Analytic and number theoretic detectors of integrability

Rod Halburd

Department of Mathematics University College London

R.Halburd@ucl.ac.uk

Overview

PART 1: Introduction to Nevanlinna theory

- (a) General theory
- (b) Applications to differential equations

PART 2: Detecting integrability in discrete systems

- (a) Singularity confinement
- (b) Measures of complexity in discrete systems
 - i. Growth of meromorphic solutions (Nevanlinna theory)
 - ii. Diophantine integrability
 - iii. Algebraic entropy

PART 1: Introduction to Nevanlinna theory

(a) General theory

- Polynomial: $P(z) = a_0 + a_1 z + \cdots + a_d z^d$. If $a_d \neq 0$, then the degree of P is $\deg(P) = d$.
- Rational functions:

$$R(z) = \frac{P(z)}{Q(z)},$$

where P and Q are polynomials.

If P and Q have no common factors, then the degree of R is

$$\deg(R) = \max\{\deg(P), \deg(P)\}.$$

Entire and meromorphic functions

• A complex function f is called entire if it is differentiable at all $z \in \mathbb{C}$. This is equivalent to saying that there is a power series $\sum_{n=0}^{\infty} a_n z^n$, with infinite radius of convergence, such that

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

for all $z \in \mathbb{C}$.

- Examples of entire functions: constant functions, polynomials, e^z , $\sin z$, $\cos z$.
- \bullet A function is said to be meromorphic (on \mathbb{C}) if it is analytic everywhere except at poles.
- Equivalently, a function is meromorphic if and only if it can be written as g(z)/h(z), where g and h are entire.
- Examples of meromorphic functions: entire fns, rational fns, $\tan z$, $\wp(z)$.
- Examples of non-meromorphic functions:

$$\sqrt{z}$$
, $\log z$, $\exp(1/z)$.

Jensen's formula

- Suppose f is analytic and nowhere vanishing in the disc $D = \{z : |z| \le r\}$.
- Then $\log f(z)$ is analytic in D.
- \bullet Cauchy's integral formula for $\log f$ gives

$$\log f(0) = \frac{1}{2\pi i} \int_{|z|=r} \frac{\log f(z)}{z} dz.$$

• On taking the real part we have

$$\log|f(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log|f(re^{i\theta})| \ d\theta.$$

Jensen's formula

- \bullet Now let f be any meromorphic function.
- For simplicity we assume that $f(0) \neq 0$ or ∞ .
- Then f has finitely many zeros a_1, \ldots, a_m and poles b_1, \ldots, b_n in D.
- Then the function

$$g(z) := rac{\prod B(a_j, z)}{\prod B(b_k, z)} f(z),$$

where

$$B(a,z) = \frac{r^2 - \bar{a}z}{r(z-a)},$$

has no zeros or poles in D.

• From $\log |g(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log |g(re^{i\theta})| d\theta$, we obtain Jensen's formula:

$$\log |f(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\theta})| \ d\theta + \sum \log \frac{r}{|b_k|} - \sum \log \frac{r}{|a_j|}.$$

A symmetric form of Jensen's formula

- For any x > 0, define $\log^+ x := \max(\log x, 0)$.
- Then $\log x = \log^+ x \log^+(x^{-1})$.
- Jensen's formula can now be written as

$$\frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta + \sum \log \frac{r}{|b_k|}$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \log^+ \left| \frac{1}{f(re^{i\theta})} \right| d\theta + \sum \log \frac{r}{|a_j|} + \log |f(0)|.$$

- Define the *proximity function* to be $m(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta$.
- The enumerative function is $N(r, f) := \int_0^r \frac{n(t, f)}{t} dt$, where n(r, f) is the number of poles of f (counting multiplicities) in $|z| \le r$.

The Nevanlinna characteristic

- The proximity function is $m(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta$, where $\log^+ x := \max(\log x, 0)$.
- The enumerative function is $N(r, f) := \int_0^r \frac{n(t, f)}{t} dt$, where n(r, f) is the number of poles of f (counting multiplicities) in $|z| \le r$.
- The Nevanlinna characteristic function T(r, f) = m(r, f) + N(r, f) measures "the affinity" of f for infinity.
- Similarly, $T\left(r, \frac{1}{f-a}\right) = m\left(r, \frac{1}{f-a}\right) + N\left(r, \frac{1}{f-a}\right)$

measures "the affinity" of f for the value a.

• Jensen's formula becomes

$$T(r, f) = T(r, 1/f) + \log|f(0)|.$$

Elementary properties of log⁺

$$\log^{+} \left(\prod_{j=1}^{q} a_{j} \right) \leq \sum_{j=1}^{q} \log^{+} a_{j},$$

$$\log^{+} \left(\sum_{j=1}^{q} a_{j} \right) \leq \log^{+} \left(q \max_{1 \leq j \leq q} a_{j} \right) \leq \sum_{j=1}^{q} \log^{+} a_{j} + \log q,$$

$$\log a = \log^{+} a - \log^{+} (1/a),$$

$$|\log a| = \log^{+} a + \log^{+} (1/a),$$

$$\log^{+} a \leq \log^{+} b, \quad \forall a \leq b.$$

Elementary properties of the Nevanlinna functions

$$n\left(r, \sum_{j=1}^{q} f_j\right) \le \sum_{j=1}^{q} n(r, f_j),$$
 $n\left(r, \prod_{j=1}^{q} f_j\right) \le \sum_{j=1}^{q} n(r, f_j),$

$$N\left(r, \sum_{j=1}^{q} f_j\right) \le \sum_{j=1}^{q} N(r, f_j), \qquad N\left(r, \prod_{j=1}^{q} f_j\right) \le \sum_{j=1}^{q} N(r, f_j),$$

$$m\left(r, \sum_{j=1}^{q} f_j\right) \le \sum_{j=1}^{q} m(r, f_j) + \log q, \quad m\left(r, \prod_{j=1}^{q} f_j\right) \le \sum_{j=1}^{q} m(r, f_j),$$

$$T\left(r, \sum_{j=1}^{q} f_j\right) \le \sum_{j=1}^{q} T(r, f_j) + \log q, \quad T\left(r, \prod_{j=1}^{q} f_j\right) \le \sum_{j=1}^{q} T(r, f_j).$$

Nevanlinna's First Main Theorem

(Nevanlinna's First Main Theorem)

For any merormorphic function f and any $a \in \mathbb{C}$, we have

$$T\left(r, \frac{1}{f-a}\right) = T(r, f) + O(1), \qquad r \to \infty,$$

where $f \not\equiv a$.

Proof:

$$T(r, f - a) \le T(r, f) + T(r, a) + \log 2.$$

Similarly

$$T(r, f) \le T(r, f - a) + T(r, a) + \log 2.$$

Hence

$$|T(r, f - a) - T(r, f)| \le T(r, a) + \log 2 = \log^{+} |a| + \log 2.$$

So

$$\left| T(r,f) - T\left(r, \frac{1}{f-a}\right) \right| \le |T(r,f) - T(r,f-a)| + \left| T(r,f-a) - T\left(r, \frac{1}{f-a}\right) \right|$$

$$\le \log^+|a| + \log 2 + \log^+|f(a)|.$$

Summary of the story so far

- The proximity function is $m(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta$, where $\log^+ x := \max(\log x, 0)$.
- The enumerative function is $N(r, f) := \int_{0}^{r} \frac{n(t, f)}{t} dt$, where n(r, f) is the number of poles of f (counting multiplicities) in $|z| \leq r$.
- The Nevanlinna characteristic function T(r, f) = m(r, f) + N(r, f)measures "the affinity" of f for infinity.
- Nevanlinna's First Main Theorem For $a \in \mathbf{C}$,

$$T\left(r, \frac{1}{f-a}\right) = T(r, f) + O(1), \qquad r \to \infty.$$

• The function $\exp(z)$ is never 0 or ∞ but it stays near these values on large parts of the circle |z| = r for r >> 1.

The order of an meromorphic function

- For any meromorphic function f, T(r, f) is continuous and nondecreasing.
- \bullet The *order* of a meromorphic function f is

$$\sigma(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r},$$

• For an entire function, T(r, f) behaves like $\log M(r, f)$ where $M(r, f) = \max_{|z|=r} |f(z)|$.

• Theorem

Let f be a non-constant entire function. Let r > 0 be sufficiently large that $M(r, f) := \max_{|z|=r} |f(z)| \ge 1$. Then for all finite R > r we have

$$T(r, f) \le \log M(r, f) \le \frac{R+r}{R-r}T(R, f).$$

Functions with a finite number of poles

- A meromorphic function has a finite number of poles if and only if $N(r, f) = O(\log r)$.
- A meromorphic function f is rational if and only if $T(r, f) = O(\log r)$.
- For any transcendental function f, we have $\log r = o(T(r, f))$.

The Lemma on the Logarithmic Derivative

We use S(r, f) to denote any function of r that is o(T(r, f)) outside some set of finite linear measure.

Lemma on the Logarithmic Derivative

Let f be a nonconstant meromorphic function. Then

$$m(r, f'/f) = S(r, f).$$

Furthermore, if f has finite order then

$$m(r, f'/f) = O(\log r).$$

There are many methods available to deal with the *exceptional sets* that arise in Nevanlinna theory.

One simple corollary of the lemma is that $T(r, f') \leq 2T(r, f)$.

Application to the first Painlevé equation

Let y be a transcendental meromorphic solution of the first Painlevé equation,

$$P_{\rm I}: \qquad y'' = 6y^2 + z.$$

Then

$$y^2 = 6^{-1} \left(y \frac{y''}{y} - z \right).$$

An obvious property of the proximity function m is $m(r, y^2) = 2m(r, y)$. Hence

$$2m(r,y) = m(r,y^2) = m\left(r,6^{-1}\left(y\frac{y''}{y} - z\right)\right) \le m(r,6^{-1}) + m\left(r,y\frac{y''}{y} - z\right)$$

$$\le m\left(r,y\frac{y''}{y}\right) + m(r,z) + \log 2$$

$$\le m(r,y) + m\left(r,\frac{y''}{y}\right) + O(\log r)$$

$$= m(r,y) + S(r,y) + O(\log r).$$

So

$$m(r, y) = S(r, y) + O(\log r).$$

Application to the first Painlevé equation

• Let y be a transcendental meromorphic solution of the first Painlevé equation,

$$P_{\rm I}: y'' = 6y^2 + z.$$

- Then $m(r, y) = S(r, y) + O(\log r)$.
- Suppose that y has only finitely many poles. Then $N(r, y) = O(\log r)$.
- Therefore

$$T(r, y) = m(r, y) + N(r, y) = S(r, y) + O(\log r).$$

- Recall that if y is transcendental then $\log r = o(T(r, y))$.
- Therefore our solution y satisfies T(r,y) = S(r,y), which means that T(r,y) = o(T(r,y)) as $r \to \infty$ outside of some possible exceptional set E of finite linear measure, which is clearly a contradiction.

A useful identity

(Valiron-Mohon'ko))

Let

$$R(z, f(z)) := \frac{a_0(z) + a_1(z)f(z) + \dots + a_p(z)f^p(z)}{b_0(z) + b_1(z)f(z) + \dots + b_q(z)f^q(z)},$$

be a rational function of f of degree $d = \max(p, q)$ with coefficients a_i and b_j satisfying

$$T(r, a_i) = S(r, f) \text{ and } T(r, b_j) = S(r, f).$$

Then

$$T(r, R(z, f(z))) = dT(r, f) + S(r, f).$$

Malmquist's theorem

(Malmquist's theorem)

Let f be a meromorphic solution of the equation

$$f'(z) = R(z, f(z)) := \frac{a_0(z) + a_1(z)f(z) + \dots + a_p(z)f^p(z)}{b_0(z) + b_1(z)f(z) + \dots + b_q(z)f^q(z)},$$
(1)

where the coefficients a_i and b_j satisfy

$$T(r, a_i) = S(r, f)$$
 and $T(r, b_j) = S(r, f)$,

and the degree of R as a function of f is $d = \max(p, q)$. Then equation (1) is the Riccati equation

$$f'(z) = a_0(z) + a_1(z)f(z) + a_2(z)f^2(z).$$

Proof: (Yosida)

Using the Valiron-Mohon'ko theorem and the fact that $(T(r, f') \leq 2T(r, f))$, we have

$$dT(r,f) + S(r,f) = T(r,R(z,f(z))) = T(r,f') \le 2T(r,f) + S(r,f).$$

Hence $d \leq 2$.

Proof of Malmquist's theorem

- We have shown that if f' = P(z, f)/Q(z, f), where P and Q are relatively prime in f, then $P(z, f) = a_0(z) + a_1(z)f + a_2(z)f^2$ and $Q(z, f) = b_0(z) + b_1(z)f + b_2(z)f^2$.
- It remains to show that Q is independent of f.
- Without loss of generality we assume that $a_0(z) \not\equiv 0$.
- Now the function g := 1/f satisfies the equation

$$g' = -\frac{g^2(a_0g^2 + a_1g + a_2)}{b_0g^2 + b_1g + b_2} = \widetilde{R}(z, g) = \frac{\widetilde{P}(z, g)}{\widetilde{Q}(z, g)},$$

where
$$\widetilde{P}(z,g) = -g^2(a_0g^2 + a_1g + a_2) = -g^4P(z,1/g)$$
 and $\widetilde{Q}(z,g) = g^2Q(z,1/g)$.

- From the First Main Theorem we have T(r,g) = T(r,f) + O(1). Hence $T(r,a_i) = S(r,g)$ and $T(r,b_j) = S(r,g)$.
- So \widetilde{R} has degree at most 2. Therefore two of the roots (counting multiplicites) of the quartic polynomial $\widetilde{P} = -g^4 P(z, 1/g)$ must be shared by $\widetilde{Q}(z, g) = z^2 Q(z, 1/g)$.
- Recall that P and Q are relatively prime and 0 is not a root of P (since $a_0 \not\equiv 0$). So g^2 must divide $\widetilde{Q}(z, 1/g)$. Hence $b_1 = b_2 = 0$.

Nevanlinna's second main theorem

• Nevanlinna's second main theorem

Let f be a nonconstant meromorphic function. For $q \geq 2$, let $a_1, \ldots, a_q \in \mathbb{C}$ be q distinct points. Then

$$(q-1)T(r,f) \le N(r,f) + \sum_{j=1}^{q} N\left(r, \frac{1}{f-a_j}\right) - N_{\text{ram}}(r,f) + S(r,f),$$

where $N_{\text{ram}}(r, f) = 2N(r, f) - N(r, f') + N(r, 1/f')$.

• Using the ramification term, we have the following immediate corollary:

$$(q-1)T(r,f) \le \bar{N}(r,f) + \sum_{j=1}^{q} \bar{N}\left(r, \frac{1}{f-a_j}\right) + S(r,f),$$

where $\bar{N}(r, f)$ counts poles ignoring multiplicities.

• Corollary: **Picard's theorem**

Let f be a meromorphic function missing three distinct values in $\mathbb{C} \cup \{\infty\}$. Then f is a constant.

Let f be a meromorphic function which takes each of three distinct values in $\mathbb{C} \cup \{\infty\}$ at most finitely many times. Then f is rational.

Other corollaries/analogues

- Defect relations
- Totally ramified values
- Shared values
- New direction: Yamanoi
- Replacing f' by more general linear operators
- Vojta's dictionary

Summary of part 1(a): General Nevanlinna theory

• Nevanlinna characteristic:

$$T(r, f) = m(r, f) + N(r, f)$$

• First Main Theorem:

$$T\left(r, \frac{1}{f-a}\right) = T(r, f) + O(1), \qquad r \to \infty,$$

• Lemma on the lemma on the logarithmic derivative:

$$m(r, f'/f) = S(r, f).$$

- Simple applications to differential equations
- Second Main Theorem:

$$(q-1)T(r,f) \le \bar{N}(r,f) + \sum_{j=1}^{q} \bar{N}\left(r, \frac{1}{f-a_j}\right) + S(r,f),$$

PART 1(b): Applications to differential equations

Clunie's Lemma

Let f be a transcendental solution of

$$f^N P(z, f) = Q(z, f),$$

where P and Q are differential polynomials in f with coefficients that are S(r, f). If the total degree of Q is no greater than N, then

$$m(r, P(z, f)) = S(r, f).$$

- In particular, if the coefficient functions are rational and f is transcendental meromorphic, then $m\left(r,P(z,f)\right)=S(r,f)$.
- The result we derived earlier about the first Painlevé equation, $f'' = 6f^2 + z$, now follows immediately.

Mohonko's Theorem

• (A. Mohon'ko and V. Mohon'ko)

Let f be a transcendental meromorphic solution of

$$P(z; f, f', \dots, f^{(n)}) = 0,$$
 (2)

where P is a nonzero polynomial in all of its arguments. If the constant $a \in \mathbb{C}$ does not solve equation (2), then

$$m\left(r, \frac{1}{f-a}\right) = S(r, f).$$

• Application to P_I .

Second-order equations

$$\bullet y'' = P(z, y).$$

$$\bullet y'' = 6y^2 + f(z).$$

$$\bullet y'' = 2y^3 + f(z)y + g(z).$$

Extending Painlevé analysis to find particular solutions

• Suppose that a solution of

$$\frac{d^2y}{dz^2} = 6y^2 + f(z)$$

has a pole at a point z_0 where f is analytic.

• The series expansion of the solution is necessarily of the form

$$y(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^{n-2}, \qquad a_0 = 1.$$

• Substituting and equating coeffs gives $a_1 = a_2 = a_3 = 0$ and the recurrence relation

$$(n+1)(n-6)a_n = 6\sum_{m=1}^{n-1} a_m a_{n-m} + \frac{1}{(n-4)!} f^{(n-4)}(z_0).$$

• There is a resonance at n = 6 which gives $f''(z_0) = 0$. If this is true for "enough" z_0 then

$$\frac{d^2y}{dz^2} = 6y^2 + Az + B,$$

where A and B are constants.

Using Nevanlinna theory to find particular solutions

• Nevanlinna theory has been used to find all solutions of Hayman's equation,

$$ww'' - w'^2 = \alpha(z)w + \beta(z)w' + \gamma(z)$$

that are

- 1. meromorphic, when α , β and γ are constants. (with Yik Man Chiang); and
- 2. admissible meromorphic, when α , β and γ are meromorphic. (with Jun Wang)
- Further generalisations (with Khadija Al-Amoudi).

Algebroid solutions

ullet A function f is called algebroid if it is algebraic over the meromorphic functions, i.e., it satisfies

$$a_0(z) + a_1(z)f(z) + \dots + a_{n-1}(z)f(z)^{n-1} + f(z)^n = 0,$$

for meromorphic functions a_0, \ldots, a_{n-1} .

- Malmquist actually showed that if F(z, y, y') = 0 has an algebroid solution, where F is rational, then the equation can be reduced to either a Riccati equation or the equation for the Weierstrass elliptic function.
- Thomas Kecker and I have shown that the only *admissible* degree 2 algebroid solutions of

$$y'' = c_0(z) + \cdots + c_4(z)y^4 + y^5$$

can be expressed in terms of either admissible solutions of Riccati equations or the fourth Painlevé equation (or its degenerations).

Differential equations

• The Painlevé property

An ODE is said to possess the Painlevé property if all solutions are single-valued about all movable singularities.

• The only equation with this property of the form

$$\frac{dy}{dz} = R(z; y),$$

where R is rational in y, is the Riccati equation

$$\frac{dy}{dz} = p(z)y^2 + q(z)y + r(z).$$

The general solution is given by

$$y(z) = -\frac{1}{p(z)} \frac{w'(z)}{w(z)},$$

where

$$p(z)\frac{d^2w}{dz^2} - \left[\frac{d\,p(z)}{dz} + p(z)q(z)\right]\frac{dw}{dz} + r(z)p^2(z)w = 0.$$

The Painlevé Property and Integrability

An ODE is said to possess the Painlevé property if all solutions are single-valued about all movable singularities.

- Kowalevskaya (classical top)
- Painlevé, Gambier, Fuchs (classification)

$$y'' = F(y, y'; z)$$

• There are six Painlevé eqns. The first two are

$$P_I \quad y'' = 6y^2 + z$$

$$P_{II} \quad y'' = 2y^3 + zy + \alpha.$$

• Ablowitz, Ramani and Segur conjecture:

All ODE reductions of equations solvable by the inverse scattering transform (IST) possess the Painlevé property (possibly after a transformation of variables).

PART 2: Detecting integrability in discrete systems

- Singularity confinement
- Measures of complexity in discrete systems
 - Growth of meromorphic solutions (Nevanlinna theory)
 - Diophantine integrability
 - Algebraic entropy

Discrete equations: Singularity confinement

Grammaticos, Ramani and Papageorgiou (1991);

Ramani, Grammaticos and Hietarinta (1991)

$$y_{n+1} + y_{n-1} = \frac{a_n + b_n y_n}{1 - y_n^2}$$

$$y_{n-1} = k + o(1),$$

$$y_n = \theta + \epsilon, \qquad \theta = \pm 1$$

$$y_{n+1} = -\frac{a_n + \theta b_n}{2\theta} \epsilon^{-1} + O(1),$$

$$y_{n+2} = -\theta + \frac{2\theta b_{n+1} - \theta b_n - a_n}{a_n + \theta b_n} \epsilon + O(\epsilon^2),$$

$$y_{n+3} = \frac{a_n + \theta b_n}{2\theta} \left\{ \frac{(a_{n+2} - a_n) - \theta(b_{n+2} - 2b_{n+1} + b_n)}{\theta(2b_{n+1} - b_n) - a_n} \right\} \epsilon^{-1} + O(1).$$

Confinement:

$$y_{n+1} + y_{n-1} = \frac{\alpha + \beta(-1)^n + (\gamma n + \delta)y_n}{1 - y_n^2}$$

Example of Hietarinta and Viallet

$$y_{n+1} + y_{n-1} = y_n + \frac{a}{y_n^2}$$

$$y_{n-1} = k + o(1),$$

 $y_n = \epsilon,$
 $y_{n+1} = \epsilon^{-2} - k + \epsilon + O(\epsilon^2),$
 $y_{n+2} = \epsilon^{-2} - k + \epsilon^4 + O(\epsilon^5),$
 $y_{n+3} = -\epsilon + 2\epsilon^4 + O(\epsilon^5),$
 $y_{n+4} = k + o(1).$

First-Order Difference Equations

• Consider the difference equation

$$y(z+1) = R(y(z)). \tag{3}$$

- If R is rational then equation (3) admits a non-constant meromorphic solution.
- If R is polynomial then equation (3) admits a non-constant entire solution.
- An immediate consequence of this theorem is that the Logistic map,

$$y(z+1) = \alpha y(z)(1 - y(z)),$$

has a non-constant entire solution, y(z) = w(z).

• The logistic map has a family of entire solutions:

$$y(z) = w(z - p(z))$$
, where p is periodic.

• Nevanlinna theory provides a concept of "nice" meromorphic functions: functions of finite order.

Nevanlinna Theory

- Nevanlinna characteristic T(r, f).
- \bullet For an entire function f,

$$T(r, f) \sim \log M(r, f), \quad M(r, f) = \max_{|z|=r} |f(z)|.$$

 \bullet More generally, for a meromorphic function f,

$$T(r, f) = m(r, f) + N(r, f),$$

where m(r, f) is a measure of how large f is on |z| = r and N(r, f) is a measure of how many poles f has in $D_r := \{z : |z| \le r\}$.

- \bullet The order of f is $\limsup_{r\to\infty} \frac{\log(T(r,f))}{\log r}$.
- Examples of finite-order meromorphic functions: e^z , $\cos z$, $\tan z$, $\wp(z)$.
- Infinite-order: $\exp(\exp z)$.

Difference equations of Painlevé type

- (Ablowitz, H, Herbst) An analogue of the Painlevé property for difference equations is the existence of sufficiently many finite-order meromorphic solutions.
- **Theorem** (Yanagihara) If the difference equation

$$y(z+1) = R(z, y(z)),$$

where

$$R(z,y) = \frac{a_0(z) + a_1(z)y + \dots + a_p(z)y^p}{b_0(z) + b_1(z)y + \dots + b_q(z)y^q},$$

admits a finite-order non-rational meromorphic solution, then $\max(p,q) \leq 1$.

• This gives the difference Riccati equation

$$y(z+1) = \frac{\alpha(z)y(z) + \beta(z)}{\gamma(z)y(z) + \delta(z)},$$

which is linearized by

$$y(z) = \frac{\alpha(z-1)}{\gamma(z-1)} \left[\frac{w(z) - w(z-1)}{w(z)} \right].$$

- Necessary conditions for higher order equations studied by
 - Yanagihara;
 - Ablowitz, H, and Herbst;
 - Heittokangas, Korhonen, Laine, Rieppo, Tohge;
 - Grammaticos, Tamizhmani, Ramani, Tamizhmani.
- ullet None of the above results give information about the z-dependence of the coefficient functions in the equations.

Theorem (H. and Korhonen, 2007)

If the equation
$$\overline{w} + \underline{w} = R(z, w),$$
 (†)

has an admissible meromorphic solution of finite order, then either w satisfies the discrete Riccati eqn $\overline{w} = (\overline{p}w + q)/(w + p)$, or (†) can be transformed by a linear change of variables to one of the following equations:

$$\overline{w} + w + \underline{w} = \frac{\pi_1 z + \pi_2}{w} + \kappa_1$$

$$\overline{w} - w + \underline{w} = \frac{\pi_1 z + \pi_2}{w} + (-1)^z \kappa_1$$

$$\overline{w} + \underline{w} = \frac{\pi_1 z + \pi_3}{w} + \pi_2$$

$$\overline{w} + \underline{w} = \frac{\pi_1 z + \kappa_1}{w} + \frac{\pi_2}{w^2}$$

$$\overline{w} + \underline{w} = \frac{(\pi_1 z + \kappa_1)w + \pi_2}{(-1)^{-z} - w^2}$$

$$\overline{w} + \underline{w} = \frac{(\pi_1 z + \kappa_1)w + \pi_2}{1 - w^2}$$

$$\overline{w}w + w\underline{w} = p$$

$$\overline{w} + w = pw + q$$

where p, q, π_k, κ_k are "small" functions and π_k and κ_k are periodic with period k.

Theorem (H. and Korhonen, 2006)

Let f be a finite-order meromorphic function and $c \in \mathbb{C}$. Then

$$m\left(r, \frac{f(z+c)}{f(z)}\right) = o(T(r, f)),$$

for all $r \geq 1$ and $\delta < 1$, outside of a possible exceptional set of finite logarithmic measure. A similar result was obtained by Chiang and Feng, 2007.

- This plays an important role in the classification of difference equations
- Corollaries include difference analogues for finite-order functions of the following
 - 1. Clunie's lemma and the Mohon'ko lemma
 - 2. Nevanlinna's second main theorem, Picard's theorem, defect relations and Nevanlinna's five values theorem
- \bullet There is a q-difference version of all of the above
- Holomorphic curves version
- Generalisation to other linear operators

Finite-order solutions and singularity (non-)confinement

Recall that n(r, y) is the number of poles of y in $\{z : |z| \le r\}$.

For any admissible meromorphic solution y of

$$y(z+1) + y(z-1) = \frac{a(z)y(z) + b(z)}{y^2(z)},$$

it can be shown that —

if $n(r, 1/y) \leq \alpha n(r+1, y)$, where $\alpha < 1$, then y has infinite-order.

- If y has a zero of order k at $z = z_0$, then it has a pole of order at least 2k at either $z_0 + 1$ or $z_0 1$.
- Let $Z(z_0) = (z_0 m, ..., z_0 1, z_0, z_0 + 1, ..., z_0 + n)$ be the longest sequence such that y has a zero of order k at each $z_0 + 2j$ and a pole of order at least 2k at each $z_0 + 2j + 1$. Let $R = \sharp \text{ poles}/\sharp \text{ zeros in } Z(z_0)$ (counting multiplicities).
- If $Z(z_0)$ has an even number of points then $R \geq 2$.
- If $Z(z_0)$ has an odd number l of points then there are at least (l-1)k/2 poles and at most (l+1)k/2 zeros. So $R \ge 2(l-1)/(l+1) \ge 4/3$ if $l \ge 5$.

Singularity confinement

$$y(z+1) + y(z-1) = \frac{a(z)y(z) + b(z)}{y^2(z)}$$

- Recall that if $n(r, 1/y) \le \alpha n(r+1, y)$, where $\alpha < 1$, then y has infinite-order.
- We have just seen that either the chain of zeros and poles

$$Z(z_0) = (z_0 - m, \dots, z_0 - 1, z_0, z_0 + 1, \dots, z_0 + n)$$

has exactly three points, or

$$R = \frac{\sharp \text{ poles in } Z(z_0) \text{ (counting multiplicities)}}{\sharp \text{ zeros in } Z(z_0) \text{ (counting multiplicities)}} \ge \frac{4}{3}.$$

- Nevanlinna theory shows that there are "a lot of" (infinitely many, in particular) poles of y.
- So if y is of finite order then there must be infinitely many points z_* such that y has zeros of some order k at $z_* + 1$ and $z_* 1$, a pole of order 2k at z_* and the points $z_* + 2$ and $z_* 2$ are either regular or poles of order less than 2k.
- This gives the first (of two) levels of confinement.

The example of Hietarinta and Viallet

• Hietarinta and Viallet showed that the equation

$$y_{n+1} + y_{n-1} = y_n + \frac{a}{y_n^2}.$$

appears to possess the singularity confinement property and yet it exhibits chaos.

$$k, \quad \epsilon, \quad a\epsilon^{-2} - k + \epsilon, \quad a\epsilon^{-2} - k + O(\epsilon^4), \quad -\epsilon + O(\epsilon^4), \quad k + O(\epsilon)$$

• Now suppose that y is a meromorphic solution of

$$y(z+1) + y(z-1) = y(z) + \frac{a}{y^2(z)},$$

satisfying y(0) = 0 and $y(-1) = k \neq 0, \infty$. Then for z near 0,

$$y(z-1) = k + O(z), \quad y(z) = O(z), \quad y(z+1) = ay^{-2}(z) - k + y(z)$$

 $y(z+2) = ay^{-2}(z) - k + O(y^{4}(z))$
 $y(z+3) = -y(z) + O(y^{4}(z))$
 $y(z+4) = y(z-1) + O(y(z))$

• So even if all of the singularities of are "confined", we have

$$n(r, 1/y) \le \frac{1}{2}n(r+1, y) \implies T(r, y) = T(r, 1/y) \le \frac{1}{2}T(r+1, y).$$

Differential-delay equations

- Several differential-delay equations have been obtained as similarity reductions of integrable equations.
- In 1992, Quispel, Capel and Sahadevan obtained the equation

$$w(z)[w(z+1) - w(z-1)] = aw(z) + bw'(z).$$

- Other reductions differential-delay equations have been obtained by Levi and Winternitz, and Joshi.
- How special is the value distribution of solutions of these equations?

Diophantine integrability

- Osgood noticed that there is a formal similarity between Nevanlinna theory and Diophantine approximation.
- Vojta devised a "dictionary" to translate defins and thms between these theories.
- Statements concerning the Nevanlinna characteristic of a meromorphic function correspond to statements about the heights of an infinite set of numbers.
- For $x = p/q \in \mathbb{Q}$, the height is $H(p/q) = \max(|p|, |q|)$.
- Next consider rational iterates of a discrete equation of the form

$$y_{n+1} + y_{n-1} = R(n, y_n). (A)$$

- Vojta's dictionary suggests the following definition. Equation (A) is *Diophantine integrable* if the logarithmic heights of the (rational) iterates y_n are bounded by a polynomial in n.
- This is very easy to check numerically.
- Heights have been used to numerically estimate the complexity of a map in Abarenkova, Anglès d'Auriac, Boukraa, Hassani and Maillard, 1999.

 $\operatorname{Log} \operatorname{plots} - \operatorname{log} \operatorname{log} H(y_n) \operatorname{vs} \operatorname{log} n$

$$y_{n+1} + y_{n-1} = \frac{a_n}{y_n} + b_n$$

 $qP_{VI} - \log \log H(y_n)$ vs $\log n$

$$\frac{f_n f_{n+1}}{cd} = \frac{g_{n+1} - \alpha q^{n+1}}{g_{n+1} - \gamma} \frac{g_{n+1} - \beta q^{n+1}}{g_{n+1} - \delta}, \qquad \frac{g_n g_{n+1}}{\gamma \delta} = \frac{f_n - a q^n}{f_n - c} \frac{f_n - b q^n}{f_n - d}.$$

$$(\alpha, \beta, \gamma, \delta, a, b, c, d) = \left(\frac{15}{7}, \frac{4}{3}, \frac{1}{2}, 1, \frac{8}{7}, \frac{5}{7}, 2, \frac{1}{7}\right)$$

Integrable case: $q = \frac{ab\gamma\delta}{\alpha\beta cd} = \frac{1}{2}$. Other case: q = 2.

$\log \log H(y_n)$ vs $\log n$

$$y_{m+1,n+1} = y_{m,n} + \frac{1}{y_{m,n+1}} - \frac{a}{y_{m+1,n}}$$

Integrable case: a = 1. Other case: a = 2.

Addition law on the cubic

$$y^2 = x^3 + ax + b$$

The elliptic curve is best considered in \mathbb{P}^2 .

Let x = X/Z and y = Y/Z, where $(X, Y, Z) \in \mathbb{P}^2$.

Then the elliptic curve C is $ZY^2 = X^3 + aXZ^2 + bZ^3$.

As well as points in \mathbb{R}^2 , it includes the "point at infinity" (0,1,0), which is usually taken to be the zero element in the group on \mathcal{C} .

Addition law on the cubic

$$y^2 = x^3 + ax + b$$

Let $\widehat{P} = (\widehat{x}, \widehat{y})$ and $P_n = (x_n, y_n), n \in \mathbb{Z}$ be points on \mathcal{C} such that

$$P_n = P_0 + n\widehat{P}.$$

$$x_{n+1} + x_{n-1} = \frac{2(\hat{x}x_n + a)(x_n + \hat{x}) + 4b}{(x_n - \hat{x})^2}.$$

Mordell's theorem

- **Theorem** If a non-singular planar cubic has a rational point, then the group of rational points is finitely generated.
- One of the main ideas in the proof of Mordell's theorem is to consider the height of rational points on the curve obtained by repeatedly "adding" a given rational point on the curve.
- Recall that the height of a rational number x = a/b is $H(x) = \max\{|a|, |b|\}$.
- The logarithmic height is $h(x) := \log H(x)$. The height of a rational point on a curve is defined to be the height of its x-coordinate.
- For an elliptic curve,

$$h(P_0 + n\widehat{P}) = O(n^2).$$

The symmetric QRT map

The symmetric Quispel-Roberts-Thompson map is

$$x_{n+1} = \frac{f_1(x_n) - x_{n-1}f_2(x_n)}{f_2(x_n) - x_{n-1}f_3(x_n)},$$

where

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = (\mathbf{A}_0 \mathbf{X}_n) \times (\mathbf{A}_1 \mathbf{X}_n), \quad \mathbf{X}_n = \begin{pmatrix} x_n^2 \\ x_n \\ 1 \end{pmatrix}, \quad \mathbf{A}_j = \begin{pmatrix} \alpha_j, \ \beta_j, \ \gamma_j \\ \beta_j \ \epsilon_j \ \zeta_j \\ \gamma_j \ \zeta_j \ \mu_j \end{pmatrix}, \quad j = 0, 1.$$

This system has the conserved quantity $K = \frac{\mathbf{X}^T \mathbf{A}_0 \mathbf{X}}{\mathbf{X}^T \mathbf{A}_1 \mathbf{X}}$.

This definition can be rewritten as

$$\alpha x_n^2 x_{n+1}^2 + \beta (x_n^2 x_{n+1} + x_n x_{n+1}^2) + \gamma (x_n^2 + x_{n+1}^2) + \epsilon x_n x_{n+1} + \zeta (x_n + x_{n+1}) + \mu = 0,$$
where $\alpha = \alpha_0 - K\alpha_1$, $\beta = \beta_0 - K\beta_1$, $\gamma = \gamma_0 - K\gamma_1$, etc.

It follows that

$$x_{n+1} + x_{n-1} = -\frac{\beta x_n^2 + \epsilon x_n + \zeta}{\alpha x_n^2 + \beta x_n + \gamma}$$
 and $x_{n+1} x_{n-1} = \frac{\gamma x_n^2 + \zeta x_n + \mu}{\alpha x_n^2 + \beta x_n + \gamma}$.

Height growth for the symmetric QRT

$$x_{n+1} + x_{n-1} = -\frac{\beta x_n^2 + \epsilon x_n + \zeta}{\alpha x_n^2 + \beta x_n + \gamma}$$
 and $x_{n+1} x_{n-1} = \frac{\gamma x_n^2 + \zeta x_n + \mu}{\alpha x_n^2 + \beta x_n + \gamma}$.

• In \mathbb{QP}^2 , $H(u_0, u_1, u_2) := \max_{j=0,1,2} \{|u_j|\}$, where $u_j \in \mathbb{Z}$ and $\gcd\{u_0, u_1, u_2\} = 1$.

$$H(1, x_{n+1} + x_{n-1}, x_{n-1}x_{n+1})$$

$$= H(\alpha x_n^2 + \beta x_n + \gamma, \beta x_n^2 + \epsilon x_n + \zeta, \gamma x_n^2 + \zeta x_n + \mu) \le cH(x_n)^2.$$

- A standard identity for heights is $2H(1, u + v, uv) \ge H(u)H(v)$.
- We therefore have $H(x_{n+1})H(x_{n-1}) \leq \frac{c}{2}H(x_n)^2$.
- We see that the logarithmic height, $h(x_n) := \log H(x_n)$, satisfies

$$h(x_{n+1}) - 2h(x_n) + h(x_{n-1}) \le \log(c/2).$$

- So $h(x) = O(n^2)$.
- This fact is used in the proof of Mordell's theorem.

Height growth and the discrete Painlevé equations

(Joint work with W. Morgan)

Define
$$h_r(y_n) := \sum_{n=r_0}^r h(y_n)$$
.

Let $(y_n) \subset \mathbb{Q} \setminus \{0\}$ be a solution of

$$y_{n+1} + y_{n-1} = \frac{\alpha_n + \beta_n y_n + \gamma_n y_n^2}{y_n^2},$$
 (†)

where $\alpha_n \not\equiv 0$, β_n and γ_n are in $\mathbb{Q}(n)$ and $\max\{h_r(\alpha_n), h_r(\beta_n), h_r(\gamma_n)\} = o(h_r(y_n))$. If

$$h(y_n) = O(n^{\sigma}),$$

for some σ , then

$$\alpha_n = a_0, \qquad \beta_n = b_0 + b_1 n, \qquad \text{and} \qquad \gamma_n = 0.$$

- If $b_1 = 0$ then equation (†) can be solved in terms of elliptic functions.
- If $b_1 \neq 0$ then equation (†) is the following discrete Painlevé equation,

$$y_{n+1} + y_{n-1} = \frac{A + ny_n}{y_n^2}.$$

Absolute values on \mathbb{Q}

An <u>absolute value</u> on a field k is a mapping $|\cdot|: k \to \mathbb{R}$ such that for all $x, y \in k$,

- 1. $|x| \ge 0$ with equality if and only if x = 0;
- 2. |xy| = |x||y|;
- $3. |x+y| \le |x| + |y|.$

The p-adic absolute value

Let p be a fixed prime. Any non-zero rational number x can be written as

$$x = p^r \frac{a}{b}$$
, where $p \not\mid ab$.

The p-adic absolute value of x is $|x|_p := p^{-r}$.

Theorem (Ostrovski)

Any non-trivial absolute value on \mathbb{Q} is equivalent to a p-adic absolute value, for some prime p, or to the usual absolute value (denoted by $|\cdot|_{\infty}$.)

The p-adic absolute value

If $x = p^r \frac{a}{b} \neq 0$, where $p \nmid ab$, then $|x|_p := p^{-r}$.

Note that

$$\left| \sum_{n=0}^{N-1} 2^n + 1 \right|_2 = |2^N|_2 = 2^{-N} \to 0.$$

So

$$1 + 2 + 2^2 + \dots + 2^n + \dots = -1,$$

with respect to the 2-adic absolute value.

Another important property of the p-adic absolute value is that it is <u>non-Archimedean</u>, i.e.,

$$|x+y|_p \le \max\{|x|_p, |y|_p\}, \quad \forall x, y \in \mathbb{Q}.$$

The usual absolute value, $|\cdot|_{\infty}$, is Archimedean.

The logarithmic height and absolute values on $\mathbb Q$

Again suppose that

$$x = \pm \frac{p_1^{r_1} \cdots p_m^{r_m}}{q_1^{s_1} \cdots q_n^{s_n}} = \frac{a}{b} \neq 0,$$

where $p_1, \ldots, p_m; q_1, \ldots, q_n$ are prime.

The logarithmic height of x is given by

$$h(x) = \log H(x) = \max\{\log |a|_{\infty}, \log |b|_{\infty}\}\$$

= $\log |b|_{\infty} + \max\{\log |a|_{\infty} - \log |b|_{\infty}, 0\} = \log |b|_{\infty} + \log^{+} |a/b|_{\infty},$

where $\log^+ \eta := \max\{\log \eta, 0\}.$

So

$$h(x) = \log q_1^{s_1} + \log q_2^{s_2} + \dots + \log q_n^{s_n} + \log^+ |x|_{\infty} = \sum_{p \le \infty} \log^+ |x|_p = h(1/x).$$

Singularity confinement using absolute values

(with Will Morgan)

For each absolute value $|\cdot|$ and for sufficiently small $\delta > 0$, we can define a "scale" given by ϵ_n , which depends on nearby values of α_j and β_j such that if (y_n) satisfies

$$y_{n+1} + y_{n-1} = \frac{\alpha_n + \beta_n y_n}{y_n^2}$$

and if for some particular k, $|y_k| < \epsilon_k$ and $|y_{k-1}| \le |y_k|^{-1/2}$, then

1.
$$y_{k+1} = \frac{\alpha_k}{y_k^2} + \frac{\beta_k}{y_k} + A_k$$
, where $|A_k| \le |y_k|^{-1/2}$.

2.
$$y_{k+2} = -y_k + \frac{\beta_{k+1}}{\alpha_k} y_k^2 + B_k$$
, where $|B_k| \le |y_k|^{3-4\delta}$

3.
$$y_{k+3} = \frac{\alpha_{k+2} - \alpha_k}{y_{k+2}^2} + \frac{\beta_{k+2} - 2\frac{\alpha_{k+2}}{\alpha_k}\beta_{k+1} + \beta_k}{y_{k+2}} + C_k$$
, where $|C_k| \le \max\left\{ \left| \frac{\alpha_{k+2} - \alpha_k}{\alpha_k} \right| |y_{k+2}|^{1-\delta}, |y_{k+2}|^{-1/2} \right\}$ for non-Archimedean absolute values and $|C_k| \le 2\left| \frac{\alpha_{k+2} - \alpha_k}{\alpha_k} \right| |y_{k+2}|^{1-\delta} + 3|y_k|^{-1/2}$ for Archimedean absolute values.

Lemma

Let $(x_n) \subset \mathbb{Q} \setminus \{0\}$ be a solution of

$$x_{n+1} + x_{n-1} = \frac{\alpha_n + \beta_n x_n + \gamma_n x_n^2}{x_n^2},$$

where $\alpha_n \gamma_n \neq 0$ for all $n \geq r_0$. Choose a prime $p \leq \infty$, $\delta \in (0, 1/2)$ and define $\epsilon_p > 0$ by

$$\epsilon_p^{-\delta} := C_p \max\{1, |\alpha_n|_p^{-1}, |\alpha_{n-1}|_p, |\alpha_{n+1}|_p, |\beta_n|_p, |\beta_{n-1}|_p, |\beta_{n+1}|_p, |\gamma_n|_p, |\gamma_{n-1}|_p^{-1}, |\gamma_{n+1}|_p^{-1}\},$$

where $C_p = 1$ if $p < \infty$ and $C_{\infty} = 3$. Then for any $n \in \mathbb{Z}$ such that $|x_n|_p < \epsilon_p$, either

$$|x_{n+1}|_p \ge |x_n|_p^{-(2-\delta)}$$
 and $|x_{n+2}|_p \ge \epsilon_p$ or $|x_{n-1}|_p \ge |x_n|_p^{-(2-\delta)}$ and $|x_{n-2}|_p \ge \epsilon_p$.

Associating large and small iterates

Exponential growth

Let $S_1(r) := \{ n \in \mathbb{Z} : r_0 \le n \le r \text{ and } |x_n| < \epsilon \} \text{ and } S_2(r) := [r_0, r] \setminus S_1(r).$

$$\sum_{n=r_0}^{r} \log^+ |x_n|_p^{-1} = \sum_{n \in S_1(r)} \log^+ |x_n|_p^{-1} + \sum_{n \in S_2(r)} \log^+ |x_n|_p^{-1}$$

Now

$$\sum_{n \in S_1(r)} \log^+ |x_n|_p^{-1} \le \sum_{n=r_0-1}^{r+1} \log^+ |x_n|_p^{\frac{1}{2-\delta}},$$

$$\sum_{n \in S_2(r)} \log^+ |x_n|_p^{-1} \le \sum_{n=r_0}^r \log \epsilon_p^{-1} \le \delta^{-1} \sum_{n=r_0}^r \log \left[C_p \max\{1, |\alpha_n|_p, |\alpha_{n-1}|_p^{-1}, |\alpha_{n+1}|_p^{-1}, \ldots\} \right]$$

$$\leq \delta^{-1} \sum_{n=r_0}^{r} \left[\log C_p + \log^+ |\alpha_n|_p + \log^+ |\alpha_{n-1}|_p^{-1} + \log^+ |\alpha_{n+1}|_p^{-1} + \cdots \right]$$

Define
$$h_r(x_n) = \sum_{n=r_0}^{r} h(x_n) = \sum_{p \le \infty} \sum_{n=r_0}^{r} \log^+ |x_n|_p$$
. Then

$$h_r(x_n) = h_r(1/x_n) \le \frac{1}{2-\delta} h_{r+1}(x_n) + \text{log heights of coefficients.}$$

Height growth and a discrete Painlevé equation

(Joint work with Asma Al-Ghassani)

Let $(y_n) \subset \mathbb{Q} \setminus \{-1,1\}$ be an admissible solution of

$$y_{n+1} + y_{n-1} = \frac{a_n + b_n y_n + c_n y_n^2}{1 - y_n^2},$$
(4)

where a_n , b_n and c_n are rational functions of n with coefficients in \mathbb{Q} and the right hand side of (4) is irreducible. Then either

- 1. $a_n = \alpha$, $b_n = \beta n + \gamma$, $c_n = 0$ for constants α, β, γ ; or
- 2. y_n is also an admissible solution of the difference Riccati equation

$$y_{n+1} = \frac{1/2(a_n + \theta b_n - 2\theta) + y_n}{1 - \theta y_n}$$
, where $\theta = -1$ or 1; or

3.

$$\lim_{r \to \infty} \sup \frac{\log \log \sum_{n=r_0}^r h(y_n)}{\log r} \ge 1.$$

Heights on number fields

- A number field k is a finite extension of the rational numbers, e.g. $\mathbb{Q}(\sqrt{2+5^{1/3}})$.
- A place on k is an equivalence class of absolute values.
- Let M_k be the set of places on k.
- There are $[k:\mathbb{Q}] < \infty$ Archimedian places on k.
- For any $x \in k \setminus \{0\}$, the Artin-Whaples product formula is

$$\prod_{v \in M_k} |x|_v = 1.$$

 \bullet The (absolute) logarithmic height of x is

$$h(x) = \frac{1}{[k:\mathbb{Q}]} \sum_{v \in M_k} \log^+ |x|_v$$

$$H(x_1 + x_2) \leq 2H(x_1)H(x_2);$$

$$H(x_1)H(x_2) \leq H(x_1)H(x_2);$$

$$H(x_1x_2 + x_2x_3 + x_3x_1) \leq 3H(x_1)H(x_2)H(x_3).$$

Taking log of the above expressions gives

$$h(x_1 + x_2) \le h(x_1) + h(x_2) + \log 2,$$

$$h(x_1 x_2) \le h(x_1) + h(x_2),$$

$$h(x_1 x_2 + x_2 x_3 + x_3 x_1) \le h(x_1) + h(x_2) + h(x_3) + \log 3.$$

Compare with expressions from Nevanlinna theory:

$$T(r, f + g) \le T(r, f) + T(r, g) + \log 2;$$

 $T(r, fg) \le T(r, f) + T(r, g);$
 $T(r, fg + gh + hf) \le T(r, f) + T(r, g) + T(r, h) + \log 3.$

Estimates involving rational functions

Let

$$R := \frac{a_0 + a_1 x + \dots + a_p x^p}{b_0 + b_1 x + \dots + b_q x^q},$$

be an irreducible rational function of x of degree

$$d = \max\{p, q\}.$$

Then

$$C_1 H(x)^d \le H(R) \le C_2 H(x)^d,$$

where C_1 and C_2 are polynomials in the heights of the coefficients a_i , b_j .

So the logarithmic height $h(\cdot) = \log H(\cdot)$ satisfies

$$|h(R) - dh(x)| \le \log C,$$

where C is a polynomial in $H(a_i)$ and $H(b_j)$.

Heights and discrete equations

• Consider the equation

$$y_{n+1} = \frac{a_0(n) + a_1(n)y_n + \dots + a_p(n)y_n^p}{b_0(n) + b_1(n)y_n + \dots + b_q(n)y_n^q},$$

where the a_i 's and b_j 's are polynomials in n.

• Taking the logarithmic height gives

$$h(y_{n+1}) = d h(y_n) + O(\log n).$$

- So if $H(y_n)$ grows faster than any polynomial in n then $h(y_n)$ grows exponentially unless $d \leq 1$.
- Similarly, if

$$y_{n+1} + y_{n-1} = R(n, y_n)$$
 or $y_{n+1}y_{n-1} = R(n, y_n)$

then $d := \deg_{y_n}(R(n, y_n)) \le 2$.

• Are there deeper connections between the (discrete) Painlevé equations and number theory (esp. arithmetic geometry)?

Algebraic entropy

- Integrability as low complexity: Arnold (1990), Veselov (1992)
- Algebraic entropy: Falqui and Viallet (1993), Bellon and Viallet (1999)

$$\lim_{n\to\infty}\frac{\log d_n}{n}$$

- Example with confinement and positive algebraic entropy: Hietarinta and Viallet (1998)
- Regularised map using blow-ups: Takenawa (2001)
- Upper bound by looking for cancellations: van der Kamp (2012)

Standard methods of calculating algebraic entropy: heuristic vs rigorous.

Degree of a rational function

There are two equivalent definitions of the degree of a rational function.

Let $R(z) = \frac{P(z)}{Q(z)}$, where P and Q are polynomials with no common factors. Then

- $1. \deg(R) = \max\{\deg(P(z)), \deg(Q(z))\}.$
- 2. Let a be any number in the extended complex plane $\mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$. Then the $\deg(R)$ is the number of pre-images of a in \mathbb{CP}^1 counting multiplicities.

For example, the degree of the rational function

$$\frac{2x^5 - 4x^4 + 2x^3 + x + 1}{x(x-1)^2} = \frac{x+1}{x(x-1)^2} + 2x^2$$

is 5.

Singularity confinement revisited

$$y_{n+1} + y_{n-1} = \frac{a_n + b_n y_n}{1 - y_n^2}$$

$$y_{n-1} = k + o(1),$$

$$y_n = \theta + \epsilon, \quad \theta = \pm 1, \quad \epsilon = (z - z_0)^p f(z), \quad f \text{ analytic at } z_0, \quad f(z_0) \neq 0$$

$$y_{n+1} = -\frac{a_n + \theta b_n}{2\theta} \epsilon^{-1} + O(1),$$

$$y_{n+2} = -\theta + \frac{2\theta b_{n+1} - \theta b_n - a_n}{a_n + \theta b_n} \epsilon + O(\epsilon^2),$$

$$y_{n+3} = \frac{a_n + \theta b_n}{2\theta} \left\{ \frac{(a_{n+2} - a_n) - \theta(b_{n+2} - 2b_{n+1} + b_n)}{\theta(2b_{n+1} - b_n) - a_n} \right\} \epsilon^{-1} + O(1).$$

Also, if $y_{n-1} \sim \alpha z$ and $y_n \sim \beta z$ as $z \to \infty$, then $y_{n+1} \sim -\alpha z$.

Exact formula for degrees

We have

$$d_{n+1} = 2N_n + 1$$
 and $d_n = N_n + \frac{1}{2}(d_{n-1} - 1)$.

Eliminating N_n gives

$$d_{n+1} - 2d_n + d_{n-1} = 2.$$

We also have the initial conditions $d_0 = d_1 = 1$. Hence

$$d_n = \frac{n(n-1)}{2} + 1.$$

Example of Hietarinta and Viallet revisited

$$y_{n+1} + y_{n-1} = y_n + \frac{a}{y_n^2}$$

$$y_{n-1} = k + o(1),$$

 $y_n = \epsilon,$
 $y_{n+1} = \epsilon^{-2} - k + \epsilon + O(\epsilon^2),$
 $y_{n+2} = \epsilon^{-2} - k + \epsilon^4 + O(\epsilon^5),$
 $y_{n+3} = -\epsilon + 2\epsilon^4 + O(\epsilon^5),$
 $y_{n+4} = k + o(1).$

We will choose $y_0 \sim \alpha z + \beta$ and $y_1 \sim \gamma z + \delta$ as $z \to \infty$, where $\alpha \gamma (\alpha - \gamma) \neq 0$. Then y_n has a simple pole at $z = \infty$ for all n.

Takenawa's sequence of blow-ups for the Hietarinta-Viallet equation

He provided a rigorous proof that the algebraic entropy is

$$\frac{3+\sqrt{5}}{2}.$$

This value had been calculated using more heuristic methods by Hietarinta and Viallet.

Substituting

$$N_n + N_{n-1} = (d_{n+1} - 1)/2$$
 and $N_{n+2} + N_{n-1} = d_{n+2}$

in

$$(N_n + N_{n-1}) - (N_n + N_{n-3}) + (N_{n-2} + N_{n-3}) - (N_{n-1} + N_{n-2}) = 0$$

gives

$$d_{n+1} - 3d_n + d_{n-1} = 1.$$

Together with the initial conditions $d_0 = d_1 = 1$, this gives

$$d_n = \frac{\sqrt{5} - 1}{\sqrt{5}} \left(\frac{3 + \sqrt{5}}{2} \right)^n + \frac{\sqrt{5} + 1}{\sqrt{5}} \left(\frac{3 - \sqrt{5}}{2} \right)^n - 1.$$

It follows that the algebraic entropy is

$$\frac{3+\sqrt{5}}{2}.$$

Summary