
Adaptive Policies for Online Ad Selection Under
Chunked Reward Pricing Model

Dinesh Garg
IBM India Research Lab, Bangalore

garg.dinesh@in.ibm.com

(Joint Work with Michael Grabchak, Narayan Bhamidipati, and Rushi Bhatt)

September 8, 2014



Motivation: Group Discount

I Groupon sells purchase vouchers at heavy discounts

I Only when a certain number of people sign up, the deal becomes effective

I If the predetermined minimum is not met, no one gets the deal

I # of customers and discount is jointly agreed by Groupon and merchant

I The revenue is split between merchant and Group (usually 50 : 50)



The Problem of Groupon: How to Maximize Reward?

T = # of user requests received within a fixed time interval

T ∼ FT = Distribution of T (assumed to be known)

pi = Probability of a user subscribing for the deal i

ni = Minimum # of subscriptions required for the deal i to be ON

ri = Reward of Groupon if at least ni users subscribe

k = # of active deals in the fray

p̃, r̃, ñ = Vectors of pi , ri , and ni , resp.



Key Assumptions

I We need to pick only one deal for display against every user request

I The reward ri can be received at most once during the interval

I T is unknown but its distribution FT is known

I (pi , ri , ni ) is known for each active deal

I A user subscribing for a deal is independent of T



Connection to Multi-Armed Bandit (MAB) Problem

I Our framework is similar to MAB problem except that we
assume probabilities p̃ to be known

I Our goal is not to infer probabilities p̃ but to maximize the
total reward

I We will stick to following convention
I Refer to deals as arms
I Pulling an arm i means displaying the deal i
I A pull being successful means the user subscribing for that deal
I Getting a reward from an arm means attaining the minimum

# of subscriptions



Knapsack Connection and Hardness of the Problem

I Suppose T is known and pi = 1 ∀i = 1→ k

I The problem reduces to standard 0− 1 knapsack problem

I Because Knapsack is NP-Hard [1], our problem must, in general, be
NP-hard as well!

—————
[1] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations. John Wiley and

Sons, Chichester, 1990.



Connection to Stochastic Knapsack Problem
Stochastic Knapsack (SK) Problem

I Several versions of Stochastic Knapsack exist. Our setting is similar to [1]

I In SK problem, item i has a fixed and known value ri but a random weight Wi ,
where Wi ∼ Fi , satisfying P(Wi ≤ 0) = 0

I One-by-one, items are placed into a fixed and known size (T ) Knapsack

I Once an item has been inserted, we find out how big it is

I If item fits then we collect the reward otherwise not

I Even if item doesnot fit, it exhausts the remaining capacity of the knapsack

Our Problem v/s Stochastic Knapsack (SK) Problem

I Our problem allows T to be random

I In our setting, weight Wi of an arm i corresponds to a random number of times
we need to pull this arm to get ni subscriptions.

I Wi ∼ NB(ni , pi ), where pi ∈ [0, 1] and ni ∈ N \ {0}

I In our setting, inserting an item is equivalent to keep showing a deal until we
get reward

—————
[1] B.C. Dean, M. Goemans, and J. Vondrák, Approximating the Stochastic Knapsack Problem: The Benefit of

Adaptivity. Mathematics of Operations Research, 33 (4), pp. 945-964, 2008.



Optimality of Simple Greedy Scheme for Stochastic
Knapsack

I In general, the Stochastic Knapsack problem (as defined earlier) is
NP-hard

I There are situations where simple greedy algorithm is the optimal
policy

I Whenever, Wi ∼ Exp(λi ) or Wi ∼ Geom(pi ) = NB(1, pi )

I The above result does not depend on T and hence we can extend it
for our setting

Theorem 1: If for every deal i , we have Wi ∼ NB(1, pi ) then the
optimal deal to show at time t is the one with the largest ripi from
which we have not yet received a reward.



Policy Definition

I Notations

θt = The id of the deal that is shown at time t

δt = A {0, 1} random variable capturing the user’s action at time t

dt = Realization of the random variable

θ̃, δ̃, d̃ = Vectors of θt , δt , and dt , resp.

Si (t) = # of subscriptions for deal i in the first t impressions (R.V.)

si (t) = Realization of Si (t)

S̃(t), s̃(t) = Vectors of Si (t) and si (t), resp.

I Policy (π)

I A policy π is either a random or a deterministic function that
chooses the arm to be pulled at time t + 1 given all the
available information at time t

I

θt+1 = π(p̃, r̃, ñ,FT | {θi , di}i=1→t)



(Expected) Reward and Optimal Policy

I (Expected) Reward

I

R(π, p̃, r̃, ñ,FT | θ̃, δ̃ = d̃) =
k∑

i=1

ri1[si (T )≥ni ;π]

I

ER(π, p̃, r̃, ñ,FT | θ̃, δ̃ = d̃) =
k∑

i=1

riP(Si (T ) ≥ ni ;π)

I Optimal Policy (π∗)

I

π∗ = argsup
π∈Π

ER(π, p̃, r̃, ñ,FT | θ̃, δ̃ = d̃)



A Lookahead Procedure to Compute Optimal Policy

I The best arm to pull at time t, can be given by

i∗t = argmax
i=1→k

[
pi

(
ri1[ni−si (t)=1] + ER(π∗, p̃, r̃, ñ − s̃(t) − ẽi,FT−t | φ)

)
+(1− pi )ER(π∗, p̃, r̃, ñ − s̃(t),FT−t | φ)]

I The above policy can be shown to be optimal by induction
technique whenever T has a bounded support, say T0

I Since the problem is NP-hard, we can’t hope to compute above
policy efficiently for large scale problems

I Never-the-less, this trick could be useful for small scale problems



An Example of a Policy Tree

I Let us consider a scenario, where

I k=2 (i.e. two arms to be pulled)
I T is known and fixed, say T = 2
I n1 = 1; n2 = 2 and ripi < r2p2

I ER(n1, n2,T ) is a shorthand notation for ER(π∗, p̃, r̃, ñ,FT )

I The Policy Tree for this example will look like this.

I From this example, it is clear that this policy computation is exponential
in T



Practical Policies for Chunked Reward

We restrict our attention on the class of policies Πp ⊂ Π that satisfy the
following feasibility criteria

I Arm i would be considered at time t + 1, only if
si (t) < ni and P(ni − si (t) < T − t) > 0

I All other parameters being equal, arm i would be chosen over arm j
if pi > pj or ri > rj , or nj > ni

I If ri is multiplied by a constant for all the arms, the choice of the
arm does not change

Remark: Any policy π which does not satisfy above criteria can be easily

replaced by some policy π′ ∈ Πp such that π′ is uniformly better than π



(Adaptive) Greedy Policies

I We consider greedy policies that compute an index for each arm at
any time and then choose the arm which maximizes this index.

I In light of criteria discussed earlier, we will consider only those
greedy policies where the index for arm i is

I non-decreasing function of pi and ri , and
I non-increasing function of ni − si (t), and
I involves all of pi , ri , and ni − si (t)
I linear in ri so as to satisfy scale invariance criteria

I We consider the following 3 greedy policies

Index(π1) :=
ripi

ni − si (t)
1[si (t)<ni ]1[ni−si (t)≤T−t]

Index(π2) :=
ripi

ni − si (t)
P (Wi ≤ T | Si (t) = si (t))

Index(π3) := riP(Wi ≤ T | Si (t) = si (t))



(Non-Adaptive) Greedy Policies

I Note, for greedy policies are adaptive in the sense that we need to
compute the index at every time point

I For a non-adaptive greedy policy,

I We compute indices only once (at the beginning), and
I At each time t, pull the arm with the largest index for which

we have not yet received a reward

I We denote the corresponding non-adaptive policy for πi as γi

I Non-adaptive policies do not satisfy the feasibility criteria and hence
can be uniformly improved



Greedy Policies May Be Arbitrarily Bad

I Consider a scenario having pi = 1 ∀i (i.e. 0− 1 Knapsack)

I Greedy policies π1, π2, γ1, γ2 reduce to standard greedy
algorithm for this problem

I For greedy policy π3 (and γ3) consider the following scenario:
I There are k = T + 1 arms
I For arm 1, r1 = 2 and n1 = T
I For all other arms, ri = 1, ni = T

I Following π3 (and γ3), we will only pull arm 1 and at the end
get a reward of 2

I The optimal algorithm, however, is to never pull arm 1 and
instead pull each of the other arms once to get a reward of T



Policies with Worst case Performance Guarantees

I Greedy policies can be arbitrary bad and hence we can’t provide worst
case performance bounds

I However, we can provide bounds for certain modified versions

I We introduce the following non-adaptive policy which will be used for
analysis

γ0 := Always pull the arm with
[
max

i
riP(Wi ≤ T )

]
(even after we have received the reward from this arm)

γ4 := Choose γ0 and γ1 each with probability 0.5

γ5 := Choose γ0 and γ2 each with probability 0.5

γ6 := Choose γ1 if
[
max

i
riP(Wi ≤ T ) < ER(γ1)

]
, o/w choose γ0

γ7 := Choose γ2 if
[
max

i
riP(Wi ≤ T ) < ER(γ2)

]
, o/w choose γ0

Remark: Computing the quantities P(Wi ≤ T ),ER(γ1), and ER(γ2) may not

be straightforward and one may resort to simulation approaches for this.



Policies with Worst case Performance Guarantees

Theorem 2: Assume that the Wi ’s are mutually independent of themselves
and of T . Then, we have

sup
π∈Π

ER(π) ≤
2

min
i

P(Wi ≤ T )
ER(γ4)

sup
π∈Π

ER(π) ≤
2

min
i

P(Wi ≤ T )
ER(γ5)

sup
π∈Π

ER(π) ≤

1 +
1

min
i

P(Wi ≤ T )

ER(γ6)

sup
π∈Π

ER(π) ≤

1 + max
i

P(Wi ≤ T )

min
i

P(Wi ≤ T )

ER(γ7)



Policies with Worst case Performance Guarantees

Proof Sketch:

I Replace each arm i with ni arms each yielding a reward of ni/ri
after every success with success probability being as pi . Call this as
fractional case.

I For any policy π ∈ Π, if we pull the exact same sequence of arms in
the fractional case as suggested by policy π for the original case,
ER(Fractional Case) ≥ ER(Original Case)

I For fractional case, the optimal policy (as per earlier Theorem 1) is
greedy policy with index ripi/ni .



Experimental Evaluation



Summary and Future Directions

I Introduced a variant of stochastic knapsack problem that can be
used for goal based all-or-none pricing for online ads

I Provided feasible alternatives to the optimal policy

I Showed that certain policies are assured a fraction of the optimal
reward, while others, for which we have no theoretical guarantees,
perform close to optimal for a wide variety of situations

I A number of avenues for future directions, crucial one being the
following

I Combine this with MAB for situations where probabilities pi

need to be learned



Thank You!


