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Linearizable systems

Properties

Integration
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Continuous

A. Riccati:
y′ = αy2 + βy + γ

B. Gambier:
y′ = −y2 + by + c

x′ = ax2 + nxy + σ

a = a(t), b = b(t), c = c(t), σ = constant

K. M. Tamizhmani Linearizations and Exact Solutions of Discrete Systems9th June 2014 3 / 43



C. Third-kind:

We start from the linear second order equation in the
form:

αx′′ + βx′ + γx+ δ

εx′′ + ζx′ + ηx+ θ
= K

where α, β, γ, δ, ε, ζ, η, θ are functions of t with K a
constant.

A nonlinear second order equation of the form:

f(x′′, x′, x) = M

where f is a polynomial of degree two in x together with
its derivatives, but linear in x′′.
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Discrete

A. Riccati:

xn+1 =
α(n)xn + β(n)

γ(n)xn + δ(n)

B. Gambier:

yn+1 =
αyn + β

γyn + δ

xn+1 =
aynxn + bxn + cyn + d

fynxn + gxn + hyn + k

where α, . . . , δ and a, . . . , k are all functions of
independent discrete variable n.
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C. Third-kind:

αxn+1 + βxn + γxn−1 + δ

εxn+1 + ζxn + ηxn−1 + θ
= K,

where α, . . . , θ are all functions of n with K a constant.

A nonlinear mapping

f(xn+1, xn, xn−1;n) = M

where f is globally polynomial of degree two in all the x′s
but not more then linear separately in each of xn−1 and
xn+1.
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In this talk we present results on linearizable discrete systems belongs
to the above three family, we discuss:

a. Linearization

b. Singularity properties

c. Degree growth properties

d. Integration
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Linearization

A. Riccati:

We recall that Riccati equation

y′ = αy2 + βy + γ

can be transformed into a linear second-order ordinary differential
equation through a simple Cole-Hopf transformation:

y = − w′

αw

The second-order linear ordinary differential equation:

w′′ + (β +
α′

α
)w′ + αγw = 0
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Discrete Riccati

Discrete Riccati equation is nothing but a homographic mapping (two
point linearisable mapping):

xn+1 =
anxn + bn
cnxn + dn

Linearisation through the discrete equivalent of the Cole-Hopf

transformation:
Substitute

xn =
Pn

Qn

Write the equation for Pn in the form

Pn = Qn+1 −
dn
cn
Qn

Use this expression in the remaining equation we finally obtain

Qn+2 − (dn+1 +
ancn+1

cn
)Qn+1 + (

andncn+1

cn
− dncn+1)Qn = 0
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Application of Singularity confinement

The basic idea of the singularity confinement is to consider the
properties of solution close to some singularities.

If at some stage of iteration
∂xn+1

∂xn−1
= 0

Lose of one degrees of freedom - the initial memory is not there.
(Recall the talk of B.Grammaticos)
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Discrete Gambier

We recall the Gambier equation:

y′ = −y2 + by + c

x′ = ax2 + nxy + σ

a = a(t), b = b(t), c = c(t), σ = constant The singularity analysis shows
that the Gambier system can not be integrable unless the coefficient of
xy in the Gambier equation is an integer n. In addition, depending on
the value of n one can find constraints on the a, c, σ which are
necessary for integrability.
Generic discrete Gambier equation is given by:

yn+1 =
αyn + β

γyn + δ

xn+1 =
aynxn + bxn + cyn + d

fynxn + gxn + hyn + k

where α, . . . , δ and a, . . . , k are all functions of independent discrete
variable n.
Now consider the special case

yn+1 =
(byn + c)

yn + 1

xn+1 =
xnynd+ σ

1− αxn
Two types of singularities:

1 If yn →∞ then (. . . ,−1,∞, b, . . . )

2 yn takes the value yn =
−aσ
d

this gives xn+1 = σ,
∂xn+1

∂xn
= 0
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Loss of one degrees of freedom
There is no way for xn to leave the singularities untill

i.e. yn becomes again yn →∞ or yn =
−aσ
d

This happens after N steps.

Periodic singularity appear-Fixed singularity.

Start with
−aσ
d

reach ∞ after N steps

Start with ∞ reach
−aσ
d

after N ′ steps.
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Thus confinement of singularity when parameter satisfy certain
conditions:

Let the iteration step is denoted by N
Conditions on the parameters for first two iteration

N = 1,
−aσ
d

= −1

N = 2,
−aσ
d

=
c+ 1

b+ 1
with

N ′ = 1,
−aσ
d

= bn−1

N ′ = 2,
−aσ
d

=
bn−1bn−2 + cn−1

bn−1 + 1
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Algebraic entropy

Arnold:
The notion of complexity for mapping in the plane is the number
of intersection points of a fixed curve with the image of a second
curve obtained under the iterations of the mapping at hand.

While complexity grows exponentially with the iteration for
generic mapping, it can be shown to grow only polynomially for a
large class of integrable mapping.

Veselov:
Integrability has an essential correlation with the weak growth of
certain characteristics

Viallet et al introduced algebraic entropy, which is a global index
of the complexity of the rational mapping

There exists a link between the dynamical complexity of a
mapping and the degree of its iterates
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Bézout’s theorem:

Consider two curves in P2 defined by polynomials of degree m and n
respectively. If they have no common components, their intersection
consists of mn points. The mn points are distinct, provided that the
curves are not tangent to each other at any of their intersection points.

In the generic case, the two curves are not tangent at any point, and
there are precisely mn intersection points.

In order to interpret the number of intersection points as exactly mn in
general, the points must be counted with “multiplicities”.
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xn+1 = f(xn−1, xn)

x0 = p, finite.

x1 =
q

r
,

Assume deg(p) = 0, deg(q) = 1, deg(r) = 1
f is homogeneous i.e.

f(λx, λy) = λnf(x, y)

deg(λn) = n
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The notion of algebraic entropy for the rational mapping was
introduced by Viallet and Heitarinta as an integrability detector.

Let {dn} be the degree of the map at each iteration.
Algebraic entropy is defined as

ε = lim
n→∞

1

n
log(dn)

If ε 6= 0 the sequence dn grows exponentially

If ε = 0 the sequence dn grows only polynomial in n

Linear degree growth → linearizable mappings

For integrable second order mappings (for QRT type) degree growth
should be quadratic. (See Favre for more results.)
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Projective mapping

Singularity appearing in projective systems a confined in one step

xn+1 =
αxn + β

γxn + δ

when xn =
−δ
r
→ xn+1 →∞ but xn+2, xn+3, . . . are finite.

Where as algebraic growth analysis gives If

x0 = f some finite and x1 =
q

r

Replace q = λq and r = λr in the above expression then we get

λ(αq + βr),

, . . . ,

λ(....)

at each iteration deg(λ) = 1 at each iteration.
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Thus
{dn} = {1, 1, . . . }

Therefore degree growth is 1, degree is constant dn = 1

Another linearizable map

xn+1 = axn−1

(
xn − a
xn − 1

)
Singularity appear xn = 1, xn = a. Then singularity pattern {1,∞, a}

Singularity is confined.

Degree growth 0, 1, 2, 3, 4, . . .
Linear growth.
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Non-integrable mapping

xn+1 = axn−1

(
xn +

1

xn

)
Singularity is confined {i, 0,∞,−i} but not integrable.

The degree growth 0, 1, 2, 4, 8, 14, 24, 40, 66, 108, . . .

dn+1 − 2dn + dn−1 = 0

Asymptotic ratio of two consecutive xn

1 +
√

5

2

“golden” ratio -same as Fibonacci series
Exponential growth- Nonintegrable.
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Gambier degree growth

yn =
1

yn−1
+ a

xn+1 =
xnyn
d + c2

xn + dyn

Substitute x0 = r and x1 =
p

q
in the expression

The degree growth is
0, 1, 2, 3, 4, 5, . . .

The degree growth is linear for any a, c, d

Singularity confinement is not satisfied in this case but for certain
condition on a, c, d singularity is confined.
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For iteration N = 1 the constraints for singularity confinement is

c(a+ c) + 1 = 0, d2 − 1 = 0

and the degree growth in this case is 0, 1, 1, 1, . . .

Therefore the degree growth is saturated

Saturation of degree clearly associated with singularity confinement.

For iteration N = 2 the constraints for singularity confinement is

(ac+ c)(a+ c) + c = 0, d4 − 1 = 0

and the degree growth is 0, 1, 2, 2, 2, . . . and singularity confinement is
satisfied

Therefore the degree growth is saturated.
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Third-kind linearizable

1

xn+1 + xn
+

1

xn + xn−1
=

1

xn
+ a

The degree growth 0, 1, 3, 5, 7, 9, . . .

Linear growth
Remark:

1 Degree growth is in step 2, where as degree growth in generic
Gambier system is in step 1

2 In this case Gambier system when the singularities are confined
the degree growth is saturated.

Third kind do not exhibit degree growth saturation.
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Favre definition of singularity

Singularity confinement examine only singularities which appear at a
finite distance

Favre:

From algebraic point of view, one should also examine singularities
associated with an infinite value of the QRT invariant.

i,e. The relation between x and xn−1 is such that the invariant vanish.
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Example

Third-kind:

xn+1xn−1 = xn
2 + 1

Invariant

K =
xn
xn+1

+
xn+1

xn
+

1

xnxn+1

K →∞ if either x1 → 0 or x1 →∞

If x1 =
p

q
, then p = 0 or q = 0 (point at infinity in P2)

Iterating the mapping forwards, overall homogeneous degree of the
iterates growth linear with a step of 2

If p = 0, x1 = 0

Singularity pattern:

. . . ,Ω3,Ω2,Ω, x0, x1 = 0,
1

x0
,Ω,Ω2,Ω3, . . .
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If q = 0, then x1 =∞

Singularity pattern:

. . . ,Ω3,Ω2,Ω,
1

x0
, x1 = 0, x0,Ω,Ω

2,Ω3, . . .

The mapping of the third kind has singularities (at infinity) which
extends to infinity in both directions but more and more singular.
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On the other hand

Gambier type mapping

(xn+1 + xn)(xn + xn−1) = a(x2n − 1)

Invariant:

K = xn+1 + xn +
1− axnxn+1

xn + xn+1

x1 =
p

q

K →∞ if q = 0
or x0 + x1 ∝ qx0 + p = 0
Iterate the denominator for xn, n > 1 is exactly q(qx0 + p)
n < −1, qx0 + p
when x1 →∞
Singularity pattern has the form

. . . ,Ω,Ω,Ω,−x0, x0, x1,Ω,Ω,Ω, . . .
when x0 + x1 = 0

singularity pattern is

. . . ,Ω,Ω,Ω, x0, x1,−x0,Ω,Ω,Ω, . . .
The pattern of the singularities extending all the way to both infinities
which containing a region of finite values.
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Recall:

Gambier:

. . . ,Ω,Ω,Ω,finite,Ω,Ω,Ω, . . .

Infinity in both directions and remain as singular as started (not
becoming more singular.)

Third-kind:

. . . ,Ω3,Ω2,Ω,finite,Ω,Ω2,Ω3, . . .

infinity in both direction and become more singular in each direction.
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Singularities of Gambier mapping, make to disappear by a suitable
transformation.

This not possible for third kind mapping

Result:
The linearizable mapping of Gambier type can be considered as having
confined singularities at infinity.

This is not the case for third-kind mapping.
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Integration

Projective mapping

We already seen that projective mapping can be linearized to
second-order linear equation Three point linearisable mapping

xn+1xnxn−1 + fnxnxn−1 + gnxn−1 + 1 = 0

f and g are free functions of n Linearise through a Cole-Hopf

transformation xn = un+1/un

un+2 + fnun+1 + gnun + un−1 = 0
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The generic Gambier mapping

The generic Gambier mapping is the derivative of the discrete Riccati
equation

We start from the expression

anxnxn+1 + bnxn + cnxn−1 + dn
enxnxn+1 + fnxn + gnxn−1 + hn

= k

where an, . . . , hn are free functions of n and k is a constant.

Eliminate k the above expression and its up shift. The resulting
second-order mapping is the Gambier equation.
Two initial conditions are given say xn and xn−1 at some given n
compute k and then linearize the equation through a simple Cole-Hopf
transformation.
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Third-kind mapping

αxn+1 + βxn + γxn−1 + δ

εxn+1 + ζxn + ηxn−1 + θ
= K, (∗)

where α, . . . , θ are all functions of n with K a constant.

A nonlinear mapping

f(xn+1, xn, xn−1;n) = M (∗∗)

where f is globally polynomial of degree two in all the x′s but not more
then linear separately in each of xn−1 and xn+1.

If L.H.S of equation (∗) and (∗∗) is same as that of its upshift, we get
an equation relating xn−1, xn, xn+1 and xn+2.
Then demand that both of them are same
We get conditions for α, . . . , θ.
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The integration method is quite similar to continuous case.

Given M, starting with xn−1, xn at some n, one gets xn+1 from
equation (∗∗).

Implementing (∗), this fixes the value of K.

Now, one can integrate the linear equation (∗) for all n.

This implies, f computed at any n has constant values, which is just
M, so (∗∗) is satisfied.
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Constructing explicit solutions of linearizable QRT mapping:

-Autonomous form

-Non autonomous form using SC/Algebraic entropy

-Invariant Kn+1 = Kn gives conditions on the parameters

-Assume solution of the form

xn = pnφn + qn +
rn
φn

-Substitute kn find φn+1 = fnφn with recurrence relation with pn, qn
and rn.
Using xn and linear equation

anxn+1 + bnxn + cnxn−1 + dn = 0

Check for consistency that fixes all the unknowns .
Thus the solution is obtained.
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Linearizable QRT mappings

Solutions in terms of trigonometric functions:

For QRT mappings the invariant should be without quartic and
cubic

γ(x2n+1 + x2n) + εxn+1xn + ζ(xn+1 + xn) + µ = 0

Integration (in terms of a hyperbolic cosine function)

xn = pφn + q + r/φn

φ is an exponential function

φn+1 = λφn with λ given by γλ2 + ελ+ γ = 0

and

q = − ζ

ε+ 2γ
, pr =

λ

(λ− 1)2
(ζ2 − µ(ε+ 2γ)

(ε2 − 4γ2)

Solutions in terms of a hyperbolic cosine function.
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Explicit solution of linearizable, non-autonomous, equations
of the third-kind

Equations of alternate dPI type:

(zn+1 + zn)

(xn+1 + xn)
+

(zn + zn−1)

(xn + xn−1)
=

2zn
xn
− 1

x2n

where zn is a free function (This is typical for linearizable mapping)
Linearisation: introduce auxiliary function un

xn =
1

un+1 − un

and (k2 is an integration constant)

un+1 =
k2 + znun
zn + un
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Solution

un = k
φn − 1

φn + 1

φ satisfies recursion relation

φn+1 =
zn + k

zn − k
φn

the solution of which can be expressed in terms of infinite product.

Solution for x

xn =
1

4k2

(
(zn + k)φn + 2zn +

zn − k
φn

)
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Linear equation satisfied by xn

xn+1 + xn
zn+1 + zn

+
xn + xn−1
zn + zn−1

=
1− 2znxn
k2 − z2n

Meaning of the constant k. Solve for k2 and eliminate xn+1 using
alternate d-PI

k2 =
(xnzn−1 − xn−1zn)2 + (zn−1 + zn)(xn−1 + xn)

(xn + xn−1)2

Important Remark: k2 is non-autonomous extension of the QRT

invariant.The meaning of the invariant is that eliminate k between the
above expression and its upshift we get alternate d-PI

We have presented a closed form solution explicitly for third kind
mapping. This not the case for projective and Gambier mappings,
where we have linearized the mapping but no explicit solution was
given
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“Higher” examples of third-kind linearisable do exist

“Higher”: mappings belonging to the same family as d-Ps associated

to the affine Weyl groups E
(1)
8 and E

(1)
7 in the Sakai classification

A first example

(xn+1zn+1zn + xn)(znzn−1xn−1 + xn)

(xn+1 + zn+1znxn)(znzn−1xn + xn−1)
= zn+1zn−1

x2n + axnzn + bz2n
x2nz

2
n − axnzn + b
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QRT invariant

znzn−1(znzn−1xn + xn−1)(znzn−1xn−1 + xn)Kn =(
(xnzn(z2n−1 + 1) + xn−1zn−1(z

2
n + 1) + a(z2nz

2
n−1 − 1)/2

)2
+(b− a2/4)(z2nz

2
n−1 − 1)2

Mapping is obtained by Kn −Kn+1 = 0

Solution of the mapping

xn = (k − (zn + 1/zn)2)φn +
a(zn − 1/zn)

k − 4

a2 + b(k − 4)

k(k − 4)2φn

with (k = 2− h− 1/h)

φn = −zn−1 + h/zn−1
hzn + 1/zn

φn−1
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Linear equation:

(k − (zn +
1

zn
)2)

(
xn+1zn+1zn + xn
zn+1

2zn2 − 1
+
znzn−1xn−1 + xn
zn2zn−12 − 1

)
+

(
k − 2− 2

zn2

)
xn − a

(
zn +

1

zn

)
= 0.

There are many more examples exist.
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Conclusions:
We have analyzed three kinds of linearizable systems:

Projective

Gambier

Third-kind

we have presented linearization, singularities, degree growth of systems
belongs to these families

Moreover, we gave explicit integration of both autonomous and
non-autonomous mapping
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THANK YOU!
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