Competitive Provisioning of Online Services

Jayakrishnan Nair Electrical Engineering, IIT Bombay

Joint work with Vijay Subramanian, Adam Wierman & Bert Zwart

YAHOO!

Google

Characteristics of online services

- 1. Majority are offered for free (and supported by Ads.)
 - •Internet advertising revenue totaled \$26 billion in 2010
- 2. Users are highly congestion (delay) sensitive

•Google search: 0.5 seconds additional delay => 20% drop in traffic

3. <u>Positive network effects</u> in the user base

•Users derive utility from other people using the service

4. High level of competition between providers

Focus: How these factors lead to capacity provisioning by profit maximizing firms

Case of a single provider

For mathematical tractability, we assume:

- •Poisson arrivals
- •Exponential service times
- •FCFS service

WLOG, assume mean service time = 1 $\Rightarrow \lambda(\Lambda, k) < k$

Determined by network effects

$$V(\lambda) = w\lambda^{\beta}, \, w > 0, \, \beta \in [0, 1]$$

- Revenue $\propto \lambda(\Lambda, k)$
- Profit maximizing strategy:

$$k_{\Lambda}^{*} = \underset{k \geq 0}{\operatorname{arg\,max}} \left[b\lambda(\Lambda, k) - k \right]$$

Interesting case: b > 1

Want to understand:

- Capacity provisioning k^*_{Λ}
- $(\lambda^*_\Lambda, k^*_\Lambda)$
- Profit of the service provider

As a function of Λ (for large Λ)

Theorem: For large enough Λ , $\lambda^*_{\Lambda} = \Lambda$. As $\Lambda \uparrow \infty$,

(a) if
$$\beta = 0$$
 (i.e., $V(\lambda) = w$),
 $k_{\Lambda}^* = \Lambda + \sqrt{\xi(w) \Lambda} + o(\sqrt{\Lambda})$

Profit = $(b-1)\Lambda - \sqrt{\xi(w)\Lambda} - o(\sqrt{\Lambda})$

Max. possible profit

Need 'square-root' spare servers
Halfin-Whitt regime

Theorem: For large enough Λ , $\lambda^*_{\Lambda} = \Lambda$. As $\Lambda \uparrow \infty$,

(a) if
$$\beta = 0$$
 (i.e., $V(\lambda) = w$),
 $k_{\Lambda}^* = \Lambda + \sqrt{\xi(w) \Lambda} + o(\sqrt{\Lambda})$
(b) if $\beta \in (0, 1)$ (recall $V(\lambda) = w\lambda^{\beta}$),
 $k_{\Lambda}^* = \Lambda + \sqrt{\frac{\Lambda^{1-\beta}}{w(\beta+1)}} + o(\sqrt{\Lambda^{1-\beta}})$
Profit = $(b-1)\Lambda - \sqrt{\frac{\Lambda^{1-\beta}}{w(\beta+1)}} - o(\sqrt{\Lambda^{1-\beta}})$
Less than
'square-root'
spare servers

Theorem: For large enough Λ , $\lambda^*_{\Lambda} = \Lambda$. As $\Lambda \uparrow \infty$,

(a) if
$$\beta = 0$$
 (i.e., $V(\lambda) = w$),
 $k_{\Lambda}^* = \Lambda + \sqrt{\xi(w) \Lambda} + o(\sqrt{\Lambda})$
(b) if $\beta \in (0, 1)$ (recall $V(\lambda) = w\lambda^{\beta}$),
 $k_{\Lambda}^* = \Lambda + \sqrt{\frac{\Lambda^{1-\beta}}{w(\beta+1)}} + o(\sqrt{\Lambda^{1-\beta}})$
(c) if $\beta = 1$ (recall $V(\lambda) = w\lambda$),
 $k_{\Lambda}^* = \Lambda + O(1)$ bounded
Profit = $(b - 1)\Lambda - O(1)$ bounded

Theorem: For large enough Λ , $\lambda^*_{\Lambda} = \Lambda$. As $\Lambda \uparrow \infty$,

(a) if
$$\beta = 0$$
 (i.e., $V(\lambda) = w$),
 $k_{\Lambda}^* = \Lambda + \sqrt{\xi(w) \Lambda} + o(\sqrt{\Lambda})$
(b) if $\beta \in (0, 1)$ (recall $V(\lambda) = w\lambda^{\beta}$),
 $k_{\Lambda}^* = \Lambda + \sqrt{\frac{\Lambda^{1-\beta}}{w(\beta+1)}} + o(\sqrt{\Lambda^{1-\beta}})$
(c) if $\beta = 1$ (recall $V(\lambda) = w\lambda$),
 $k_{\Lambda}^* = \Lambda + O(1)$

Stronger network effects \implies less service capacity, increased profit

Non-cooperative model

Theorem: For large enough Λ , $\lambda^*_{\Lambda} = \Lambda$. As $\Lambda \uparrow \infty$,

 $k_{\Lambda}^* = \Lambda + O(1)$

Tragedy of the commons: Bounded spare servers irrespective of network effects

Impact of network effects heavily diminished by anarchy in user base

Proof idea

Original system Unconstrained system $\boldsymbol{\lambda}(k) = \operatorname*{arg\,max}_{\lambda \ge 0} \left[U(\lambda) - \lambda \mathbb{E}\left[W \right] \right]$ $\lambda(\Lambda, k) = \arg \max \left[\lambda V(\lambda) - \lambda \mathbb{E} \left[W \right] \right]$ $\lambda \in [0,\Lambda]$ $k_{\Lambda}^* = \arg \max \left[b\lambda(\Lambda, k) - k \right]$ $k \ge 0$ Want to understand Characterize $(\lambda^*_{\Lambda}, k^*_{\Lambda})$ \rightarrow ($\lambda(k), k$) $k_{\Lambda}^* \approx \lambda^{-1}(\Lambda)$ $\lambda^*_{\Lambda} \approx \Lambda$

Case of competing providers

Each firm operates an M/M/1 system Focus on non-cooperative user behavior

Two cases depending on nature of network effects:

- 1. Industrywide network effects: Utility from Firm $i = V(\lambda_1 + \lambda_2)$
- 2. Firm-specific network effects: Utility from Firm $i = V_i(\lambda_i)$

Industry-wide network effects

Given $k = (k_1, k_2), \lambda < k_1 + k_2$, Wardrop split $(\hat{\lambda}_1(\lambda, k), \hat{\lambda}_2(\lambda, k))$ solves $\max_{\lambda_1, \lambda_2} \sum_{i=1}^2 \int_0^{\lambda_i} [V(\lambda) - f(x, k_i)] dx$ subject to $\sum_{i=1}^2 \lambda_i = \lambda$

$$\lambda(k) = \max\left\{\lambda \in [0,\Lambda] \cap [0,k_1+k_2) \mid V(\lambda) - f(\hat{\lambda}_1(\lambda,k),k_1) \ge 0\right\}$$
$$\lambda_1(k) = \hat{\lambda}_1(\lambda(k),k), \quad \lambda_2(k) = \hat{\lambda}_2(\lambda(k),k)$$

Firm *i* profit = $b_i \lambda_i(k) - k_i$

We look for Nash equilibria

Theorem: If $b_1, b_2 \in (1, 2]$, then a continuum of equilibria exist, including monopoly configurations. Any equilibrium is of one of the following forms.

1. Monopoly for Firm 1:
$$\lambda_1 = \Lambda$$
, $C_1 = \Lambda + \frac{1}{V(\Lambda)}$, $\lambda_2 = C_2 = 0$

- 2. Monopoly for Firm 2: $\lambda_2 = \Lambda$, $C_2 = \Lambda + \frac{1}{V(\Lambda)}$, $\lambda_1 = C_1 = 0$
- 3. Firms 1 and 2 share the market such that $\lambda_1 + \lambda_2 = \Lambda$, and

$$\lambda_i \ge \frac{1}{(b_i - 1)V(\Lambda)},$$
$$C_i = \lambda_i + \frac{1}{V(\Lambda)}$$

When network effects are industry-wide, multiple firms can share the market.

Competition between firms does not help the user base

Theorem (contd.): If $b_1, b_2 > 2$, there there is no Nash equilibrium. If $b_1 > 2, b_2 \leq 2$, then only equilibrium is monopoly of Firm 1:

$$\lambda_1 = \Lambda, k_1 = \Lambda + \frac{1}{V(\Lambda)}, \lambda_2 = k_2 = 0$$

Firm-specific network effects

Here, $V_i(\lambda_i) = w_i$

WLOG, assume $w_1 > w_2$

Given $k = (k_1, k_2), \lambda < k_1 + k_2$, Wardrop split $(\hat{\lambda}_1(\lambda, k), \hat{\lambda}_2(\lambda, k))$ solves $\max_{\lambda_1, \lambda_2} \sum_{i=1}^2 \int_0^{\lambda_i} [w_i - f(x, k_i)] dx$ subject to $\sum_{i=1}^2 \lambda_i = \lambda$

$$\lambda(k) = \max\left\{\lambda \in [0,\Lambda] \cap [0,k_1+k_2) \mid w_1 - f(\hat{\lambda}_1(\lambda,k),k_1) \ge 0\right\}$$
$$\lambda_1(k) = \hat{\lambda}_1(\lambda(k),k), \quad \lambda_2(k) = \hat{\lambda}_2(\lambda(k),k)$$

Firm *i* profit = $b_i \lambda_i(k) - k_i$

As before, we look for Nash equilibria

Theorem: Let $w_1 > w_2 > 0$. For large enough Λ , any equilibrium must satisfy

$$\lambda_1 \ge \Lambda - \frac{1}{b_1 - 1} \left(\frac{b_1 w_2}{w_1 (w_1 - w_2)} + \frac{1}{w_1} \right).$$

Near monopoly for Firm 1

Proof idea: For any capacity k_2 , Firm 1 can provision as much capacity as the single firm case and attract most of the user base

Summary

- Industry-wide network effects => firms can share market
 Firm specific network effects => near monopolies
- Competition between firms does not help the user base

Competitive Provisioning of Online Services

Jayakrishnan Nair EE, IITB

Joint work with Vijay Subramanian, Adam Wierman & Bert Zwart