Pairwise spanners

T. Kavitha

(School of Tech. & Computer Science, TIFR Mumbai)

[January 9, 2015; IISc Bangalore]

The problem

■ Input: an undirected graph G = (V, E) on n vertices.

The problem

■ Input: an undirected graph G = (V, E) on n vertices.

■ We want a sparse subgraph that well-approximates every u-v distance, where $(u, v) \in V \times V$.

The problem

■ Input: an undirected graph G = (V, E) on n vertices.

■ We want a sparse subgraph that well-approximates every u-v distance, where $(u, v) \in V \times V$.

 \blacksquare such a subgraph is called a *spanner* of G [PS89].

An example

- On the left is G with $\binom{n}{2}$ edges while the subgraph H on the right has only n-1 edges.
 - for all (u, v): $d_H(u, v) \le d_G(u, v) + 1$.

Stretch of a spanner ${\cal H}$

■ For all pairs of vertices (u, v):

Stretch of a spanner H

■ For all pairs of vertices (u, v):

$$lackbox{\blacksquare} d_H(u,v) \leq lpha \cdot d_G(u,v) + eta \Longrightarrow H ext{ is an} \ (lpha,eta) ext{-spanner}$$

Stretch of a spanner H

For all pairs of vertices (u, v):

$$lackbox{\blacksquare} d_H(u,v) \leq lpha \cdot d_G(u,v) + eta \implies H ext{ is an} \ (lpha,eta) ext{-spanner}$$

for every integer $k \ge 1$, G admits a (2k-1,0)-spanner of size $O(n^{1+1/k})$ [ADDJS93].

■ Partition the vertex set into disjoint *clusters*:

■ Partition the vertex set into disjoint *clusters*:

■ Let C_1, \ldots, C_{i-1} be the clusters constructed so far.

- Partition the vertex set into disjoint *clusters*:
 - Let C_1, \ldots, C_{i-1} be the clusters constructed so far.
 - start with any vertex u outside $C_1 \cup \cdots \cup C_{i-1}$: $C_i = \{u\}$

- Partition the vertex set into disjoint *clusters*:
 - Let C_1, \ldots, C_{i-1} be the clusters constructed so far.
 - start with any vertex u outside $C_1 \cup \cdots \cup C_{i-1}$: $C_i = \{u\}$

u

■ Initially $C_i = \{u\}$.

- Initially $C_i = \{u\}$.
 - $ightharpoonup Nbr(C_i) = unclustered neighbors of vertices in <math>C_i$

- Initially $C_i = \{u\}$.
 - $ightharpoonup Nbr(C_i) = unclustered neighbors of vertices in <math>C_i$
 - while $|Nbr(C_i)| > n^{1/k} \cdot |C_i|$ do: $C_i = C_i \cup Nbr(C_i)$.

- Initially $C_i = \{u\}$.
 - $ightharpoonup Nbr(C_i) = unclustered neighbors of vertices in <math>C_i$
 - while $|Nbr(C_i)| > n^{1/k} \cdot |C_i|$ do: $C_i = C_i \cup Nbr(C_i)$.

■ When $|Nbr(C_i)| \le n^{1/k} \cdot |C_i|$, the cluster C_i stops growing.

■ When $|Nbr(C_i)| \le n^{1/k} \cdot |C_i|$, the cluster C_i stops growing.

■ When $|Nbr(C_i)| \le n^{1/k} \cdot |C_i|$, the cluster C_i stops growing.

 $ightharpoonup radius(C_i) \le k-1$ since the scaling factor is $> n^{1/k}$.

The spanner H

■ Finally V is partitioned into $C_1 \cup C_2 \cup \cdots \cup C_t$.

The spanner H

■ Finally V is partitioned into $C_1 \cup C_2 \cup \cdots \cup C_t$.

The spanner H

■ Finally V is partitioned into $C_1 \cup C_2 \cup \cdots \cup C_t$.

■ Initialize H = forest defined by the clusters.

■ For any vertex v and cluster C s.t. $v \notin C$ and v has a neighbor in C:

- For any vertex v and cluster C s.t. $v \notin C$ and v has a neighbor in C:
 - lacksquare add to H exactly one edge between v and C

- For any vertex v and cluster C s.t. $v \notin C$ and v has a neighbor in C:
 - lacksquare add to H exactly one edge between v and C

- For any vertex v and cluster C s.t. $v \notin C$ and v has a neighbor in C:
 - lacksquare add to H exactly one edge between v and C

■ total number of red edges $\leq n^{1/k}(\sum_i |C_i|) = n^{1+1/k}$.

The stretch in $\cal H$

lacksquare Consider any edge (a,b) missing in H

The stretch in $\cal H$

- Consider any edge (a, b) missing in H
 - $\blacksquare \exists \ \mathsf{edge}\ (b,x) \ \mathsf{in}\ H \ \mathsf{where}\ x \ \mathsf{is}\ \mathsf{in}\ a$'s cluster

The stretch in H

- lacksquare Consider any edge (a,b) missing in H
 - $\blacksquare \exists \ \mathsf{edge}\ (b,x) \ \mathsf{in}\ H \ \mathsf{where}\ x \ \mathsf{is}\ \mathsf{in}\ a$'s cluster

The stretch in H

- **Consider any edge** (a, b) missing in H
 - $\blacksquare \exists$ edge (b, x) in H where x is in a's cluster

diameter of each cluster is $\leq 2k-2$, so $\delta_H(a,b) \leq 2k-1$.

For every integer $k \ge 1$, G has a subgraph of size $O(n^{1+1/k})$ such that $\forall (u,v) \in V \times V$:

$$\delta_H(u,v) \le (2k-1) \cdot \delta_G(u,v)$$

For every integer $k \ge 1$, G has a subgraph of size $O(n^{1+1/k})$ such that $\forall (u,v) \in V \times V$:

$$\delta_H(u,v) \le (2k-1) \cdot \delta_G(u,v)$$

H can also be computed efficiently.

■ For every integer $k \ge 1$, G has a subgraph of size $O(n^{1+1/k})$ such that $\forall (u,v) \in V \times V$:

$$\delta_H(u,v) \le (2k-1) \cdot \delta_G(u,v)$$

- H can also be computed efficiently.
- Are there sparse subgraphs H s.t. $\forall (u, v)$:

$$\delta_H(u,v) \leq \delta_G(u,v) + O(1)$$
?

■ For every integer $k \ge 1$, G has a subgraph of size $O(n^{1+1/k})$ such that $\forall (u,v) \in V \times V$:

$$\delta_H(u,v) \le (2k-1) \cdot \delta_G(u,v)$$

- H can also be computed efficiently.
- Are there sparse subgraphs H s.t. $\forall (u, v)$:

$$\delta_H(u,v) \leq \delta_G(u,v) + O(1)$$
?

Such an H is called a purely additive spanner.

Multiplicative vs Additive spanners

■ To bound multiplicative stretch, we do it edge by edge.

Multiplicative vs Additive spanners

■ To bound multiplicative stretch, we do it edge by edge.

■ A (1,2) spanner of size $O(n^{1.5})$ [ACIM99].

 \blacksquare A (1,2) spanner of size $O(n^{1.5})$ [ACIM99].

■ A (1,4) spanner of size $\tilde{O}(n^{1.4})$ [C13].

 \blacksquare A (1,2) spanner of size $O(n^{1.5})$ [ACIM99].

■ A (1,4) spanner of size $\tilde{O}(n^{1.4})$ [C13].

 \blacksquare A (1,6) spanner of size $O(n^{1.33})$ [BKMP05].

 \blacksquare A (1,2) spanner of size $O(n^{1.5})$ [ACIM99].

 \blacksquare A (1,4) spanner of size $\tilde{O}(n^{1.4})$ [C13].

 \blacksquare A (1,6) spanner of size $O(n^{1.33})$ [BKMP05].

no other results for purely additive spanners are known.

- \blacksquare A (1,2) spanner of size $O(n^{1.5})$ [ACIM99].
- \blacksquare A (1,4) spanner of size $\tilde{O}(n^{1.4})$ [C13].
- \blacksquare A (1,6) spanner of size $O(n^{1.33})$ [BKMP05].
 - no other results for purely additive spanners are known.
 - size $\tilde{O}(n^{1+\delta})$ vs additive stretch $\tilde{O}(n^{\frac{1-3\delta}{2}})$ [C13]

■ Low degree vertex: one with degree at most h

$$(h=\sqrt{n})$$

Low degree vertex: one with degree at most h $(h = \sqrt{n})$

■ Special high degree vertex: each such vertex should claim $\geq h$ unclaimed high degree neighbors

Low degree vertex: one with degree at most h $(h = \sqrt{n})$

Special high degree vertex: each such vertex should claim $\geq h$ unclaimed high degree neighbors

- Low degree vertex: one with degree at most h $(h = \sqrt{n})$
- Special high degree vertex: each such vertex should claim $\geq h$ unclaimed high degree neighbors

 \blacksquare there will be at most n/h special (high degree) vertices

■ All edges incident on low-degree vertices and unclaimed high degree vertices are in *H*.

■ All edges incident on low-degree vertices and unclaimed high degree vertices are in *H*.

H contains a BFS tree rooted at each special vertex.

■ All edges incident on low-degree vertices and unclaimed high degree vertices are in *H*.

H contains a BFS tree rooted at each special vertex.

■ The size of H is $O(nh + n^2/h)$.

All edges incident on low-degree vertices and unclaimed high degree vertices are in H.

H contains a BFS tree rooted at each special vertex.

■ The size of H is $O(nh + n^2/h)$.

■ Since $h = \sqrt{n}$, the size of H is $O(n^{3/2})$.

Bounding the stretch in ${\cal H}$

Consider any pair of vertices (a, b).

Bounding the stretch in ${\cal H}$

- \blacksquare Consider any pair of vertices (a, b).
 - If no special vertex is adjacent to any vertex in SP(a,b), then $\delta_H(a,b) = \delta_G(a,b)$.

Bounding the stretch in H

- \blacksquare Consider any pair of vertices (a,b).
 - If no special vertex is adjacent to any vertex in SP(a,b), then $\delta_H(a,b)=\delta_G(a,b)$.
 - Else there is a vertex on SP(a,b) with a special vertex x as its neighbor

Bounding the stretch in H

- \blacksquare Consider any pair of vertices (a,b).
 - If no special vertex is adjacent to any vertex in SP(a,b), then $\delta_H(a,b)=\delta_G(a,b)$.
 - Else there is a vertex on SP(a,b) with a special vertex x as its neighbor

Bounding the stretch in ${\cal H}$

- \blacksquare Consider any pair of vertices (a,b).
 - If no special vertex is adjacent to any vertex in SP(a,b), then $\delta_H(a,b) = \delta_G(a,b)$.
 - Else there is a vertex on SP(a,b) with a special vertex x as its neighbor

$$\delta_H(a,b) \leq \delta_H(a,x) + \delta_H(x,b) \leq \ell_1 + 1 + \ell_2 + 1$$
.

A generalization: an $(S \times V)$ -spanner [KV13]

■ We are given a set of sources $S \subseteq V$.

A generalization: an $(S \times V)$ -spanner [KV13]

■ We are given a set of sources $S \subseteq V$.

■ Compute a sparse subgraph *H* such that

$$\delta_H(s,v) \leq \delta_G(s,v) + 2$$
 for all $s \in S$ and $v \in V$.

A generalization: an $(S \times V)$ -spanner [KV13]

■ We are given a set of sources $S \subseteq V$.

■ Compute a sparse subgraph H such that $\delta_H(s,v) \leq \delta_G(s,v) + 2$ for all $s \in S$ and $v \in V$.

■ As before, we have low degree vertices (those with degree $\leq h \approx (n|S|)^{1/4}$) and high degree vertices.

■ Each special vertex x should be able to claim at least h unclaimed high degree neighbors

- Each special vertex x should be able to claim at least h unclaimed high degree neighbors
 - these high degree neighbors claimed by x form a cluster centered at x

- Each special vertex x should be able to claim at least h unclaimed high degree neighbors
 - these high degree neighbors claimed by x form a cluster centered at x

- Each special vertex x should be able to claim at least h unclaimed high degree neighbors
 - these high degree neighbors claimed by x form a cluster centered at x

H is initialized to the forest defined by clusters along with all edges incident on unclustered vertices.

■ Any shortest path *p* is one of two types:

- Any shortest path p is one of two types:
 - $\blacksquare p$ has $< \tau$ clustered vertices (where $\tau \approx \sqrt{n/|S|}$)

- Any shortest path p is one of two types:
 - p has $< \tau$ clustered vertices (where $\tau \approx \sqrt{n/|S|}$)
 - $\blacksquare p$ has $\ge \tau$ clustered vertices

- Any shortest path p is one of two types:
 - p has $< \tau$ clustered vertices (where $\tau \approx \sqrt{n/|S|}$)
 - $\blacksquare p$ has $\ge \tau$ clustered vertices

■ If p has $\geq \tau$ clustered vertices, then there are $\geq \tau/3$ special vertices adjacent to p.

- Any shortest path p is one of two types:
 - p has $< \tau$ clustered vertices (where $\tau \approx \sqrt{n/|S|}$)
 - $\blacksquare p$ has $\geq \tau$ clustered vertices

- If p has $\geq \tau$ clustered vertices, then there are $\geq \tau/3$ special vertices adjacent to p.
- Sample special high degree vertices w.p. $\approx 3/\tau$ to get very special vertices.

Add to H a BFS tree rooted at each very special vertex.

- Add to H a BFS tree rooted at each very special vertex.
 - when SP(s,u) has $\geq \tau$ clustered vertices, we have $\delta_H(s,u) \leq \delta_G(s,u) + 2$

- Add to H a BFS tree rooted at each very special vertex.
 - when SP(s,u) has $\geq \tau$ clustered vertices, we have $\delta_H(s,u) \leq \delta_G(s,u) + 2$

An $(S \times V)$ -spanner of size $\tilde{O}(n^{5/4}|S|^{1/4})$

■ For those clustered v s.t. SP(s, v) has $\leq \tau$ clustered vertices:

An $(S \times V)$ -spanner of size $\tilde{O}(n^{5/4}|S|^{1/4})$

■ For those clustered v s.t. SP(s, v) has $\leq \tau$ clustered vertices:

An $(S \times V)$ -spanner of size $\tilde{O}(n^{5/4}|S|^{1/4})$

■ For those clustered v s.t. SP(s, v) has $\leq \tau$ clustered vertices:

Add to H the missing edges of one such path SP(s, w), where $w \in C$ is closest to s (in G).

An $(S \times V)$ -spanner of size $\tilde{O}(n^{5/4}|S|^{1/4})$

■ For those clustered v s.t. SP(s, v) has $\leq \tau$ clustered vertices:

- Add to H the missing edges of one such path SP(s,w), where $w \in C$ is closest to s (in G).
 - so we have $\delta_H(s,v) \leq \delta_G(s,v) + 2$ here

■ Compute a clustering with $h = n^{0.4} \log^{0.2} n$, let $S = \{\text{special vertices}\}.$

- Compute a clustering with $h = n^{0.4} \log^{0.2} n$, let $S = \{\text{special vertices}\}.$
 - \blacksquare add the $(S \times V)$ -spanner with additive stretch 2

- Compute a clustering with $h = n^{0.4} \log^{0.2} n$, let $S = \{\text{special vertices}\}.$
 - \blacksquare add the $(S \times V)$ -spanner with additive stretch 2

- Compute a clustering with $h = n^{0.4} \log^{0.2} n$, let $S = \{\text{special vertices}\}.$
 - \blacksquare add the $(S \times V)$ -spanner with additive stretch 2

so
$$\delta_H(a,b) \leq \delta_H(a,s) + \delta_H(s,b) \leq \delta_G(a,c) + 1 + \ell + 3$$

= $\delta_G(a,b) + 4$.

■ We are again given a subset $S \subseteq V$.

■ We are again given a subset $S \subseteq V$.

■ Compute a sparse subgraph *H* such that

$$\delta_H(s_1, s_2) \le \delta_G(s_1, s_2) + 2 \text{ for all } s \in S.$$

■ We are again given a subset $S \subseteq V$.

■ Compute a sparse subgraph *H* such that

$$\delta_H(s_1, s_2) \le \delta_G(s_1, s_2) + 2 \text{ for all } s \in S.$$

■ Low degree vertices have degree $\leq h = \sqrt{|S|}$

■ We are again given a subset $S \subseteq V$.

■ Compute a sparse subgraph H such that $\delta_H(s_1, s_2) \leq \delta_G(s_1, s_2) + 2$ for all $s \in S$.

- Low degree vertices have degree $\leq h = \sqrt{|S|}$
- As before, some high degree vertices are unclustered and the rest are clustered around special vertices.

Let p be the shortest path between s_1 and s_2 .

■ Let p be the shortest path between s_1 and s_2 .

Let p be the shortest path between s_1 and s_2 .

ightharpoonup p is one of two types:

Let p be the shortest path between s_1 and s_2 .

- ightharpoonup p is one of two types:
 - there is no cluster C incident on p such that $\delta_H(C, s_1) \leq \delta_p(C, s_1)$ and $\delta_H(C, s_2) \leq \delta_p(C, s_2)$

leep Or $\exists C$ on p such that

$$\delta_H(C, s_1) \leq \delta_p(C, s_1)$$
 and $\delta_H(C, s_2) \leq \delta_p(C, s_2)$

 $led Or \exists C \text{ on } p \text{ such that }$

$$\delta_H(C, s_1) \leq \delta_p(C, s_1)$$
 and $\delta_H(C, s_2) \leq \delta_p(C, s_2)$

 \blacksquare Or $\exists C$ on p such that

$$\delta_H(C, s_1) \leq \delta_p(C, s_1)$$
 and $\delta_H(C, s_2) \leq \delta_p(C, s_2)$

lacksquare so we already have $\delta_H(s_1,s_2) \leq \delta_G(s_1,s_2) + 2$ in this case

If there is no such cluster then we add all the missing edges of p to H.

■ If there is no such cluster then we add all the missing edges of p to H.

Now *every* cluster incident on p reduces its distance to either s_1, s_2 .

- If there is no such cluster then we add all the missing edges of p to H.
- Now every cluster incident on p reduces its distance to either s_1, s_2 .

- If there is no such cluster then we add all the missing edges of p to H.
- Now every cluster incident on p reduces its distance to either s_1, s_2 .

So $\delta_H(s_1, C)$ or $\delta_H(s_2, C)$ has strictly decreased and we charge such (s, C) pairs to pay for the edges added.

■ This charging mechanism bounds the number of such edges added to H by $O(|S| \cdot \text{(number of clusters))}$.

■ This charging mechanism bounds the number of such edges added to H by $O(|S| \cdot \text{(number of clusters))}$.

■ The number of clusters $\leq n/h = n/\sqrt{|S|}$.

- This charging mechanism bounds the number of such edges added to H by $O(|S| \cdot \text{(number of clusters))}$.
- The number of clusters $\leq n/h = n/\sqrt{|S|}$.
- So the number of edges added by path-buying is $O(n\sqrt{|S|})$.

- This charging mechanism bounds the number of such edges added to H by $O(|S| \cdot \text{(number of clusters))}$.
- The number of clusters $\leq n/h = n/\sqrt{|S|}$.
- So the number of edges added by path-buying is $O(n\sqrt{|S|})$.
- The number of edges incident on unclustered vertices is O(nh), which is again $O(n\sqrt{|S|})$.

■ Compute a clustering with $h = n^{1/3}$ and let $S = \{\text{special vertices}\}$

- Compute a clustering with $h = n^{1/3}$ and let $S = \{\text{special vertices}\}$
 - \blacksquare add the $(S \times S)$ -spanner with additive stretch 2

- Compute a clustering with $h = n^{1/3}$ and let $S = \{\text{special vertices}\}$
 - \blacksquare add the $(S \times S)$ -spanner with additive stretch 2

- Compute a clustering with $h = n^{1/3}$ and let $S = \{\text{special vertices}\}$
 - \blacksquare add the $(S \times S)$ -spanner with additive stretch 2

so
$$\delta_H(a,b) \leq \delta_H(a,s_1) + \delta_H(s_1,s_2) + \delta_H(s_2,b)$$

 $\leq \delta_G(a,b) + 6.$

D-Preservers [BCE03]

■ Input: G = (V, E) and $\mathcal{D} \in Z^+$

D-Preservers [BCE03]

■ Input: G = (V, E) and $\mathcal{D} \in Z^+$

 \blacksquare find a sparse subgraph H where

$$d_H(u,v) = d_G(u,v) \quad \forall (u,v) \quad s.t. \quad d_G(u,v) \ge \mathcal{D}$$

\mathcal{D} -Preservers [BCE03]

■ Input: G = (V, E) and $\mathcal{D} \in Z^+$

■ find a sparse subgraph *H* where

$$d_H(u,v) = d_G(u,v) \quad \forall (u,v) \quad s.t. \quad d_G(u,v) \ge \mathcal{D}$$

■ such an H is called a \mathcal{D} -preserver

\mathcal{D} -Preservers [BCE03]

- Input: G = (V, E) and $\mathcal{D} \in Z^+$
 - find a sparse subgraph *H* where

$$d_H(u,v) = d_G(u,v) \quad \forall (u,v) \quad s.t. \quad d_G(u,v) \ge \mathcal{D}$$

- \blacksquare such an H is called a \mathcal{D} -preserver
- a \mathcal{D} -preserver of size $O(n^2/\mathcal{D})$ can be computed in polynomial time.

■ *Input:* G = (V, E) along with $\mathcal{P} \subseteq V \times V$

■ *Input:* G = (V, E) along with $\mathcal{P} \subseteq V \times V$

 \blacksquare find a sparse subgraph H where

$$d_H(u,v) = d_G(u,v) \quad \forall (u,v) \in \mathcal{P}$$

■ *Input:* G = (V, E) along with $\mathcal{P} \subseteq V \times V$

■ find a sparse subgraph *H* where

$$d_H(u,v) = d_G(u,v) \quad \forall (u,v) \in \mathcal{P}$$

 \blacksquare such an H is called a \mathcal{P} -preserver

- *Input:* G = (V, E) along with $\mathcal{P} \subseteq V \times V$
 - find a sparse subgraph *H* where

$$d_H(u,v) = d_G(u,v) \quad \forall (u,v) \in \mathcal{P}$$

- \blacksquare such an H is called a \mathcal{P} -preserver
- a \mathcal{P} -preserver of size $O(\min(n\sqrt{|\mathcal{P}|}, n + |\mathcal{P}|\sqrt{n}))$ can be computed in polynomial time.

$$\delta_H(u, v) \le \delta_G(u, v) + \beta \quad \forall (u, v) \in \mathcal{P}$$

Find a sparse subgraph such that

$$\delta_H(u, v) \le \delta_G(u, v) + \beta \quad \forall (u, v) \in \mathcal{P}$$

■ such an H is a \mathcal{P} -spanner with additive stretch β

$$\delta_H(u, v) \le \delta_G(u, v) + \beta \quad \forall (u, v) \in \mathcal{P}$$

- such an H is a \mathcal{P} -spanner with additive stretch β
 - size $\tilde{O}(n \cdot |\mathcal{P}|^{1/3})$ and additive stretch 2 [KV13]

$$\delta_H(u, v) \le \delta_G(u, v) + \beta \quad \forall (u, v) \in \mathcal{P}$$

- such an H is a \mathcal{P} -spanner with additive stretch β
 - size $\tilde{O}(n \cdot |\mathcal{P}|^{1/3})$ and additive stretch 2 [KV13]
 - size $\tilde{O}(n \cdot |\mathcal{P}|^{2/7})$ and additive stretch 4 [K15]

$$\delta_H(u,v) \le \delta_G(u,v) + \beta \quad \forall (u,v) \in \mathcal{P}$$

- such an H is a \mathcal{P} -spanner with additive stretch β
 - size $\tilde{O}(n \cdot |\mathcal{P}|^{1/3})$ and additive stretch 2 [KV13]
 - size $\tilde{O}(n \cdot |\mathcal{P}|^{2/7})$ and additive stretch 4 [K15]
 - size $O((n \cdot |\mathcal{P}|^{1/4})$ and additive stretch 6 [K15]

■ We have to ensure SP(u, v) for each $(u, v) \in \mathcal{P}$ is well-approximated in the final H.

- We have to ensure SP(u, v) for each $(u, v) \in \mathcal{P}$ is well-approximated in the final H.
- Run the clustering step with parameter $h \approx |\mathcal{P}|^{1/3}$ and we get the starting subgraph H.

- We have to ensure SP(u,v) for each $(u,v) \in \mathcal{P}$ is well-approximated in the final H.
- Run the clustering step with parameter $h \approx |\mathcal{P}|^{1/3}$ and we get the starting subgraph H.

- We have to ensure SP(u,v) for each $(u,v) \in \mathcal{P}$ is well-approximated in the final H.
- Run the clustering step with parameter $h \approx |\mathcal{P}|^{1/3}$ and we get the starting subgraph H.

■ Sample each special vertex with probability $\approx 3/\tau$ ($\tau = n/|\mathcal{P}|^{2/3}$) to get very special vertices

Add to H a BFS tree rooted at each very special vertex.

Add to H a BFS tree rooted at each very special vertex.

So if SP(u,v) has $\geq \tau$ clustered vertices, then $\delta_H(u,v) \leq \delta(u,v) + 2$.

Add to H a BFS tree rooted at each very special vertex.

So if SP(u,v) has $\geq \tau$ clustered vertices, then $\delta_H(u,v) \leq \delta(u,v) + 2$.

■ For $(u, v) \in \mathcal{P}$:

Add to H a BFS tree rooted at each very special vertex.

So if SP(u,v) has $\geq \tau$ clustered vertices, then $\delta_H(u,v) \leq \delta(u,v) + 2$.

- For $(u, v) \in \mathcal{P}$:
 - if SP(u, v) has $< \tau$ clustered vertices then add to H all missing edges of SP(u, v).

- Add to H a BFS tree rooted at each very special vertex.
- So if SP(u,v) has $\geq \tau$ clustered vertices, then $\delta_H(u,v) \leq \delta(u,v) + 2$.
- For $(u, v) \in \mathcal{P}$:
 - if SP(u, v) has $< \tau$ clustered vertices then add to H all missing edges of SP(u, v).
 - so $\delta_H(u,v) = \delta(u,v)$ in this case.

■ Run the clustering step with parameter $h \approx |\mathcal{P}|^{2/7}$ and we get the starting subgraph H.

■ Run the clustering step with parameter $h \approx |\mathcal{P}|^{2/7}$ and we get the starting subgraph H.

■ We classify SP(u, v) into one of three types:

- Run the clustering step with parameter $h \approx |\mathcal{P}|^{2/7}$ and we get the starting subgraph H.
- We classify SP(u, v) into one of three types:
 - those with many clustered vertices

- Run the clustering step with parameter $h \approx |\mathcal{P}|^{2/7}$ and we get the starting subgraph H.
- We classify SP(u, v) into one of three types:
 - those with many clustered vertices
 - those with only a few clustered vertices

- Run the clustering step with parameter $h \approx |\mathcal{P}|^{2/7}$ and we get the starting subgraph H.
- We classify SP(u, v) into one of three types:
 - those with many clustered vertices
 - those with only a few clustered vertices
 - those with an intermediate number of clustered vertices

Shortest paths with either many clustered vertices or only a few clustered vertices are easy to handle.

- Shortest paths with either many clustered vertices or only a few clustered vertices are easy to handle.
- To deal with paths of the third type:

- Shortest paths with either *many* clustered vertices or only a *few* clustered vertices are easy to handle.
- To deal with paths of the third type:

- Shortest paths with either *many* clustered vertices or only a *few* clustered vertices are easy to handle.
- To deal with paths of the third type:

Add to H all missing edges in the prefix q and suffix r of each such path.

■ We select some special vertices so that

- We select some special vertices so that
 - each prefix has an adjacent selected special vertex

- We select some special vertices so that
 - each prefix has an adjacent selected special vertex
 - each suffix has an adjacent selected special vertex

- We select some special vertices so that
 - each prefix has an adjacent selected special vertex
 - each suffix has an adjacent selected special vertex

■ We buy at most one SP(x,y) for $x \in C_1$ and $y \in C_2$, where C_1 and C_2 are clusters centered at selected special vertices.

We buy at most one SP(x,y) for $x \in C_1$ and $y \in C_2$, where C_1 and C_2 are clusters centered at selected special vertices.

■ We buy at most one SP(x,y) for $x \in C_1$ and $y \in C_2$, where C_1 and C_2 are clusters centered at selected special vertices.

■ This ensures $\delta_H(u,v) \leq \delta_G(u,v) + 4$ in this case.

■ Run the clustering step with parameter $h \approx |\mathcal{P}|^{1/4}$ and we get the starting subgraph H.

■ Run the clustering step with parameter $h \approx |\mathcal{P}|^{1/4}$ and we get the starting subgraph H.

■ We classify SP(u, v) into one of three types:

- Run the clustering step with parameter $h \approx |\mathcal{P}|^{1/4}$ and we get the starting subgraph H.
- We classify SP(u, v) into one of three types:
 - those with only a few clustered vertices

- Run the clustering step with parameter $h \approx |\mathcal{P}|^{1/4}$ and we get the starting subgraph H.
- We classify SP(u, v) into one of three types:
 - those with only a few clustered vertices
 - in this case we add to H all missing edges in this path.

■ To define the second type, let p = SP(u, v).

■ To define the second type, let p = SP(u, v).

■ To define the second type, let p = SP(u, v).

each of the middle clusters improves its distance to either all clusters in the prefix q or all clusters in the suffix r.

■ To define the second type, let p = SP(u, v).

- each of the middle clusters improves its distance to either all clusters in the prefix q or all clusters in the suffix r.
 - \blacksquare in this case we add to H all missing edges in p.

■ To define the third type, let p = SP(u, v).

- To define the third type, let p = SP(u, v).
- There is a middle cluster C that satisfies $\delta_H(C,A) \leq \delta_p(C,A)$ and $\delta_H(C,B) \leq \delta_p(C,B)$.

- To define the third type, let p = SP(u, v).
- There is a middle cluster C that satisfies $\delta_H(C,A) \leq \delta_p(C,A)$ and $\delta_H(C,B) \leq \delta_p(C,B)$.

■ In this case we buy all edges in the prefix q and suffix r.

■ In this case we buy all edges in the prefix q and suffix r.

A P-spanner with additive stretch 6

 \blacksquare In this case we buy all edges in the prefix q and suffix r.

■ So we have $\delta_H(u,v) \leq \delta_G(u,v) + 6$ here.

 \blacksquare +2 \mathcal{P} -spanner of size $O(n|\mathcal{P}|^{1/4})$?

 \blacksquare +2 \mathcal{P} -spanner of size $O(n|\mathcal{P}|^{1/4})$?

■ then all these cases: $\mathcal{P} = V \times V$, $\mathcal{P} = S \times S$, $\mathcal{P} = S \times V$ would be corollaries of this result

 \blacksquare +2 \mathcal{P} -spanner of size $O(n|\mathcal{P}|^{1/4})$?

■ then all these cases: $\mathcal{P} = V \times V$, $\mathcal{P} = S \times S$, $\mathcal{P} = S \times V$ would be corollaries of this result

■ A pairwise spanner of size $o(n|\mathcal{P}|^{1/4})$ and O(1) additive stretch?

 \blacksquare +2 \mathcal{P} -spanner of size $O(n|\mathcal{P}|^{1/4})$?

■ then all these cases: $\mathcal{P} = V \times V$, $\mathcal{P} = S \times S$, $\mathcal{P} = S \times V$ would be corollaries of this result

- A pairwise spanner of size $o(n|\mathcal{P}|^{1/4})$ and O(1) additive stretch?
 - this would imply an all-pairs of size $o(n^{4/3})$ and O(1) additive stretch

