $w^{NE}(v)$ is a non-decreasing function in v— Intuition: since value for paying price $P \downarrow$ in v

Assuming existence of NE,

Proof sketch:

•
$$c_v(w^{\text{NE}}(v)) \leq c_v\left(w^{\text{NE}}(v+h)\right)$$

 $= m_v P\left(w^{\text{NE}}(v+h)\right) + NF\left(w^{\text{NE}}(v+h)\right)$
 $= m_v P\left(w^{\text{NE}}(v+h)\right) + c_{v+h}\left(w^{\text{NE}}(v+h)\right)$
 $- m_{v+h} P\left(w^{\text{NE}}(v+h)\right).$
• $c_{v+h}(w^{\text{NE}}(v+h)) \leq m_{v+h} P\left(w^{\text{NE}}(v)\right) + c_v\left(w^{\text{NE}}(v)\right)$
 $- m_v P\left(w^{\text{NE}}(v)\right).$

Proof sketch:

•
$$c_v(w^{NE}(v)) \leq c_v\left(w^{NE}(v+h)\right)$$

 $= m_v P\left(w^{NE}(v+h)\right) + NF\left(w^{NE}(v+h)\right)$
 $= m_v P\left(w^{NE}(v+h)\right) + c_{v+h}\left(w^{NE}(v+h)\right)$
 $- m_{v+h} P\left(w^{NE}(v+h)\right).$
• $c_{v+h}(w^{NE}(v+h)) \leq m_{v+h} P\left(w^{NE}(v)\right) + c_v\left(w^{NE}(v)\right)$
 $- m_v P\left(w^{NE}(v)\right).$

• Adding the two:

$$0 \le (m_v - m_{v+h}) \left(P\left(w^{\text{NE}}(v+h) \right) - P\left(w^{\text{NE}}(v) \right) \right)$$

• This implies $w^{NE}(v+h) \ge w^{NE}(v)$

Structure of Nash Equilibrium

 $c_v(w(v)) = m_v P(w(v)) + h(F(w(v)))$

Assuming existence of NE,

- $w^{NE}(v)$ is a non-decreasing function in v— Intuition: since value for paying price $P \downarrow in v$
- $w^{NE}(v)$ is given by

$$w^{NE}(v) = P^{-1}\left(\int_{A}^{v} \frac{h'(1 - C(v)) dC(v)}{m_{v}}\right)$$

Proof sketch:

•
$$F(w^{NE}(v)) = \int \mathbb{1}_{w^{NE}(x) > w^{NE}(v)} dC(x)$$

= $\int \mathbb{1}_{x > v} dC(x) = 1 - C(v).$ Since, $w^{NE}(v)$ is non-dec. in v

Proof sketch:

$$c_v(w(v)) = m_v P(w(v)) + h(F(w(v)))$$

•
$$F(w^{NE}(v)) = \int \mathbb{1}_{w^{NE}(x) > w^{NE}(v)} dC(x)$$

= $\int \mathbb{1}_{x > v} dC(x) = 1 - C(v).$ Since, $w^{NE}(v)$
is non-dec. in v

•
$$0 = \frac{dc_v(w)}{dw} \bigg|_{w=w^{NE}(v)}$$
 Optimality of $w^{NE}(v)$
$$= Nh' \left(F\left(w^{NE}(v)\right) \right) \frac{dF(w)}{dw} \bigg|_{w=w^{NE}(v)} + m_v P'\left(w^{NE}(v)\right),$$

•
$$-\frac{dC(v)}{dv} = \frac{dF(w^{\text{NE}}(v))}{dv} = \left.\frac{dF(w)}{dw}\right|_{w=w^{\text{NE}}(v)} \times \frac{dw^{\text{NE}}(v)}{dv}.$$

•
$$N\frac{h'\left(F\left(w^{\rm NE}(v)\right)\right)}{m_v}\frac{dC(v)}{dv} = P'\left(w^{\rm NE}(v)\right)\frac{dw^{\rm NE}(v)}{dv}$$

Proof sketch:
•
$$0 = \left. \frac{dc_v(w)}{dw} \right|_{w=w^{NE}(v)}$$

= $Nh' \left(F\left(w^{NE}(v) \right) \right) \left. \frac{dF(w)}{dw} \right|_{w=w^{NE}(v)} + m_v P' \left(w^{NE}(v) \right),$

•
$$-\frac{dC(v)}{dv} = \frac{dF(w^{\text{NE}}(v))}{dv} = \frac{dF(w)}{dw}\Big|_{w=w^{\text{NE}}(v)} \times \frac{dw^{\text{NE}}(v)}{dv}.$$

•
$$N\frac{h'\left(F\left(w^{\rm NE}(v)\right)\right)}{m_v}\frac{dC(v)}{dv} = P'\left(w^{\rm NE}(v)\right)\frac{dw^{\rm NE}(v)}{dv}$$

Integrating on both sides

$$\begin{split} P(w^{\rm NE}(v)) &= N \int_A^v \frac{h'\left(F\left(w^{\rm NE}(x)\right)\right)}{m_x} dC(x) + \alpha \\ &= N \int_A^x \frac{h'\left(1 - C(x)\right)}{m_x} dC(x) + \alpha, \end{split}$$

• $\alpha = 0$ because $w^{NE}(A) = 0$

Structure of Nash Equilibrium

 $c_v(w(v)) = m_v P(w(v)) + h(F(w(v)))$

Assuming existence of NE,

- $w^{NE}(v)$ is a non-decreasing function in v— Intuition: since value for paying price $P \downarrow in v$
- $w^{NE}(v)$ is given by

$$w^{NE}(v) = P^{-1}\left(\int_{A}^{v} \frac{h'(1 - C(v)) dC(v)}{m_{v}}\right)$$

• Revenue earned $R(P) = \int_{A}^{B} P(w^{NE}(v)) dC(v)$ is independent of pricing function P!!

Example

 $c_v(w(v)) = m_v P(w(v)) + h(F(w(v)))$

- Let $v \sim \mathcal{U}[0,1], h(x) = x$, and $m_v = \frac{1}{v^{l-1}}$
- Then for $P(w) = w^{\beta}$, for any $\beta > 0$

the NE exists and is

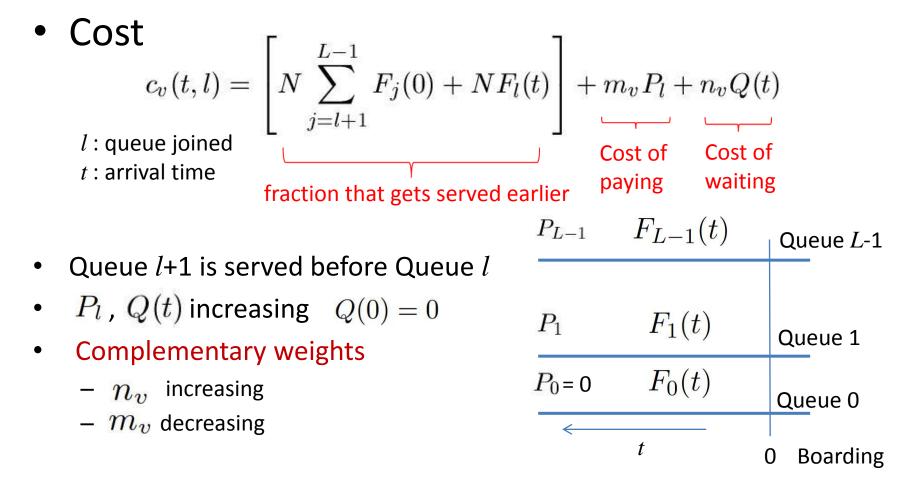
$$w^{\text{NE}}(v) = \left(\frac{v^l}{l}\right)^{1/\beta} = P^{-1}\left(\frac{v^l}{l}\right)$$
$$F(w) = 1 - l^{\frac{1}{l}} w^{\frac{n}{l}}$$

• Revenue remains the same

Complex Priority Server

Airline Boarding Problem

• Heterogeneous Population $v \in \mathcal{V} = [A, B]$



Strategic Customer

• Cost

$$c_{v}(t,l) = \begin{bmatrix} N \sum_{j=l+1}^{L-1} F_{j}(0) + NF_{l}(t) \end{bmatrix} + m_{v}P_{l} + n_{v}Q(t)$$

$$l: \text{ queue joined} \\ t: \text{ arrival time} \end{bmatrix} \xrightarrow{P_{L-1}} F_{L-1}(t) \qquad \text{ Queue } L-1$$
• Optimal time to join each queue

$$T_{l}(v) = \underset{t \ge 0}{\operatorname{argmin}} c_{v}(l,t) \qquad P_{0}=0 \qquad F_{0}(t) \qquad \text{ Queue } 0$$

• Decision on the queue to join

$$q(v) = \underset{q_j}{\operatorname{argmin}} \sum_{l \in \mathcal{L}} q_l c_v(l, T_l(v)) \qquad \begin{array}{l} \text{Nash equilibrium if} \\ F_l(t) = \int_{v \in \mathcal{V}} \mathbbm{1}_{T_l(v) \ge t} \ q_l(v) \ dC(v) \\ \left(T_l^{\text{NE}}(v), q_l^{\text{NE}}(v)\right)_{l=0}^{L-1} \end{array}$$

Boarding

0

Results and Discussion

$$c_v(t,l) = \left[N\sum_{j=l+1}^{L-1} F_j(0) + NF_l(t)\right] + m_v P_l + n_v Q(t)$$

- $T_{l}^{NE}(v)$ is non-increasing in v
- $T_l^{NE}(v) \leq$ the NE arrival time if there is only a single queue
- Under certain regularity

Theorem

terized by

•
$$T_l^{NE}(v) \leq \text{the NE arrival time if}$$

• $T_l^{NE}(v) \leq \text{the NE arrival time if}$
there is only a single queue
• Under certain regularity
Theorem The NE strategy is unique and is charac-
terized by
 $q_l^{NE}(v) = \mathbb{1}_{v_l < v \leq v_{l+1}}$.
Here $A = v_0 < v_1 < v_2 < \cdots < v_{L-1} < v_L = B$ are given by

optimal

joining costs

 $c_{l-1}(v_l) = c_l(v_l), \leftarrow$

for all l = 1 to L - 1, each of which has a unique solution.

 $q_l^{NE}(v) = \mathbb{1}_{v_l < v \le v_{l+1}}.$

Regularity Conditions

Cost:
$$c_v(t,l) = \left[N \sum_{j=l+1}^{L-1} F_j(0) + N F_l(t) \right] + m_v P_l + n_v Q(t)$$

•
$$y(v) \triangleq \frac{n'_v}{(-m'_v)} \int_v^B \frac{dC(x)}{n_x}$$
 is bounded

•
$$\int_A^B \frac{dC(x)}{n_x} < \infty$$

•
$$P_{l+1} - P_l > N \max\left\{\sup_{v \in \mathcal{V}} y(v), \frac{2}{m_A}\right\}$$

Example

$$m_v = \frac{N}{\epsilon(B-A)} \left(B \log\left(\frac{B}{v}\right) - (B-v) \right) + \frac{N\sigma}{\epsilon}$$

• $n_v = v$

- $v \sim \mathcal{U}[0, 20]$ and L = 3
- $N = 10, P_1 = 8.75, P_2 = 11.45, \text{ and } \delta = 0.05$

Optimal Arrival Times

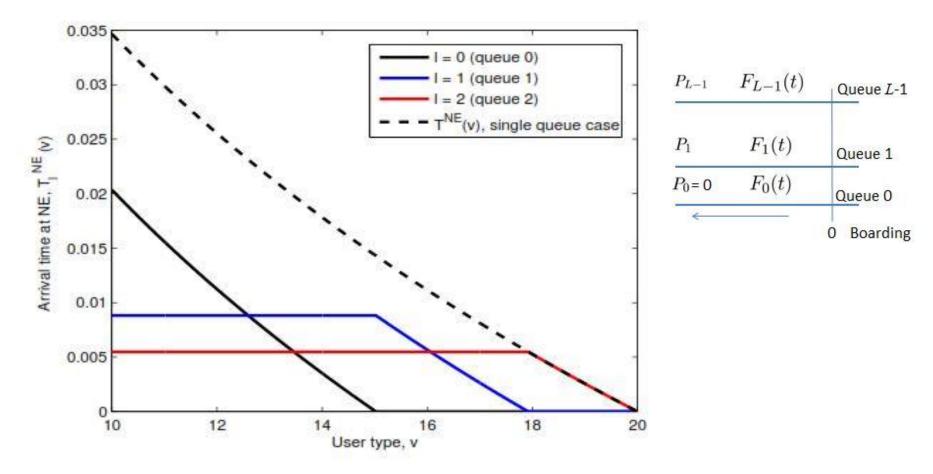


Figure 1: Comparison of NE arrival times at different queues for a system with three queues ($v \sim U[0, 20]$, N = 10, $P_1 = 8.75$, $P_2 = 11.45$ and $\delta = 0.05$).

Optimal Queue Joining Costs

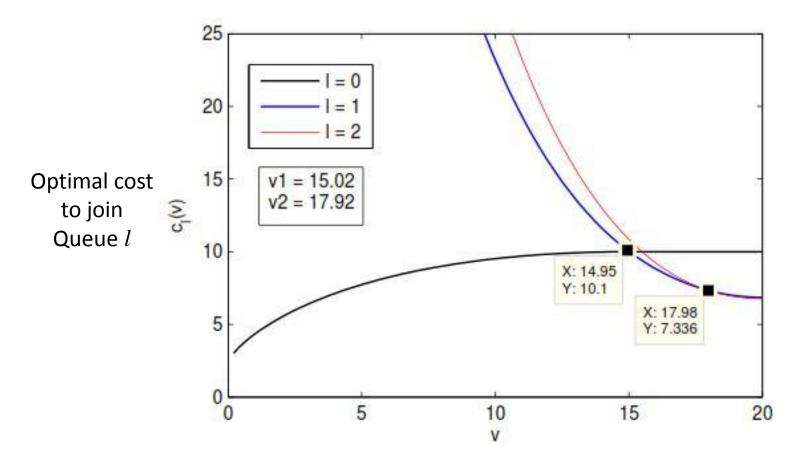
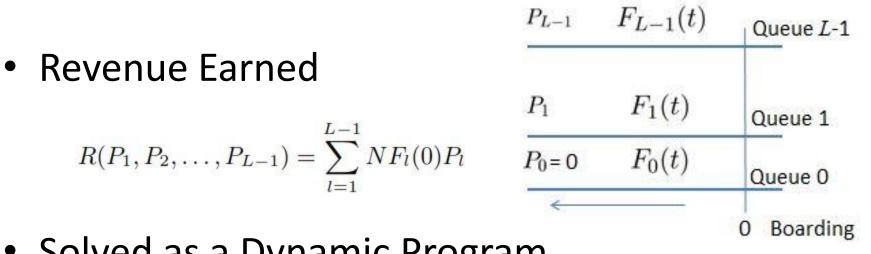


Figure 2: Comparison of optimal costs to join Queue l and illustration of the thresholds ($v \sim \mathcal{U}[0, 20]$, N = 10, $P_1 = 8.75$, $P_2 = 11.45$ and $\delta = 0.05$).

Revenue Maximization



Solved as a Dynamic Program

$$R(P_1, P_2, \dots, P_{L-1}) = \sum_{j=1}^{L-1} u(v_{L-j}, v_{L-j+1})$$
$$A = v_0 < v_1 < v_2 < \dots < v_{L-1} < v_L = B$$

- Stage 1: choose v_{L-1}
- Stage *j*: choose v_{L-j}

Revenue Maximization

- How many queues?
 - Numerically: four queues gets us near the maximum revenue

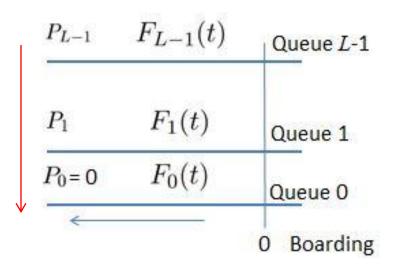
Population	Revenue		
distribution	L = 2	L=3	L = 4
$\mathcal{U}[0,20]$	2.26	2.46	2.50
$\mathcal{U}[0, 150]$	7.53	7.83	7.87
$\mathcal{U}[20, 150]$	7.41	7.65	7.68

Future Work

??

Generalized Prioritization

– To maximize revenue



• Repeated game

- Learn from outcomes to reach max. revenue

Thank you

General Framework and Open Problems

Cost for a customer v

 $c_v := D(w_1, w_2) + m_v P(w_1) + n_v Q(w_2)$

- $-w_1 \in W_1$ and $w_2 \in W_2$ are priority parameters
- $D(w_1, w_2)$ determines QoS, depends on others choices
- Airline boarding problem

$$c_v(t,l) = \left[N\sum_{j=l+1}^{L-1} F_j(0) + NF_l(t)\right] + m_v P_l + n_v Q(t)$$