
Partition Functions, Polynomials and Optimization
Indian Institute of Science, Bangalore, Jan 13, 2017

Speaker: Nisheeth Vishnoi
Permanent and Counting Perfect Matchings in Bipartite Graphs

1 Counting Matchings
We will study the problem of counting perfect matchings in a bipartite graph.
Before we proceed let us define it formally.

Definition 1.1. Let G = (V, E) be an undirected graph. A subset M ⊆ E such that no
two edges in M share an endpoint we call a matching. If M “matches” all vertices, i.e.,
|M| = |V|/2 then we say that M is a perfect matching.

The problem: given a bipartite graph G, count the number of perfect matchings in G
we denote by BMCOUNT.

Note that the decision version of the BMCOUNT problem, i.e., given a bipartite
graph, decide whether it contains a perfect matching is polynomial time solvable
(for example using any max-flow algorithm), in this regard it resembles the prob-
lem of counting spanning trees, where the decision version is just to say whether
a graph is connected. However as it turns out, the counting variants of these two
problems differ drastically. To explain it, we need to introduce the complexity
class #P.

2 The Class #P
The complexity class #P can be seen as an analogue of NP for counting problems.
Recall that a problem L is in NP if there exists an efficient (polynomial time) veri-
fier for L. A verifier is simply a program V which given two inputs (x, y), where x
should be thought of as an input for L and y as a certificate for x being an element
of L, outputs YES or NO. It should hold that if x ∈ L then there is a certificate
y (of bounded length) which makes V output YES, and there should be no such
certificate otherwise.

In the counting world we define #P to be the set of counting problems for
which there exists a polynomial time verifier V(x, y). In such a problem we are
given x and we are asked to count the number of different y such that V(x, y) says
YES. As an instructive example, think of an input as a graph G and a certificate

1

being some subset S of G’s edges. We can then consider a verifier which takes
(G, S) as input and answers YES if and only if S is a spanning tree in G. This
clearly corresponds to the problem of counting spanning trees in a graph. Since
such a verifier can be implemented in polynomial time, it means that this problem
is in #P. Below we list several other examples of problems in this class.

1. Given a bipartite graph G = (V, E) compute the number of perfect match-
ings in G.

2. Given a graph G = (V, E) compute the number of Hamiltonian cycles in G.

3. Given a boolean formula φ compute the number of satisfying assignments.

If we consider decision versions of the above problems, i.e., “Does G ccontain a
perfect matching?”, “Does G contain a Hamiltonian cycle?” and “Does φ have a
satisfying assignment?” all of them belong to NP, but of course the first of them
is polynomial time solvable, while the remaining two are NP−complete. When
thinking of the spanning tree problem, it would be plausible to conjecture that
every counting problem, whose decision variant is polynomial time solvable is
also polynomial time solvable. As it turns out, this intuition is completely wrong,
as demonstrated by Valiant in his famous

Theorem 2.1 (Valiant ‘79). The problem BMCOUNT is #P−complete.

We are not going to define #P−completeness precisely, but the meaning of it is
easy to imagine. #P−complete problems are the hardest in the whole #P class,
any other problem reduces to them. This theorem (which we are not going to
prove) has a rather striking implication: if one could count perfect matchings in
bipartite graphs in polynomial time, then P = NP. This demonstrates how hard
BMCOUNT is compared to counting spanning trees.

3 Permanent of a Matrix
In this section we introduce another problem – computing permanents of nonneg-
ative matrices. While this problem is algebraic and seemingly has nothing to do
with counting perfect matchings, we show that these problems are tightly related
to each other. In a later section we construct an algorithm for approximately com-
puting permanents, which then automatically implies the same for BMCOUNT.
The definition follows.

2

Definition 3.1. Let A ∈ Rn×n be a square matrix with entries Ai,j for 1 ≤ i, j ≤ n. The
permanent of A is defined as:

Per(A)
def
= ∑

σ∈Sn

n

∏
i=1

Ai,σ(i),

where Sn is the set of all permutations over n symbols, i.e., the set of bijections σ :
{1, 2, . . . , n} → {1, 2, . . . , n}.

The computational problem: given a matrix A with nonnegative entries, compute
Per(A) is denoted as PERM.

Note first that the number of different permuatations over n symbols is n!, hence
we cannot compute permanents directly from the definition, because it would
take exponential time.

Interestingly, the formula for computing permanents closely resembles an-
other familiar object: the determinant. Indeed, recall that the determinant of a
matrix A ∈ Rn×n can be defined as

det(A) = ∑
σ∈Sn

(−1)inv(σ)
n

∏
i=1

Ai,σ(i),

where inv(σ) denotes the number of inversions in σ and (−1)inv(σ) is the sign of
the permutation σ. Therefore Per and det differ only by the (−1)inv(σ) term. Since
determinants can be computed in polynomial time (using Gaussian elimination),
one is tempted to believe that permanents should not be much harder. But again,
this intuition turns out to be wrong, as we will see PERM is #P−complete, hence
no polynomial algorithm is expected to exist for solving this problem.

Lemma 3.2. Let G be an undirected bipartite graph on 2n vertices, then there exists a
(polynomial time computable) matrix AG ∈ {0, 1}n×n such that Per(AG) is equal to the
number of perfect matchings in G.

Proof. Let V and U be the sides of the bipartition, we can assume that |V| = |U| =
n, as otherwise there is no perfect matching in G. Let us denote the vertices of
V and U by {v1, . . . , vn} and {u1, . . . , un} respectively. Define the matrix AG =
(ai,j)1≤i,j≤n to be

ai,j =

{
1 if there is an edge between ui and vj in G,
0 otherwise.

3

Note that every perfect matching M in G corresponds to a unique permutation
σM ∈ Sn such that σM(i) is equal to k such that vi is matched to uj in M. Note that
the corresponding term in Per(AG) is

n

∏
i=1

ai,σM(i) = 1.

Conversely, for every permutation σ ∈ Sn such that ∏n
i=1 ai,σ(i) = 1, there exists a

unique perfect matching which corresponds to it. Since in Per(AG) every term in
the sum is either zero or one and the ones corresponds exactly to perfect match-
ings in G we can conclude the lemma.

In this talk we develop an approximation algorithm for computing perma-
nents, which using the above Lemma, translates automatically to an algorithm for
approximately counting perfect matchings in bipartite graphs. More precisely, we
prove

Theorem 3.3. There is a polynomial time algorithm which given an n× n matrix A with
nonnegative entries, outputs a number X ∈ R such that:

Per(A) ≤ X ≤ nn

n!
Per(A).

4 Permanents and Polynomials
Similarly as for the case of spanning trees, we will use polynomials as a tool for
computing permanents. To every square matrix A we assign a polynomial pA.
It will play a crucial role in obtaining algorithms for approximately computing
permanents.

Definition 4.1. Let A ∈ Rn×n be a matrix with non-negative entries. The product
polynomial pA ∈ R[x1, x2, . . . , xn] of A is defined as

pA(x1, . . . , xn) =
n

∏
i=1

(
n

∑
j=1

xjai,j

)
.

It is not hard to see that pA has all monomials of degree n (such polynomials we
call n−homogenous) and all its coefficients are non-negative (because the entries
of A are non-negative). Importantly, the permanent of A can be recovered from A
simply as one of its coefficients! More precisely we have

4

Fact 4.2. Let A ∈ Rn×n, we have:

Per(A) =
∂n

∂x1∂x2 . . . ∂xn
pA(x).

Proof. Since pA has all monomials of degree n it is not hard to see that the expres-
sion ∂n

∂x1∂x2...∂xn
pA(x) just gives us the coefficient of the monomial ∏n

i=1 xi in pA,
we will denote it by (pA)[n]. It remains to show that (pA)[n] indeed corresponds
to the permanent of A.

Imagine completely expanding the expression pA(x) = ∏n
i=1

(
∑n

j=1 xjai,j

)
and

thus getting nn terms each of the form:

m

∏
i=1

xβ(i)ai,β(i),

where β is any mapping {1, 2, . . . , n} → {1, 2, . . . , n}. The monomial ∏n
i=1 xi in

pA is simply the sum of all terms as above for β being permutations. Hence the
coefficient is:

(pA)[n] = ∑
β∈Sn

m

∏
i=1

ai,β(i) = Per(A).

The above fact has a rather surprising implication. We have described the perma-
nent as a coefficient of an “easy” polynomial. By easy we mean that pA(x) can
be evaluated efficiently for any input x, indeed this requires only n2 arithmetic
operations. However, this does not help us in computing the required coefficient.
In fact, since pA has an exponential number of different monomials it is hard to
imagine how to gain some knowledge about a specific one without computing all
of them (and spending exponential time to do that).

As it turns out, we can actually learn something about the relevant coefficient
by solving a continuous optimization problem over the polynomial pA(x). More
precisely, let us define the following notion of capacity of a polynomial.

Definition 4.3. Let p ∈ R[x1, . . . , xn] be any n−variate real polynomial. We define its
capacity to be

Cap(p) = inf
x1,...,xn>0

p(x)
∏n

i=1 xi
.

5

The following theorem makes use of certain good analytic properties of the poly-
nomial pA to establish a surprising connection between capacity of pA and the
coefficient (pA)[n]. We state it here for the special case of pA, in the next talk we
will state and prove it in much more generality: for real stable polynomials.

Theorem 4.4 (Gurvits ‘08). Let A be an n × n matrix with non-negative entries. Let
pA be the corresponding product polynomial and (pA)[n] be the coefficient of ∏n

i=1 xi. It
holds

(pA)[n] ≤ Cap(pA) ≤
nn

n!
(pA)[n].

As mentioned above, the full proof will appear in the next talk, let us now only
establish the left hand side of the inequality, as it is very simple. Since pA(x) has
all coefficients nonnegative, it is easy to see that for any positive x1, . . . , xn ∈ R we
have (pA)[n] ≤

pA(x)
∏i=1 xi

. After taking the infimum over x > 0 we obtain (pA)[n] ≤
Cap(pA).

Note that Fact 4.2 together with Theorem 4.4 imply that the capacity of the
product polynomial pA is an nn

n!−approximation to the permanent of A. Hence
in order to obtain an approximation algorithm for computing permanents we are
left with the task of computing the capacity of the product polynomial.

5 Computing Capacity
In this section we prove

Lemma 5.1. The problem of computing Cap(pA) for an n× n matrix A with nonnega-
tive entries can be stated as a convex program and can be solved in polynomial time using
convex optimization tools.

Let us denote p = pA. The first step towards proving the above lemma is to
reformulate the problem:

inf
x1,...,xn>0

p(x)
∏n

i=1 xi

so that there are no constraints on the variables. To this end to observe that:

{x ∈ Rn : x1, x2, . . . , xn > 0} = {(ey1 , . . . , eyn) : y ∈ Rn}.

Hence we can replace x by ey = (ey1 , . . . , eyn). We obtain:

inf
y∈Rn

p(ey) · e−∑n
i=1 yi .

6

Note that the above is an unrestricted continuous optimization problem, below
we prove that is is convex, and actually much more: that the logarith of the above
objective is convex (this implies convexity of the orginal function).

Fact 5.2. Let f : Rn → R be a function of the form

f (y) = log

(
d

∑
k=1

ake〈vk,y〉
)

where ak ∈ R≥0 and vk ∈ Rn
≥0. Then f is convex.

Proof. Since composing a convex function with an affine function results in a con-
vex function, it is enough to prove that the function g : Rd → R defined as

g(z) = log

(
d

∑
k=1

ezk

)
is convex. We will directly use the definition of convexity. Take any λ ∈ (0, 1), the
goal is to show that g(λz + (1− λ)w) ≤ λg(z) + (1− λ)g(w) for any z, w ∈ Rd.
We apply Hölder’s inequality with p = 1

λ and q = 1
1−λ :

d

∑
k=1

eλzk+(1−λ)wk =
d

∑
k=1

eλzk · e(1−λ)wk ≤
(

d

∑
k=1

ezk

)λ(d

∑
k=1

ewk

)1−λ

Taking logarithms:

ln
d

∑
k=1

eλzk+(1−λ)wk ≤ λ ln
d

∑
k=1

ezk + (1− λ) ln
d

∑
k=1

ewk .

We are now ready to deduce Lemma 5.1.

Proof of Lemma 5.1. As in the above discussion we reformulate the problem of com-
puting capacity to the following:

log Cap(p) = inf
y∈Rn

log p(ey)−
n

∑
i=1

yi.

By Fact 5.2 the objective f (y) = log p(ey) − ∑n
i=1 yi is a convex function. More-

over, as proved in Homework 1, this function is also L−smooth for L = O(n2).

7

This suggests that we should apply gradient descent for L−smooth functions (see
Lecture 1) to find an approximate minimum of f (y).

The only question which remains is: how to bound the initial distance from
a starting point, say 0, to the optimal point y?? The first obstacle which we en-
counter is that actually such an optimal point y? may not exist!Indeed, there are
polynomials p such that for every u ∈ Rn we have f (u) > infy∈Rn f (y).1 Of course
we are not aiming for the exact minimum anyway (only for some approximation),
but still, dealing with this issue requires some effort.

There are several ways to fix this problem. One possibility is to enforce that
the optimal value is actually attained at some point y?. This can be guaranteed
by assuming that A is strictly positive, which in turn can be achieved by adding a
small value ε > 0 to all entries of the matrix. Note that such a perturbation does
not change the permanent of A by too much.

1For example, consider the polynomial p(x1, x2, x3) = x1x2x3 + x2
1x2.

8

	Counting Matchings
	The Class #P
	Permanent of a Matrix
	Permanents and Polynomials
	Computing Capacity

