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Properties associated with integrability (1)

There is no definition of integrability that applies to every
situation. However, for many clearly defined sets of equations
there exist precise definition of integrability.

• y ′′ = f (y ′, y , x) where f is polynomial in y ′, rational in y
and analytic in x , integrability means: the movable
singularities of the solutions are poles.
(This method extends to PDE’s)

• For Hamiltonian mechanical system with a Poisson bracket
we have the Liouville-Arnold definition of integrability.

• For PDEs integrability can be defined by the existence of a
good Lax pair, or by the existence of symmetries,
existence of multisoliton solutions.

• for maps: existence of sufficient number of conserved
quantities
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Properties associated with integrability (2)

• For lattice equations: multidimensional consistency,
algebraic entropy.

• For most discrete systems:
algebraic entropy: polynomial growth of complexity
singularity confinement (useful but not so precise)
low Nevanlinna growth.

From the above it may seem that we have a number of isolated
definitions and classes of equations, but they are in fact related
in interesting ways.

Hirota’s bilinear method is an effective tool for studying the
existence of multisoliton solutions but there are also deep
mathematical connections (Sato theory).
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These lectures are in three parts:

1. Introduction to Hirota’s bilinear method for continuous
systems.

2. Hirota’s bilinear method for integrable difference equations.

3. Multidimensional consistency of lattice equations.
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Part 1.

Introduction to Hirota’s method for continuous
systems.
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The form of a PDE appearing in a physical problem is usually
not in the best form for the subsequent mathematical analysis.

Hirota (1971): The best dependent variables are those in which
the soliton solutions appear as a finite sum of exponentials.

ISTM on KdV says

u = 2∂2
x log det M,

where the entries of M are polynomials of exponentials eax+bt .

Hirota: Let us define a new dependent variable F by

u = 2∂2
x log F . (1)

With F it should be easy to construct soliton solutions.
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Bilinear form for KdV

How do soliton equations look in terms of F?

Example: KdV
uxxx + 6uux + ut = 0. (2)

Let us do the change of variables step by step.
First introduce v by

u = ∂x v .

After this (2) can be written as

∂x [vxxx + 3v2
x + vt ] = 0,

which can be integrated to the potential KdV.

vxxx + 3v2
x + vt = 0,
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Next substituting
v = α∂x log F ,

into vxxx + 3v2
x + vt = 0 yields

F 2 × (something quadratic) + 3α(2− α)(2FF ′′ − F ′2)F ′2 = 0.

Thus we get a quadratic equation if we choose α = 2:

FxxxxF − 4FxxxFx + 3F 2
xx + FxtF − FxFt = 0.

This can be written as

(D4
x + DxDt )F · F = 0,

where the Hirota’s derivative operator D is defined by

Dn
x f · g = (∂x1 − ∂x2)nf (x1)g(x2)

∣∣
x2=x1=x

≡ ∂n
y f (x + y)g(x − y)

∣∣
y=0.
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We say that an equation is in the Hirota bilinear form if all its
derivatives appear trough Hirota’s D-operator

Dn
x f ·g = (∂x1−∂x2)nf (x1)g(x2)

∣∣
x2=x1=x .

Thus D operates on a product of two functions like the Leibniz
rule, except for a crucial sign difference. For example

Dx f ·g = fxg − fgx ,

DxDt f ·g = fgxt − fxgt − ftgx + fgxt

P(D)f ·g = P(−D)g ·f .

For later use note also that

P(D)f ·1 = P(∂)f ,
P(D)epx ·eqx = P(p − q)e(p+q)x .
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Another example: the Kadomtsev-Petviashvili equation:

∂x [uxxx + 6uxu − 4ut ] + 3σuyy = 0.

Substitution u = 2∂2
x log F yields

∂2
x

{
F−2[(D4

x + 3σD2
y − 4DxDt )F · F ]

}
= 0,

Thus the bilinear form of KP is given by

(D4
x + 3σD2

y − 4DxDt )F · F = 0.
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The Hirota-Satsuma shallow water-wave equation

uxxt + 3uut − 3uxvt − ux = ut , vx = −u,

becomes with (1) and one integration

(D3
x Dt − D2

x − DtDx )F · F = 0,

which actually has an integrable (2 + 1)-dimensional extension

(D3
x Dt + aD2

x + DtDy )F · F = 0.

The Sawada-Kotera equation (SK)

uxxxxx + 15uuxxx + 15uxuxx + 45u2ux + ut = 0,

bilinearizing with (1) and one integration to

(D6
x + DxDt )F · F = 0,

with the integrable (2 + 1)-dimensional extension

(D6
x + 5D3

x Dt − 5D2
t + DxDy )F · F = 0.
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Soliton solutions
Consider the general class of equations

P(Dx ,Dy , . . . )F · F = 0.

How to construct soliton solutions?

The trivial (vacuum) solution u = 0 corresponds to F = 1.

Therefore we assume P(0,0, . . . ) = 0.

Soliton solutions are built perturbatively on top of this vacuum.

F = 1 + ε f1 + ε2 f2 + ε3 f3 + · · ·
Note that ε is a formal expansion parameter.

During the derivation we will often use the gauge invariance of
bilinear equations:

P(D)(eκF · eκG) = e2κP(D)F ·G, if κ = ~c · ~x .
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For the 1SS try
F = 1 + ε f1.

This implies

P(Dx , . . . ){1·1 + ε1·f1 + ε f1 ·1 + ε2 f1 ·f1} = 0.

The term of order ε0 vanishes (0SS).

Since P is even, the order ε1 yields

P(∂x , ∂y , . . . )f1 = 0.

which is solved by

f1 = eη, η = px + qy + ωt + · · ·+ const,

where the parameters p,q, . . . satisfy the dispersion relation

P(p,q, . . . ) = 0.

Then order ε2 term vanishes: P(~D)eη ·eη = e2ηP(D)1·1 = 0.
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The solution

F = 1 + eη, η = ~x · ~p + η0, P(~pi) = 0,

corresponds to a soliton:

u = 2∂2
x (log(F ))

=
2p2eη

(1 + eη)2 =
p2/2

cosh(1
2η)2
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Ansatz for the two-soliton solution (perturbatively!):

F = 1 + ε (eη1 + eη2) + ε2A12eη1+η2 , ηi = ~x · ~pi + η0
i ,

Substituting this into the equation gives:
P(D){ 1 · 1 + 1 · eη1 + 1 · eη2 + A12 1 · eη1+η2 +

eη1 · 1 + eη1 · eη1 + eη1 · eη2 + A12 eη1 · eη1+η2 +

eη2 · 1 + eη2 · eη1 + eη2 · eη2 + A12 eη2 · eη1+η2 +

A12eη1+η2 · 1 + A12eη1+η2 · eη1 + A12eη1+η2 · eη2 + A2
12eη1+η2 · eη1+η2 } = 0.

Here most terms vanish due to P(0) = 0 or DR. The underlined
terms combine as 2A12P(~p1 + ~p2) + 2P(~p1 − ~p2) = 0, thus

A12 = −P(~p1 − ~p2)

P(~p1 + ~p2)
.

KdV: P(Dx ,Dt ) = D4
x + DxDt , η = px + ωt + η0, ω = −p3:

A12 = −(p1 − p2)4 + (p1 − p2)(ω1 − ω2)

(p1 + p2)4 + (p1 + p2)(ω1 + ω2)
=

(p1 − p2)2

(p1 + p2)2 .
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Figure: Scattering of Korteweg–de Vries solitons. On the left a profile
view, on the right the locations of the maxima, along with the free
soliton trajectory as a dotted line. (p1 = 1

2 , p2 = 1.)
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Result: Any equation of type

P(~Dx )F · F = 0

has two-soliton solutions

F = 1 + eη1 + eη2 + A12eη1+η2 , where Aij = −
P(~pi − ~pj)

P(~pi + ~pj)

and the parameters satisfy the dispersion relation P(pi) = 0.

This is a level of partial integrability: we can have elastic
scattering of two solitons, for any dispersion relation, if the
nonlinearity is suitable.

Clearly all of these equations cannot be integrable.
What distinguishes the integrable equations?
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Hirota integrability:

If the 1SS is given by

F = 1 + εeη, ηi = ~x · ~pi + η0
i , P(~pi) = 0,

then there should be an NSS of the form

F = 1 + ε

N∑
j=1

eηj + (finite number of h.o. terms)

without any further conditions on the parameters ~pi of the
individual solitons.

Almost all equations have multisoliton solutions for some
restricted set of parameters, it does not imply integrability.
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Apply this principle to the three-soliton solution:

F3SS =1 + ε (eη1 + eη2 + eη3)

+ ε2 (A12eη1+η2 + A23eη2+η3 + A31eη3+η1
)

+ ε3A123eη1+η2+η3

What is A123?

Separation condition on NSS: If one soliton goes far away, the
rest should look like a (N-1)SS.

“Going away” means either eηk → 0 or eηk →∞.

Result:
A123 = A12A23A13.

No freedom left: parameters restricted only by the DR,
phase factors given already.

Existence of a 3SS is a condition on the equation, i.e., on P !
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Substituting F3SS into P(D)F · F = 0 yields the
“three-soliton-condition”∑

σi=±
P(σ1~p1 + σ2~p2 + σ3~p3)P(σ1~p1 − σ2~p2)

×P(σ2~p2 − σ3~p3)P(σ1~p1 − σ3~p3) = 0.

or ∑
σi=±

P(σ1~p1 + σ2~p2 + σ3~p3)

P(σ1~p1 + σ2~p2)P(σ2~p2 + σ3~p3)P(σ1~p1 + σ3~p3)
= 0.

Those polynomials P that satisfy this condition yield equations
that are integrable also by other criteria.
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1-component results

The complete list of 1-component nonlinear Hirota bilinear
equations with 3SS is (JH, J. Math. Phys. (1987-1988)):

(D4
x − 4DxDt + 3D2

y )F · F = 0,

(D3
x Dt + aD2

x + DtDy )F · F = 0,
(D4

x − DxD3
t + aD2

x + bDxDt + cD2
t )F · F = 0,

(D6
x + 5D3

x Dt − 5D2
t + DxDy )F · F = 0.

These are the Kadomtsev-Petviashvili, Hirota-Satsuma-Ito,
new, and Sawada-Kotera-Ramani equations.
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Hierarchies

Higher order equations in a hierarchy are obtained from a set of
equations containing some dummy variables.
The bilinear KP hierarchy starts as (Jimbo-Miwa 1983)

(D4
1 − 4D1D3 + 3D2

2) f · f = 0,
((D3

1 + 2D3)D2 − 3D1D4) f · f = 0,
(D6

1 − 20D3
1D3 − 80D2

3 + 144D1D5 − 45D2
1D2

2) f · f = 0,
...

– Infinite number of variables xn, n = 1,2,3, . . . (Dk ≡ Dxk )

– obeying infinite number of equations

– that are weight homogeneous, if Dk is given weight k .
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Multisoliton solutions to the whole hierarchy

The formula for the NSS is

F =
∑
µi=0,1
1≤i≤N

exp

 ∑
1≤i<j≤N

aijµiµj +
N∑

i=1

µiηi

 ,

where the plane wave factor (PWF) is

eηj = exp
[
(pj − qj)x1 + (p2

j − q2
j )x2 + (p3

j − q3
j )x3 + . . .

]
and the phase factor

exp(aij) = Aij =
(pi − pj)(qi − qj)

(p1 − qj)(qi − pj)
.
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KdV as 2-reduction KP

2+1 dimensional solitons have 2 soliton parameters pi ,qi .

1+1 dimensional solitons have only one soliton parameter.

From KP to KdV use 2-reduction q2
i = p2

i , i.e., qi = −pi .

When this is applied to KP solution it yields:
Phase factor

Aij =
(pi − pj)(qi − qj)

(pi − qj)(qi − pj)
−→

(pi − pj)
2

(pi + pj)2 ,

plane wave factor

eηj = e(pj−qj )x+���
�XXXX(p2

j −q2
j )y +(p3

j −q3
j )t+··· −→ e2pj x+2p3

j t+···

and equation

(D4
x + 3D2

y − 4 DxDt )f · f = 0 −→ (D4
x − 4 DxDt )f · f = 0.
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BSQ as 3-reduction of KP

The 3-reduction means q3
i = p3

i , i.e.,
qi = ωpi , where ω3 = 1, ω 6= 1.

Apply to KP yields:

Aij =
(pi − pj)(qi − qj)

(pi − qj)(qi − pj)
−→

(pi − pj)
2

p2
i + pipj + p2

j
,

eηj = e(pj−qj )x+(p2
j −q2

j )y+���
�XXXX(p3

j −q3
j )t +··· −→ e(1−ω)pj x+(1−ω2)p2

j y

Now scale p and y by

pj = kj/(1− ω), y = i
√

3y ′ ⇒ eηj = ekj x+k2
j y ′

and we get the Boussinesq equation

(D4
x + 3D2

y − 4 DxDt )f · f = 0 −→ (D4
x − D2

y ′)f · f = 0.
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Higher order equations: Lax5
The 5th order KdV equation (Lax5)

uxxxxx + 10uuxxx + 20uxuxx + 30u2ux − 16ut = 0

is bilinearized by{
(D4

1 − 4D1D3) f · f = 0,
(D6

1 − 20D3
1D3 − 80D2

3 + 144D1D5) f · f = 0,

These follow from the 1st and 3rd equation in the KP hierarchy,
after the 2-reduction D2n = 0 (in solutions, qj = −pj ). Also:

– have to eliminate the dummy variable D3

– change names D1 = Dx , D5 = Dt

– use substitution u = 2∂2
x log(f ).
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mKdV and sG
The nonlinear Schrödinger (nlS) equation*
The Sasa-Satsuma equation*

The modified KdV (mKdV) equation

uxxx + ε6u2ux + ut = 0, (3)

with travelling wave solutions

u =
±p

cosh(px − p3t + c)
, if ε = 1,

u =
±p

sinh(px − p3t + c)
, if ε = −1.

First make the equation scale invariant with

u = ∂x w ,

after which we get from (3) (note: ε = +1)

∂x [wxxx + 2w3
x + wt ] = 0,

integrate once to get the potential mKdV equation.
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Bilinearization
New kind of substitution:

w = 2 arctan(G/F ), i.e., u = 2
DxG · F
F 2 + G2 ,

and then the potential mKdV becomes

(F 2 + G2)[(D3
x + Dt )G · F ]

+3(DxF ·G)[D2
x (F · F + G ·G)] = 0 .

Two free functions, G and F , need two equations.

For solitons we can take{
(D3

x + Dt )(G · F ) = 0,
D2

x (F · F + G ·G) = 0.

More general possibility (λ is an arbitrary function of x , t):{
(D3

x + Dt + 3λDx )(G · F ) = 0,
(D2

x + λ)(F · F + G ·G) = 0,
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The sine-Gordon (sG) equation

φxx − φtt = sinφ.

The substitution
φ = 4 arctan(G/F ),

yields

[(D2
x − D2

t − 1)G · F ](F 2 −G2)

−FG[(D2
x − D2

t )(F · F −G ·G)] = 0.

The usual splitting is by{
(D2

x − D2
t − 1)G · F = 0,

(D2
x − D2

t )(F · F −G ·G) = 0.
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Soliton solutions for the mKdV/sG class
The mKdV and sG equations belong to the class{

B(D~x ) G · F = 0,
A(D~x )(F · F + εG ·G) = 0,

(4)

where A is even and B either odd (mKdV) or even (sG).

For the vacuum we choose F = 1,G = 0 and therefore we must
have A(0) = 0. For the 1SS we may try

F = 1 + αeη, G = βeη.

Direct calculation yields from (4) the conditions

αA(~p) = 0, βB(~p) = 0, αβB(0) = 0.

Now we can in principle have two different kinds of solitons

type a: F = 1 + eηA , G = 0, DR: A(~p) = 0,
type b: F = 1, G = eηB , DR: B(~p) = 0.
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Bilinearizing nlS
The nonlinear Schrödinger equation is given by

iut + uxx + 2ε|u|2u = 0,

where the function u is complex.

Bilinearizing substitution:

u = g/f , g complex, f real.

This yields

f [(iDt + D2
x )g · f ]− g [D2

x f · f − ε2|g|2] = 0,

The splitting is{
(iDt + D2

x − 2ρ2)g · f = 0,
(D2

x − 2ρ2)f · f = ε2|g|2.

For bright solitons ρ = 0, for dark solitons ρ 6= 0, ε = −1.
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Soliton solutions
For bright solitons the vacuum soliton is given by f = 1,g = 0.
In the formal expansion the 1SS is

f = 1 + εf1 + ε2f2 + . . . , g = εg1 + . . .

One finds the solution

g = eη, f = 1 + a eη+η
∗
, η = px + ωt complex.

where iω + p2 = 0, a = ε/(p + p∗)2.

For dark solitons the 0SS is given by a pure phase

f = 1, g ≡ g0 = ρeθ, θ = i(kx − ωt), ω = k2 + 2ρ2.

and the 1SS by g = g0(1 + Zeη), f = 1 + eη, where

η = px − Ωt ,Ω = p(2k − σ), σ =
√

4ρ2 − p2, Z = σ+ip
σ−ip .
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Bilinearization can be difficult. As an example let us consider
the Sasa-Satsuma equation

qt + qxxx + 6|q|2qx + 3q|q2|x = 0.

Try q = G/F , G complex, F real. The result can be separated
to 

(D3
x + Dt )G · F = 0,

DxG ·G∗ = 0,
D2

x F · F = 4|G|2,
But this is wrong: 3 real functions, 4 eqs., too restrictive.

Either one of the following is OK (see C. Gilson, J. Hietarinta, J.
Nimmo, and Y. Ohta, Phys. Rev. E 68, 016614 (2003))

(D3
x + 4Dt ) G · F = 3Dx H · F ,

(D3
x + 4Dt ) G∗ · F = 3Dx H∗ · F ,

D2
x G · F = −HF ,

D2
x G∗ · F = −H∗F ,
D2

x F · F = 4|G|2,


(D3

x + Dt ) G · F = 3SG,
(D3

x + Dt ) G∗ · F = −3SG∗,
Dx G ·G∗ = SF ,
D2

x F · F = 4|G|2,
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Summary

Hirota’s bilinear method is effective for constructing soliton
solutions.

In order to apply it one must transform the nonlinear equation
into bilinear form. This may be difficult.

A large class of equations in bilinear form have 2SS, but the
existence of 3SS is a strict integrability criterion.

There is a deep mathematical theory behind the bilinear
approach, developed by M. Sato and his collaborators in Kyoto.
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