Adaptive Policies for Online Ad Selection Under Chunked Reward Pricing Model

Dinesh Garg
IBM India Research Lab, Bangalore garg.dinesh@in.ibm.com
(Joint Work with Michael Grabchak, Narayan Bhamidipati, and Rushi Bhatt)

September 8, 2014

Motivation: Group Discount

- Groupon sells purchase vouchers at heavy discounts
- Only when a certain number of people sign up, the deal becomes effective
- If the predetermined minimum is not met, no one gets the deal
- \# of customers and discount is jointly agreed by Groupon and merchant
- The revenue is split between merchant and Group (usually 50 : 50)

The Problem of Groupon: How to Maximize Reward?

$T=$ \# of user requests received within a fixed time interval
$T \sim F_{T}=$ Distribution of T (assumed to be known)
$p_{i}=$ Probability of a user subscribing for the deal i
$n_{i}=$ Minimum \# of subscriptions required for the deal i to be ON
$r_{i}=$ Reward of Groupon if at least n_{i} users subscribe
$k=\#$ of active deals in the fray
$\widetilde{\mathbf{p}}, \widetilde{\mathbf{r}}, \tilde{\mathbf{n}}=$ Vectors of p_{i}, r_{i}, and n_{i}, resp.

Key Assumptions

- We need to pick only one deal for display against every user request
- The reward r_{i} can be received at most once during the interval
- T is unknown but its distribution F_{T} is known
- $\left(p_{i}, r_{i}, n_{i}\right)$ is known for each active deal
- A user subscribing for a deal is independent of T

Connection to Multi-Armed Bandit (MAB) Problem

- Our framework is similar to MAB problem except that we assume probabilities $\widetilde{\mathbf{p}}$ to be known
- Our goal is not to infer probabilities $\widetilde{\mathbf{p}}$ but to maximize the total reward
- We will stick to following convention
- Refer to deals as arms
- Pulling an arm i means displaying the deal i
- A pull being successful means the user subscribing for that deal
- Getting a reward from an arm means attaining the minimum \# of subscriptions

Knapsack Connection and Hardness of the Problem

- Suppose T is known and $p_{i}=1 \forall i=1 \rightarrow k$
- The problem reduces to standard 0-1 knapsack problem
- Because Knapsack is NP-Hard [1], our problem must, in general, be NP-hard as well!

[^0]
Connection to Stochastic Knapsack Problem
 Stochastic Knapsack (SK) Problem

- Several versions of Stochastic Knapsack exist. Our setting is similar to [1]
- In SK problem, item i has a fixed and known value r_{i} but a random weight W_{i}, where $W_{i} \sim F_{i}$, satisfying $P\left(W_{i} \leq 0\right)=0$
- One-by-one, items are placed into a fixed and known size (T) Knapsack
- Once an item has been inserted, we find out how big it is
- If item fits then we collect the reward otherwise not
- Even if item doesnot fit, it exhausts the remaining capacity of the knapsack

Our Problem v/s Stochastic Knapsack (SK) Problem

- Our problem allows T to be random
- In our setting, weight W_{i} of an arm i corresponds to a random number of times we need to pull this arm to get n_{i} subscriptions.
- $W_{i} \sim N B\left(n_{i}, p_{i}\right)$, where $p_{i} \in[0,1]$ and $n_{i} \in \mathbb{N} \backslash\{0\}$
- In our setting, inserting an item is equivalent to keep showing a deal until we get reward

[^1] Adaptivity. Mathematics of Operations Research, 33 (4), pp. 945-964, 2008.

Optimality of Simple Greedy Scheme for Stochastic Knapsack

- In general, the Stochastic Knapsack problem (as defined earlier) is NP-hard
- There are situations where simple greedy algorithm is the optimal policy
- Whenever, $W_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right)$ or $W_{i} \sim \operatorname{Geom}\left(p_{i}\right)=N B\left(1, p_{i}\right)$
- The above result does not depend on T and hence we can extend it for our setting

> Theorem 1: If for every deal i, we have $W_{i} \sim N B\left(1, p_{i}\right)$ then the optimal deal to show at time t is the one with the largest $r_{i} p_{i}$ from which we have not yet received a reward.

Policy Definition

- Notations

$$
\begin{aligned}
\theta_{t} & =\text { The id of the deal that is shown at time } t \\
\delta_{t} & =\mathrm{A}\{0,1\} \text { random variable capturing the user's action at time } t \\
d_{t} & =\text { Realization of the random variable } \\
\widetilde{\boldsymbol{\theta}}, \widetilde{\boldsymbol{\delta}}, \widetilde{\mathbf{d}} & =\text { Vectors of } \theta_{t}, \delta_{t}, \text { and } d_{t}, \text { resp. } \\
S_{i}(t) & =\text { \# of subscriptions for deal } i \text { in the first } t \text { impressions (R.V.) } \\
s_{i}(t) & =\text { Realization of } S_{i}(t) \\
\widetilde{\mathbf{s}}(\mathbf{t}), \widetilde{\mathbf{s}}(\mathbf{t}) & =\text { Vectors of } S_{i}(t) \text { and } s_{i}(t), \text { resp. }
\end{aligned}
$$

- Policy (π)
- A policy π is either a random or a deterministic function that chooses the arm to be pulled at time $t+1$ given all the available information at time t
-

$$
\theta_{t+1}=\pi\left(\widetilde{\mathbf{p}}, \widetilde{\mathbf{r}}, \widetilde{\mathbf{n}}, F_{T} \mid\left\{\theta_{i}, d_{i}\right\}_{i=1 \rightarrow t}\right)
$$

(Expected) Reward and Optimal Policy

- (Expected) Reward

$$
\begin{gathered}
R\left(\pi, \widetilde{\mathbf{p}}, \widetilde{\mathbf{r}}, \widetilde{\mathbf{n}}, F_{T} \mid \widetilde{\boldsymbol{\theta}}, \widetilde{\boldsymbol{\delta}}=\widetilde{\mathbf{d}}\right)=\sum_{i=1}^{k} r_{i} 1_{\left[s_{i}(T) \geq n_{i} ; \pi\right]} \\
E R\left(\pi, \widetilde{\mathbf{p}}, \widetilde{\mathbf{r}}, \widetilde{\mathbf{n}}, F_{T} \mid \widetilde{\boldsymbol{\theta}}, \widetilde{\boldsymbol{\delta}}=\widetilde{\mathbf{d}}\right)=\sum_{i=1}^{k} r_{i} P\left(S_{i}(T) \geq n_{i} ; \pi\right)
\end{gathered}
$$

- Optimal Policy (π^{*})

$$
\pi^{*}=\underset{\pi \in \Pi}{\operatorname{argsup}} E R\left(\pi, \widetilde{\mathbf{p}}, \widetilde{\mathbf{r}}, \widetilde{\mathbf{n}}, F_{T} \mid \widetilde{\boldsymbol{\theta}}, \widetilde{\boldsymbol{\delta}}=\widetilde{\mathbf{d}}\right)
$$

A Lookahead Procedure to Compute Optimal Policy

- The best arm to pull at time t, can be given by

$$
\begin{aligned}
i_{t}^{*}= & \underset{i=1 \rightarrow k}{\operatorname{argmax}}\left[p_{i}\left(r_{i} \mathbf{1}_{\left[n_{i}-s_{i}(t)=1\right]}+E R\left(\pi^{*}, \widetilde{\mathbf{p}}, \widetilde{\mathbf{r}}, \widetilde{\mathbf{n}}-\widetilde{\mathbf{s}}(\mathbf{t})-\widetilde{\mathbf{e}_{i}}, F_{T-t} \mid \phi\right)\right)\right. \\
& \left.+\left(1-p_{i}\right) E R\left(\pi^{*}, \widetilde{\mathbf{p}}, \widetilde{\mathbf{r}}, \widetilde{\mathbf{n}}-\widetilde{\mathbf{s}}(\mathbf{t}), F_{T-t} \mid \phi\right)\right]
\end{aligned}
$$

- The above policy can be shown to be optimal by induction technique whenever T has a bounded support, say T_{0}
- Since the problem is NP-hard, we can't hope to compute above policy efficiently for large scale problems
- Never-the-less, this trick could be useful for small scale problems

An Example of a Policy Tree

- Let us consider a scenario, where
- $k=2$ (i.e. two arms to be pulled)
- T is known and fixed, say $T=2$
- $n_{1}=1 ; n_{2}=2$ and $r_{i} p_{i}<r_{2} p_{2}$
- $E R\left(n_{1}, n_{2}, T\right)$ is a shorthand notation for $E R\left(\pi^{*}, \widetilde{\mathbf{p}}, \widetilde{\mathbf{r}}, \tilde{\mathbf{n}}, F_{T}\right)$
- The Policy Tree for this example will look like this.

- From this example, it is clear that this policy computation is exponential in T

Practical Policies for Chunked Reward

We restrict our attention on the class of policies $\Pi_{p} \subset \Pi$ that satisfy the following feasibility criteria

- Arm i would be considered at time $t+1$, only if $s_{i}(t)<n_{i}$ and $P\left(n_{i}-s_{i}(t)<T-t\right)>0$
- All other parameters being equal, arm i would be chosen over arm j if $p_{i}>p_{j}$ or $r_{i}>r_{j}$, or $n_{j}>n_{i}$
- If r_{i} is multiplied by a constant for all the arms, the choice of the arm does not change

Remark: Any policy π which does not satisfy above criteria can be easily replaced by some policy $\pi^{\prime} \in \Pi_{p}$ such that π^{\prime} is uniformly better than π

(Adaptive) Greedy Policies

- We consider greedy policies that compute an index for each arm at any time and then choose the arm which maximizes this index.
- In light of criteria discussed earlier, we will consider only those greedy policies where the index for arm i is
- non-decreasing function of p_{i} and r_{i}, and
- non-increasing function of $n_{i}-s_{i}(t)$, and
- involves all of p_{i}, r_{i}, and $n_{i}-s_{i}(t)$
- linear in r_{i} so as to satisfy scale invariance criteria
- We consider the following 3 greedy policies

$$
\begin{aligned}
\operatorname{Index}\left(\pi_{1}\right) & :=\frac{r_{i} p_{i}}{n_{i}-s_{i}(t)} \mathbf{1}_{\left[s_{i}(t)<n_{i}\right]} \mathbf{1}_{\left[n_{i}-s_{i}(t) \leq T-t\right]} \\
\operatorname{Index}\left(\pi_{2}\right) & :=\frac{r_{i} p_{i}}{n_{i}-s_{i}(t)} P\left(W_{i} \leq T \mid S_{i}(t)=s_{i}(t)\right) \\
\operatorname{Index}\left(\pi_{3}\right) & :=r_{i} P\left(W_{i} \leq T \mid S_{i}(t)=s_{i}(t)\right)
\end{aligned}
$$

(Non-Adaptive) Greedy Policies

- Note, for greedy policies are adaptive in the sense that we need to compute the index at every time point
- For a non-adaptive greedy policy,
- We compute indices only once (at the beginning), and
- At each time t, pull the arm with the largest index for which we have not yet received a reward
- We denote the corresponding non-adaptive policy for π_{i} as γ_{i}
- Non-adaptive policies do not satisfy the feasibility criteria and hence can be uniformly improved

Greedy Policies May Be Arbitrarily Bad

- Consider a scenario having $p_{i}=1 \forall i$ (i.e. $0-1$ Knapsack)
- Greedy policies $\pi_{1}, \pi_{2}, \gamma_{1}, \gamma_{2}$ reduce to standard greedy algorithm for this problem
- For greedy policy π_{3} (and γ_{3}) consider the following scenario:
- There are $k=T+1$ arms
- For arm $1, r_{1}=2$ and $n_{1}=T$
- For all other arms, $r_{i}=1, n_{i}=T$
- Following π_{3} (and γ_{3}), we will only pull arm 1 and at the end get a reward of 2
- The optimal algorithm, however, is to never pull arm 1 and instead pull each of the other arms once to get a reward of T

Policies with Worst case Performance Guarantees

- Greedy policies can be arbitrary bad and hence we can't provide worst case performance bounds
- However, we can provide bounds for certain modified versions
- We introduce the following non-adaptive policy which will be used for analysis

$$
\begin{aligned}
\gamma_{0}:= & \text { Always pull the arm with }\left[\max _{i} r_{i} P\left(W_{i} \leq T\right)\right] \\
& \text { (even after we have received the reward from this arm) } \\
\gamma_{4}:= & \text { Choose } \gamma_{0} \text { and } \gamma_{1} \text { each with probability } 0.5 \\
\gamma_{5}:= & \text { Choose } \gamma_{0} \text { and } \gamma_{2} \text { each with probability } 0.5 \\
\gamma_{6}:= & \text { Choose } \gamma_{1} \text { if }\left[\max _{i} r_{i} P\left(W_{i} \leq T\right)<E R\left(\gamma_{1}\right)\right], \text { o/w choose } \gamma_{0} \\
\gamma_{7}:= & \text { Choose } \gamma_{2} \text { if }\left[\max _{i} r_{i} P\left(W_{i} \leq T\right)<E R\left(\gamma_{2}\right)\right], \text { o/w choose } \gamma_{0}
\end{aligned}
$$

Remark: Computing the quantities $P\left(W_{i} \leq T\right), E R\left(\gamma_{1}\right)$, and $E R\left(\gamma_{2}\right)$ may not be straightforward and one may resort to simulation approaches for this.

Policies with Worst case Performance Guarantees

Theorem 2: Assume that the W_{i} 's are mutually independent of themselves and of T. Then, we have

$$
\begin{aligned}
& \sup _{\pi \in \Pi} E R(\pi) \leq \frac{2}{\min _{i} P\left(W_{i} \leq T\right)} E R\left(\gamma_{4}\right) \\
& \sup _{\pi \in \Pi} E R(\pi) \leq \frac{2}{\min _{i} P\left(W_{i} \leq T\right)} E R\left(\gamma_{5}\right) \\
& \sup _{\pi \in \Pi} E R(\pi) \leq\left(1+\frac{1}{\min _{i} P\left(W_{i} \leq T\right)}\right) E R\left(\gamma_{6}\right) \\
& \sup _{\pi \in \Pi} E R(\pi) \leq\left(\frac{1+\max _{i} P\left(W_{i} \leq T\right)}{\min _{i} P\left(W_{i} \leq T\right)}\right) E R\left(\gamma_{7}\right)
\end{aligned}
$$

Policies with Worst case Performance Guarantees

Proof Sketch:

- Replace each arm i with n_{i} arms each yielding a reward of n_{i} / r_{i} after every success with success probability being as p_{i}. Call this as fractional case.
- For any policy $\pi \in \Pi$, if we pull the exact same sequence of arms in the fractional case as suggested by policy π for the original case, $E R($ Fractional Case $) \geq E R($ Original Case)
- For fractional case, the optimal policy (as per earlier Theorem 1) is greedy policy with index $r_{i} p_{i} / n_{i}$.

Experimental Evaluation

(a) $n_{1}=10$

Expected Reward for $\mathrm{k}=2, \mathrm{p}_{1}=\frac{1}{4}, p_{2}=\frac{1}{16}, r_{2}=4, n_{1}=20, T=100$

(b) $n_{1}=20$

Summary and Future Directions

- Introduced a variant of stochastic knapsack problem that can be used for goal based all-or-none pricing for online ads
- Provided feasible alternatives to the optimal policy
- Showed that certain policies are assured a fraction of the optimal reward, while others, for which we have no theoretical guarantees, perform close to optimal for a wide variety of situations
- A number of avenues for future directions, crucial one being the following
- Combine this with MAB for situations where probabilities p_{i} need to be learned

Thank You!

[^0]: [1] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations. John Wiley and

[^1]: [1] B.C. Dean, M. Goemans, and J. Vondrák, Approximating the Stochastic Knapsack Problem: The Benefit of

