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The problem

® Input: an undirected graph G = (V, E/) on n vertices.
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The problem

® Input: an undirected graph G = (V, E') on n vertices.

m \We want a sparse subgraph that well-approximates
every u-v distance, where (u,v) € V x V.

® such a subgraph is called a spanner of G [PS89].
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An example

m On the left is G with (%) edges while the subgraph H
on the right has only n — 1 edges.

mfor all (u,v): dy(u,v) < dg(u,v) + 1.
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Stretch of a spanner H

m For all pairs of vertices (u, v):
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Stretch of a spanner H

m For all pairs of vertices (u, v):

Wdy(u,v) <a-dg(u,v) + § = Hisan
(cr, B)-spanner
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Stretch of a spanner H

m For all pairs of vertices (u, v):

Wdy(u,v) <a-dg(u,v) + § = Hisan
(cr, B)-spanner

for every integer k > 1, G admits a
(2k — 1,0)-spanner of size O(n!'*1/%) [ADDJIS93].
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A simple proof [HZ97]

m Partition the vertex set into disjoint clusters:
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m Initially C; = {u}.
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A simple proof [HZ97]

®m When |Nbr(C;)| < n/* . |Cy|, the cluster C; stops
growing.
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A simple proof [HZ97]

®m When |Nbr(C;)| < n'/* . |Cy], the cluster C; stops
growing.

m radius(C;) < k — 1 since the scaling factor is > n'/*.
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The spanner H

m Finally V' is partitioned into C; U Cy U - - - U (.
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The spanner H

m Finally V' is partitioned into C; U Cy U - - - U (.

.
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The spanner H

m Finally V' is partitioned into C; U Cy U - - - U (.

oy

m Initialize H = forest defined by the clusters.
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The final H

m For any vertex v and cluster C's.t. v ¢ C'and v has a
neighbor in C".
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The final H

m For any vertex v and cluster C's.t. v ¢ C'and v has a
neighbor in C".

®m add to H exactly one edge between v and C
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The final H

m For any vertex v and cluster C' s.t. v ¢ C'and v has a
neighbor in C".

® add to H exactly one edge between v and C

S

—
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The final H

m For any vertex v and cluster C' s.t. v ¢ C'and v has a
neighbor in C".

® add to H exactly one edge between v and C

S

—

= total number of red edges < n'/%(>".|Cy]) = nt Tk,
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The stretchin H

m Consider any edge (a,b) missing in H
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The stretchin H

m Consider any edge (a,b) missing in H

®m Jedge (b, x) in H where x isin a’s cluster
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The stretchin H

m Consider any edge (a,b) missing in H

®m J edge (b,z) in H where z is in a’s cluster
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The stretchin H

m Consider any edge (a,b) missing in H

® Jedge (b, x) In H where z is in a’s cluster

m diameter of each cluster is < 2k — 2, so
5H(CL, b) S 2k — 1.
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Spanners with additive stretch

m For every integer £ > 1, G has a subgraph of size
O(n'*Y/*) such that V(u,v) € V x V:

og(u,v) < (2k —1) - dg(u,v)
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Spanners with additive stretch

m For every integer £ > 1, G has a subgraph of size
O(n'*+1/k) such that Y(u,v) € V x V:

og(u,v) < (2k —1) - dg(u,v)

B H can also be computed efficiently.
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B H can also be computed efficiently.
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Spanners with additive stretch

m For every integer £ > 1, G has a subgraph of size
O(n'*tY/*) such that V(u,v) € V x V:

og(u,v) < (2k —1) - dg(u,v)

B H can also be computed efficiently.

m Are there sparse subgraphs H s.t. V(u,v):

O (u,v) < dg(u,v) + O(1)?

B Such an H is called a purely additive spanner.
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Multiplicative vs Additive spanners

®m To bound multiplicative stretch, we do it edge by edge.
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Multiplicative vs Additive spanners

®m To bound multiplicative stretch, we do it edge by edge.
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Purely additive spanners

m A (1,2) spanner of size O(n'®) [ACIM99].
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Purely additive spanners

m A (1,2) spanner of size O(n'®) [ACIM99].
m A (1,4) spanner of size O(n'*) [C13].

m A (1,6) spanner of size O(n'3%) [BKMPO5].

m no other results for purely additive spanners are
known.

1-36

size O(n'*?) vs additive stretch O(n 2 ) [C13]
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A (1,2) spanner of size O(n3/2)

m Low degree vertex: one with degree at most i

(h = yi)
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m Low degree vertex: one with degree at most i

(h = /n))

m Special high degree vertex: each such vertex should
claim > h unclaimed high degree neighbors
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A (1,2) spanner of size O(n3/?)

B Low degree vertex: one with degree at most i

(h = /n))

m Special high degree vertex: each such vertex should
claim > h unclaimed high degree neighbors

M >1< 7%
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A (1,2) spanner of size O(n3/?)

B Low degree vertex: one with degree at most i

(h = /n))

m Special high degree vertex: each such vertex should
claim > h unclaimed high degree neighbors

A >1< 7%

m there will be at most n/h special (high degree) vertices
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The edge set of H

m All edges incident on low-degree vertices and
unclaimed high degree vertices are in H.
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The edge set of H
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The edge set of H

m All edges incident on low-degree vertices and
unclaimed high degree vertices are in H.

B A contains a BFS tree rooted at each special vertex.

m The size of H is O(nh + n?/h).
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The edge set of H

m All edges incident on low-degree vertices and
unclaimed high degree vertices are in H.

B A contains a BFS tree rooted at each special vertex.

m The size of H is O(nh + n?/h).

®m Since h = /n, the size of H is O(n?/?).
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Bounding the stretchin H

m Consider any pair of vertices (a, b).
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Bounding the stretch in

m Consider any pair of vertices (a, b).

® If no special vertex is adjacent to any vertex in
SP(a,b), then dg(a,b) = dg(a,b).
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Bounding the stretchin H

m Consider any pair of vertices (a, b).

m If no special vertex is adjacent to any vertex in
SP(a,b), then dg(a,b) = dg(a,b).

m Else there is a vertex on SP(a,b) with a special
vertex x as Iits neighbor
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Bounding the stretchin H

m Consider any pair of vertices (a, b).

m If no special vertex is adjacent to any vertex in
SP(a,b), then dg(a,b) = dg(a,b).

m Else there is a vertex on SP(a,b) with a special
vertex x as Iits neighbor

5H(a, b) S 5H(CL,$) -+ 5H(QZ, b) S 51 + 1+ 62 + 1.
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A generalization: an (S x V)-spanner [KV13]

m We are given a set of sources S C V.
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m We are given a set of sources S C V.

B Compute a sparse subgraph A such that
0g(s,v) < dg(s,v)+2forallse Sandv e V.
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A generalization: an (S x V)-spanner [KV13]

m \We are given a set of sources S C V.

m Compute a sparse subgraph H such that
0g(s,v) < dg(s,v)+2forallse Sandv e V.

m As before, we have low degree vertices (those with
degree < h ~ (n|S])"/*) and high degree vertices.
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An (S x V)-spanner

m Each special vertex x should be able to claim at least A
unclaimed high degree neighbors
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An (S x V)-spanner

m Each special vertex x should be able to claim at least /
unclaimed high degree neighbors

m these high degree neighbors claimed by x form a
cluster centered at x
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An (S x V)-spanner

m Each special vertex x should be able to claim at least /
unclaimed high degree neighbors

m these high degree neighbors claimed by x form a
cluster centered at x

m A is initialized to the forest defined by clusters along
with all edges incident on unclustered vertices.
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An (S x V)-spanner

m Any shortest path p is one of two types:
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An (S x V)-spanner

m Any shortest path p is one of two types:
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special vertices adjacent to p.
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An (S x V)-spanner

®m Any shortest path p is one of two types:

® p has < 7 clustered vertices (where 7 ~ /n/|5])

® p has > 7 clustered vertices

m If p has > 7 clustered vertices, then there are > 7/3
special vertices adjacent to p.

m Sample special high degree vertices w.p. ~ 3/7 to get
very special vertices.

.—p.19/43



An (S x V)-spanner

m Add to H a BFS tree rooted at each very special
vertex.
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An (S x V)-spanner

m Add to H a BFS tree rooted at each very special
vertex.

m when SP(s,u) has > 7 clustered vertices, we have
o (s,u) < dq(s,u) + 2
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An (S x V)-spanner

m Add to H a BFS tree rooted at each very special
vertex.

m when SP(s,u) has > 7 clustered vertices, we have
Or(s,u) < dg(s,u)+ 2

/

0.Q__ &
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An (S x V)-spanner of size  O(n’/*|S|'/*)

m For those clustered v s.t. SP(s,v) has < 7 clustered
vertices:
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m For those clustered v s.t. SP(s,v) has < 7 clustered
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An (S x V)-spanner of size O(n*|S|'/*)

m For those clustered v s.t. SP(s,v) has < 7 clustered
vertices:

®m Add to H the missing edges of one such path
SP(s,w), where w € C'is closest to s (in G).
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An (S x V)-spanner of size O(n*|S|'/*)

m For those clustered v s.t. SP(s,v) has < 7 clustered
vertices:

®m Add to H the missing edges of one such path
SP(s,w), where w € C'is closest to s (in G).

m so we have ig(s,v) < dg(s,v) + 2 here

.—p.21/43



An all-pairs (1,4) spanner of size O(n'*)
m Compute a clustering with h = n%*1og”* n, let
S = {special vertices}.
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An all-pairs (1,4) spanner of size O(n'*)
m Compute a clustering with A = n%*1log"* n, let
S = {special vertices}.

® add the (S x V')-spanner with additive stretch 2
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An all-pairs (1,4) spanner of size O(n'*)
m Compute a clustering with h = n%*log"* n, let
S = {special vertices}.

® add the (S x V')-spanner with additive stretch 2
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An all-pairs (1,4) spanner of size O(n'*)

m Compute a clustering with h = n%*log"* n, let
S = {special vertices}.

® add the (S x V')-spanner with additive stretch 2

WSO dy(a,b) <dgla,s)+du(s,b) <dgla,c)+1+0+3
— 5@(&, b) + 4.
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An (S x §) spanner

® We are again given a subset S C V.
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An (S x §) spanner

® We are again given a subset S C V.

m Compute a sparse subgraph H such that
0 (s1,82) < dg(sy,s2) +2foralls e S.
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An (S x §) spanner

® We are again given a subset S C V.

m Compute a sparse subgraph H such that
0 (s1,82) < dg(sy,s2) +2foralls e S.

m Low degree vertices have degree < h = /||
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An (S x §) spanner

m \We are again given a subset S C V.

m Compute a sparse subgraph A such that
0 (s1,82) < dg(sy,s2) +2foralls e S.

m Low degree vertices have degree < h = /||

m As before, some high degree vertices are unclustered
and the rest are clustered around special vertices.
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Path-buying

m Let p be the shortest path between s; and ss.
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H p IS one of two types:
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Path-buying

m Let p be the shortest path between s; and ss.

000 00

D = SP 81,82

H p IS one of two types:

m there is no cluster C' incident on p such that
5H(C, 81) < 5p(C, 81) and 5[_[(0, 82) < 5p(0, 32)
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Path-buying

® Or 9C on p such that
5H(C, 81) < 5p(0, 81) and 5[{(0, 82) < 5p(C’, 32)

.~ p.25/43



Path-buying

® Or 9C on p such that

5H(C, 81) < (Sp(C, 81) and 5H(C, 82) < 5p(C', 82)
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Path-buying

® Or 9C on p such that

5H(C, 81) < 5p(0, 81) and 5H(C, 82) < 5p(C’, 82)

® so we already have dg (s, s2) < dg(s1,s2) + 2 in this
case
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Path-buying

m If there Is no such cluster then we add all the missing
edges of pto H.
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Path-buying

m If there Is no such cluster then we add all the missing
edges of pto H.

® Now every cluster incident on p reduces its distance to
either sy, ss.
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Path-buying

m If there Is no such cluster then we add all the missing
edgesof pto H

® Now every cluster incident on p reduces its distance to
either sy, ss.

000 00

D = SP 81,82
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Path-buying

m If there Is no such cluster then we add all the missing
edgesof pto H

® Now every cluster incident on p reduces its distance to
either sy, ss.

000 00

P = SP 81,82

M S0 dy(s,C) ordy(se,C) has strictly decreased and we
charge such (s, (') pairs to pay for the edges added.
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The size of H

m This charging mechanism bounds the number of such
edges added to H by O(|S|-(number of clusters)).
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The size of H

m This charging mechanism bounds the number of such
edges added to H by O(|S|-(number of clusters)).

®m The number of clusters < n/h =n/+/|S|.
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The size of H

®m This charging mechanism bounds the number of such
edges added to H by O(|S|-(number of clusters)).

®m The number of clusters < n/h =n/+/|S]|.

®m So the number of edges added by path-buying is
O(n/|5]).
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The size of H

®m This charging mechanism bounds the number of such
edges added to H by O(|S|-(number of clusters)).

®m The number of clusters < n/h =n/+/|S]|.

®m So the number of edges added by path-buying is
O(n/|5]).

® The number of edges incident on unclustered vertices
IS O(nh), which is again O(n+/|S]).
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An all-pairs (1,6) spanner of size O(n*/?)

m Compute a clustering with h = n'/3 and let
S = {special vertices}
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An all-pairs (1,6) spanner of size O(n*?)
m Compute a clustering with h = n'/3 and let
S = {special vertices}

® add the (S x S)-spanner with additive stretch 2
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An all-pairs (1,6) spanner of size O(n*?)
m Compute a clustering with h = n'/3 and let
S = {special vertices}

® add the (S x S)-spanner with additive stretch 2

</{+4
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An all-pairs (1,6) spanner of size O(n*/?)

m Compute a clustering with h = n'/3 and let
S = {special vertices}

® add the (S x S)-spanner with additive stretch 2

</{+4

W SO (5H(CL, b) < (SH(CL, 81) -+ 5]{(81, 82) + 5H(82, b)
< 5@(&, b) + 6.
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D-Preservers [BCEO3]

minput: G=(V,E)and D € Z*
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D-Preservers [BCEO3]

minput: G=(V,E)and D € Z*

m find a sparse subgraph H where

dg(u,v) =dg(u,v) V(u,v) s.t. dg(u,v) > D
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D-Preservers [BCEO3]

minput: G=(V,E)and D € Z*

m find a sparse subgraph H where

dg(u,v) =dg(u,v) V(u,v) s.t. dg(u,v) > D

m such an H is called a D-preserver
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D-Preservers [BCEO3]

minput: G=(V,E)and D € Z*

m find a sparse subgraph H where

dg(u,v) =dg(u,v) V(u,v) s.t. dg(u,v) > D

m such an H is called a D-preserver

m a D-preserver of size O(n?/D) can be computed in
polynomial time.
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Pairwise Preservers [CEO05]

mInput: G = (V, E)alongwith P CV xV

.- p.30/43



Pairwise Preservers [CEO05]

mInput: G = (V, E)alongwith P CV xV

m find a sparse subgraph H where

dy(u,v) = dg(u,v) V(u,v) € P
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Pairwise Preservers [CEO05]

mInput: G=(V,E)alongwith? CV xV

m find a sparse subgraph H where

dy(u,v) = dg(u,v) V(u,v) € P

m such an H is called a P-preserver
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Pairwise Preservers [CEO05]

mInput: G=(V,E)alongwith? CV xV

m find a sparse subgraph H where

dy(u,v) = dg(u,v) V(u,v) € P

m such an H is called a P-preserver

m a P-preserver of size O(min(n+\/|P|, n+ |P|\/n))
can be computed in polynomial time.

.—p.30/43



Pairwise spanners

m Find a sparse subgraph such that

o (u,v) < dg(u,v) + 5 Y(u,v)€P

.~ p.31/43



Pairwise spanners

m Find a sparse subgraph such that

(5H(U,U) < 5@(1&,@) + 6 \V/(U,U) e P

m such an H is a P-spanner with additive stretch 5
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Pairwise spanners

m Find a sparse subgraph such that

5H(U,U) < 5@(1&,@) + 6 \V/(U,U) e P

m such an H is a P-spanner with additive stretch 5

m size O(n - |P|'/?) and additive stretch 2 [K\/13]
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Pairwise spanners

m Find a sparse subgraph such that

5H(U,U) < 5@(1&,@) + 6 \V/(U,U) e P

m such an H Is a ‘P-spanner with additive stretch

m size O(n - |P|'/3) and additive stretch 2 [K\/13]

m size O(n - |P|*/7) and additive stretch 4 [K15]
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Pairwise spanners

m Find a sparse subgraph such that

5H(u7 U) < 5(;(1&, U) + 6 \V/(ua U) e P
m such an H Is a ‘P-spanner with additive stretch
m size O(n - |P|'/3) and additive stretch 2 [K\/13]
m size O(n - |P|*/7) and additive stretch 4 [K15]

m size O((n - |P|*/*) and additive stretch 6 [K15]

.—p.31/43



A P-spanner of size O(n|P|"/?)

m \We have to ensure SP(u,v) for each (u,v) € Pis
well-approximated in the final H.
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A P-spanner of size O(n|P|"/?)

®m We have to ensure SP(u,v) for each (u,v) € Pis
well-approximated in the final H.

® Run the clustering step with parameter h ~ |P|'/? and
we get the starting subgraph H.
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A P-spanner of size O(n|P|"/?)

® \We have to ensure SP(u,v) for each (u,v) € Pis
well-approximated in the final H.
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A P-spanner of size O(n|P|"/?)

m We have to ensure SP(u,v) for each (u,v) € P is
well-approximated in the final H.

® Run the clustering step with parameter h ~ |P|'/? and
we get the starting subgraph H.

000 .00

p= SPuv

m Sample each special vertex with probability ~ 3/
(r = n/|P|*?) to get very special vertices
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A ‘P-spanner with additive stretch 2

m Add to H a BFS tree rooted at each very special
vertex.

m So if SP(u,v) has > 7 clustered vertices, then
o (u,v) < d(u,v) + 2.

m For (u,v) € P:

mif SP(u,v) has < 7 clustered vertices then add to H
all missing edges of SP(u,v).

W S0 0y (u,v) = d6(u,v) in this case.
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A ‘P-spanner with additive stretch 4

® Run the clustering step with parameter h ~ |P|?7 and
we get the starting subgraph H.

m We classify SP(u,v) into one of three types:

m those with many clustered vertices
m those with only a few clustered vertices

® those with an intermediate number of clustered
vertices
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A ‘P-spanner with additive stretch 4

m Shortest paths with either many clustered vertices or
only a few clustered vertices are easy to handle.

m To deal with paths of the third type:

LO.0l0000 00
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®m Add to H all missing edges in the prefix ¢ and suffix r
of each such path.
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m \We select some special vertices so that

m each prefix has an adjacent selected special vertex

m each suffix has an adjacent selected special vertex
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m We buy at most one SP(x,y) for x € C; and y € (s,
where C'; and C5 are clusters centered at selected
special vertices.
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A ‘P-spanner with additive stretch 4

m We buy at most one SP(x,y) for x € C; and y € Cj,

where C'; and

(5 are clusters centered at selected

special vertices.

[OO0000C0)

m This ensures 6y (u,v) < dg(u,v) + 4 in this case.
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® Run the clustering step with parameter h ~ |P|"/* and
we get the starting subgraph H.
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® Run the clustering step with parameter h ~ |P|'/* and
we get the starting subgraph H.

m We classify SP(u,v) into one of three types:

m those with only a few clustered vertices

In this case we add to H all missing edges in this
path.
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m To define the second type, let p = SP(u,v).
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m To define the second type, let p = SP(u,v).
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m each of the middle clusters improves its distance to
either all clusters in the prefix ¢ or all clusters in the
suffix r.

® in this case we add to H all missing edges in p.
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m In this case we buy all edges in the prefix ¢ and suffix r.
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m In this case we buy all edges in the prefix ¢ and suffix r.
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A ‘P-spanner with additive stretch 6

m In this case we buy all edges in the prefix ¢ and suffix r.
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m So we have iy (u,v) < dg(u,v) + 6 here.
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Open problems

m 2 P-spanner of size O(n|P|/*)?

mthen allthesecases: P=V xV,P =95 x 95,
P =S x V would be corollaries of this result

m A pairwise spanner of size o(n|P|**) and O(1) additive
stretch?

= this would imply an all-pairs of size o(n*/?) and O(1)
additive stretch

. —p.42/43



Thank you!
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