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1 Outline
Recall from the last talk the definition of capacity which was out proxy for com-
puting the permanent of a non-negative matrix.

Definition 1.1. Let p ∈ R[z1, . . . , zn] be any n−variate real polynomial. We define its
capacity to be

Cap(p) = inf
z1,...,zn>0

p(z)
∏n

i=1 zi
.

In this talk we will prove the following theorem:

Theorem 1.2 (Gurvits ‘08). Let A be an n × n matrix with non-negative entries. Let
pA be the corresponding product polynomial and (pA)[n] be the coefficient of ∏n

i=1 zi. It
holds

(pA)[n] ≤ Cap(pA) ≤
nn

n!
(pA)[n].

The proof is non-trivial and very general – it relies on the theory of real stable
polynomials – which we develop first.

2 Real Stable Polynomials
We are primarily concerned with univariate and multivariate polynomials f (z1, . . . , zn) ∈
R[z1, . . . , zn]. On occasion we may run into polynomials with complex coefficients.
Of interest will be zeros of such a polynomial which is always a subset of Cn. For
a number z ∈ C, its real part is denoted by <(z) and its imaginary part by =(z).
LetH def

= {z ∈ C : =(z) > 0} denote the upper-half complex plane.

2.1 Stability
A polynomial f (z1, . . . , zn) is said to be stable with respect to (w.r.t.) a region Ω ⊆
Cn if no root of f lies in Ω. Of particular interest is the region

Hn = {(z1, . . . , zn) ∈ Cn : ∀i, =(zi) > 0}
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and polynomials with no root in this region will be referred to as H-stable or sim-
ply stable. To emphasize the fact that the coefficients of f are all real numbers, we
often call such polynomials real stable.

2.2 Univariate Polynomials – Real Rootedness
When f is a univariate polynomial, real stability amounts to saying that all the
roots of f are real, or f is real-rooted. This is because of the following simple lemma
which states that the complex roots of a univariate polynomial with real coeffi-
cients appear as pairs and, hence, if there is a complex root, there would be one
with a positive imaginary part.

Lemma 2.1. For f ∈ R[z], if for a, b ∈ R f (a + ıb) = 0, then f (a− ıb) = 0.

Proof. f (a + ıb) = ∑i ai(a + ıb)i = 0 = ∑i ai(a + ıb)i = ∑i ai(a + ıb)
i
= ∑i ai(a−

ıb)i = f (a− ıb).

The benefits of being real-rooted. As a simple example of how real-rootedness
helps we derive an interesting property for probability distributions whose gen-
erating functions are real-rooted. For a probability distribution a0, a1, . . . , ad over

{0, 1, . . . , d}, its generating function is defined to be the degree d polynomial g(z) def
=

∑d
i=0 aizi. Suppose g(z) is real-rooted. What does this say about the probability

distribution itself? Start by observing that if g(z) is real-rooted, then all its roots
have to be non-positive as ai ≥ 0 for all i. Thus, g(z) = ad ∏d

i=1(z + αi) for non-

negative αis. Let pi
def
= 1

1+αi
so that αi =

1−pi
pi

. Since αi ≥ 0, 0 < pi ≤ 1 for all i.
Thus,

g(z) = ad

d

∏
i=1

(
z +

1− pi

pi

)
= ad ∑

S⊆[d]
z|S|∏

i 6∈S

1− pi

pi
=

ad

∏d
i=1 pi

∑
S⊆[d]

z|S|∏
i 6∈S

(1− pi)∏
i∈S

pi.

Note that, since, ∑d
i=1 ai = 1,

g(1) = ad

d

∏
i=1

(1 + αi) = ad

d

∏
i=1

1
pi

= 1.

Hence,

g(z) = ∑
S⊆[d]

z|S|∏
i 6∈S

(1− pi)∏
i∈S

pi =
d

∑
k=0

zk ∑
S⊆[d]:|S|=k

∏
i 6∈S

(1− pi)∏
i∈S

pi.
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Consider a sequence of independent random variables Y1, . . . , Yd such that each

Yi is 1 with probability pi and 0 with probability 1− pi. Further, let X def
= ∑d

i=0 Yi
denote the number of 1s obtained if we sample from each Yi. Then, Pr[X = k] =
∑S⊆[d]:|S|=k ∏i 6∈S(1− pi)∏i∈S pi. Thus,

g(z) =
d

∑
k=0

zk Pr[X = k].

In other words, if the generating function of a probability distribution is real-
rooted, then the distribution corresponds to a sum of independent Bernoulli ran-
dom variables. Thus, for a real-rooted polynomial with non-negative coefficients,
its coefficients are unimodal; this is the content of one of the problems of this
week’s homework.

Now we present a bit more non-trivial application of real-rootedness which
lies at the core of the proof of Gurvits’ theorem.

Lemma 2.2. Let f (z) = ∑d
i=0 aizi with ai ≥ 0 for all i, then f ′(0) ≥

(
d−1

d

)d−1
inft>0

f (t)
t .

Proof. Recall that in the univariate case, if the polynomial has coefficients that are
non-negative, then all its roots have to be non-positive. Thus, if f (z) = ∑d

i=0 aizi is
real-rooted with ai ≥ 0 for all i, it can be written as ad ∏d

i=1(z + αi) where αi ≥ 0.
For a moment, assume that αi > 0 for all i. Thus, at any positive z = t, using the
AM-GM inequality and the fact that ∏i αi =

a0
ad

, we obtain

f (t) = ad

d

∏
i=1

(t + αi) = a0

d

∏
i=1

(
1 +

t
αi

)
≤ a0

(
1 +

t
d ∑

i

1
αi

)d

= a0

(
1 +

t f ′(0)
a0d

)d

.

Optimizing for t via a simple calculus exercise then shows that

f ′(0) ≥
(

d− 1
d

)d−1

inf
t>0

f (t)
t

.

Now, if some αi = 0, since f ′(0) = a1 ≥ 0, then f (0) = 0, and the above holds
trivially.
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When is a polynomial real-rooted? Given a polynomial, it is not obvious by
looking at its coefficients if it is real-rooted or not. So how would we ever know
for a polynomial if it is real-rooted or not? How robust is real-rootedness? For
instance, if f is real-rooted, so are the polynomials f (cz) for a real number c, and
zd · f (1/z). A bit more non-trivially, so is the derivative of f : f ′(z). To see this,
recall from calculus that between any two roots of f there is exactly one root of f ′.
Thus, if all the d roots of f are real, then so are all the d− 1 roots of f ′. This latter
fact is a manifestation of the more general Gauss-Lucas theorem which states that
the convex hull of the set of roots of a real (or complex) polynomial f contains the
set of roots of f ′.

Theorem 2.3 (Gauss-Lucas). Let f ∈ C[z], then all the roots of f ′(z) can be written as
a convex combination of the roots of f (z).

Proof. Write f (z) = ad ∏i(z− αi). Thus,

f ′(z)
f (z)

= ∑
i

1
z− αi

.

Thus, if β ∈ C is such that f ′(β) = 0 and f (β) 6= 0, then ∑i
1

β−αi
= 0. This

implies that ∑i
β̄−ᾱi
|β−αi|2

= 0. Thus, separating β̄ out and conjugating, we obtain

∑i piαi where pi
def
=

1
|β−αi |2

∑j
1

|β−αi |2
. The Gauss-Lucas theorem follows by noticing that

pi ≥ 0 for all i and ∑i pi = 1.

2.3 Multivariate Polynomials
Recall that f (z1, . . . , zn) is said to be real stable if f ∈ R[z1, . . . , zn] and no root of
it lies inHn. It seems harder to show that a multivariate polynomial is real stable.
The first lemma reduces the problem of checking real stability of a multivariate
polynomial to checking real-rootedness of a set of univariate polynomials, and
turns out to be quite effective.

Lemma 2.4. A multivariate polynomial f (z1, . . . , zn) ∈ R[z1, . . . , zn] is stable if and
only if for all v ∈ Rn and all u ∈ Rn

>0, the univariate polynomial f (v + tu) is real-
rooted.

Proof. Suppose that f (v + tu) is real-rooted for all v ∈ Rn and all u ∈ Rn
>0, but

f is not real stable. The latter implies that there is an a = (a1, . . . , an) ∈ Hn such
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that f (a) = 0. Let v def
= <(a) and u def

= =(a). Since a ∈ Hn, ui > 0 for all i. But
then f (a) = f (v + ιu) = 0 and, hence, ι is a root of f (v + tu) which contradicts
the real-rootedness of f (v + tu).

For the other direction, suppose that there are v ∈ Rn and u ∈ Rn
>0 and a

t = t1 + ιt2 such that f (v + tu) = 0. Since complex roots of a univariate polyno-
mial appear in conjugates (Lemma 2.1), we may assume that t2 > 0. Thus, the
imaginary part of each component of v + tu is strictly positive contradicting the
fact that f is real stable.

Using the lemma above, several multivariate polynomials can be shown to be
real stable. Perhaps the simplest such polynomial (which can be seen to be real
stable without appealing to the lemma above) is ∑i aizi when ai ≥ 0 for all i. Since
a root of a polynomial that is a product of two polynomials is a root of at least
one of those two polynomials, the polynomial ∏j ∑i aijzi is also real stable. A
bit more non-trivially, the following important class of polynomials arising from
determinants can be shown to be real stable.

Lemma 2.5. Let A1, . . . , An ∈ Rm×m be positive definite matrices1 and B be a symmetric

m×m real matrix. Then the polynomial f (z1, . . . , zn)
def
= det(z1A1 + · · ·+ zn An + B)

is real stable.

We will derive the proof in one of the exercises. The above lemma can be es-
tablished in the setting when Ais are positive semi-definite (PSD) as opposed to
being positive-definite. This is quite useful for applications. However, extending
Lemma 2.5 requires the following theorem from complex analysis whose proof is
beyond the scope of the talk.

Theorem 2.6 (Hurwitz). Let { fk}k≥0 be a sequence of Ω-stable polynomials over z1, . . . , zn
for a connected and open set Ω that uniformly converge to a polynomial f over compact
subsets of Ω. Then f is Ω-stable.

To use this theorem for a matrix Ai which is just guaranteed to be PSD one approx-
imates each Ai by a sequence of matrices Ai +

1
2k I which are positive definite and

converge to Ai as k goes to infinity. One can ask if all real stable polynomials arise
from such determinants. This is the content of the Generalized Lax Conjecture.

1Semi-positive definite and positive definite matrices over reals are symmetric.
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2.4 Closure Properties
What makes the stability theory particularly powerful is that many of the closure
properties discussed in Section 2.1 hold in the multivariate setting as well. Thus,
we can start with real stable polynomials and prove stability for new ones. For
us, the key closure properties will be closure under inversion, specialization and
differentiation.

Inversion. If f (z1, . . . , zn) is real stable with the degree of zi in f being di, then the
polynomial f (1/z1, . . . , 1/zn)∏n

i=1 zdi
i is also real stable. Suppose (a1, . . . , an) ∈ Hn

be such that f (1/a1, . . . , 1/an) = 0. Since the coefficients of f are real, if f (1/a1, . . . , 1/an) =
f (1/a1, . . . , 1/an) = 0. Since, if the imaginary part of ai is positive that of 1/ai is neg-
ative, the imaginary part of 1/ai is positive for each i. This contradicts the real
stability of f and establishes our first closure result.

Specialization. It is easy to see that if f (z1, . . . , zn) is a stable polynomial, then
f (a, z2, . . . , zn) is also stable if=(a) > 0. However, if f (z1, . . . , zn) is real, f (a, z2, . . . , zn)
may have complex coefficients and, thus, may not be real stable. The following
lemma, which relies on Hurwitz’s theorem (Theorem 2.6), shows that if a ∈ R

then f (a, z2, . . . , zn) is real stable.

Lemma 2.7. If f (z1, . . . , zn) is real stable, then for all a ∈ R (the closure ofH), f (a, z2, . . . , zn)
is also real stable.

Proof. If a ∈ H, then the proof follows from the discussion above. Thus, it is
sufficient to prove this lemma for a ∈ R. We will only sketch a proof here. Sup-
pose, for sake of contradiction, that f (a, a2, . . . , an) = 0 with some aj such that

=(aj) > 0. It follows from the definition that fk
def
= f (a + ι2−k, z2, . . . , zn) is stable

for any k > 0. The lemma now follows from Hurwitz’s theorem since limk→∞ fk =
f (a, z2, . . . , zn) is stable and, being real, is real stable.

Differentiation. The next crucial closure property is closure of real stability un-
der taking partial derivatives. Following is some basic notation for partial deriva-

tives of multivariate polynomials. Let ∂i
def
= ∂/∂zi. For a tuple α : [n] 7→ Z≥0, let

∂α def
= ∏n

i=1 ∂
αi
i .

Lemma 2.8. Let f be real stable. Then, ∂1 f is also real stable.

Since the choice of the first variable is arbitrary, for any α : [n] 7→ Z≥0, ∂α f is real
stable. Thus, the real stability of ∂α f follows by an inductive application of this
lemma.
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Proof. Assume on the contrary that ∂1 f is not real stable and let a = (a1, a2, . . . , an) ∈
Hn such that ∂1 f (a1, a2, . . . , an) = 0. Let g(z) def

= f (z, a2, . . . , an). If g ≡ 0, then
f (a1, a2, . . . , an) = 0, contradicting the stability of f . Hence, g 6≡ 0. Since f is real
stable, so is g(z) by Lemma 2.7. By the Gauss-Lucas theorem, the roots of g′(z)
are in the convex hull of the roots of g(z) and, hence, g′(z) is real stable. Since
g′(z) = ∂1 f (z, a2, . . . , an), g′(a1) = ∂1 f (a1, a2, . . . , an) = 0 by assumption. Thus,
g′(a1) = 0 for a1 such that =(a1) > 0, contradicting the stability of g′.

3 Proof of Gurvits’ Theorem
In this section we prove the following theorem of Gurvits’ – Theorem 3.1 follows
as a corollary.

Theorem 3.1 (Gurvits ‘08). Let p(z1, . . . , zn) ∈ R+[z1, . . . , zn] be a real-stable poly-
nomial, with d being the maximum degree of any variable, and p[n] be the coefficient of
∏n

i=1 zi in p. Then

Cap(p) ≤
(

d
d− 1

)(d−1)n
p[n].

To see how Theorem 3.1 follows from this result, consider the polynomial pA(z1, . . . , zn)
def
=

∏n
i=1 ∑n

j=1 aijzj, and note that pA is real stable, has degree d = n and(
n

n− 1

)(n−1)n
≤ en.

Proof. It follows from a repeated application of Lemma 2.7 and Lemma 2.8 that,
for any 1 ≤ i < n, the polynomial

gi(z1, . . . , zi)
def
= ∂(i+1,...,n)p(z1, . . . , zi, 0, . . . , 0)

is real stable. Note that g0 = ∂(1,...,n)p(0, . . . , 0) = p[n]. Since all coefficients of p
are nonnegative, it follows from Lemma 2.2 and Lemma 2.7 that, for any fixed
positive b1, . . . , bi−1,

gi−1(b1, . . . , bi−1) = ∂igi(b1, . . . , bi−1, 0) ≥
(

di − 1
di

)di−1 gi(b1, . . . , bi)

bi
,

where di is the degree of the polynomial gi(b1, . . . , bi−1, zi). Fixing s1, s2, . . . , si−1,
let si be defined to be

arg inf
t>0

gi(s1, . . . , si−1, t)
t

.
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Thus, applying the above inequality for i = 0 to n− 1 and letting d def
= maxn

i=1 di,
we obtain that p[n] = g0, which is at least(

d− 1
d

)d−1 g1(s1)

s1
≥ · · · ≥

(
d− 1

d

)(d−1)n gn(s1, . . . , sn)

∏n
i=1 si

=

(
d− 1

d

)(d−1)n p(s1, . . . , sn)

∏n
i=1 si

.

Since p(s1,...,sn)
∏n

i=1 si
≥ infb1>0,...,bn>0

p(b1,...,bn)
∏n

i=1 bi
, we obtain

p[n] ≥
(

d− 1
d

)(d−1)n
Cap(p).

Rearranging, this completes the proof of the theorem.
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