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PART 1: Introduction to Nevanlinna theory

(a) General theory
e Polynomial: P(z) = ag+ a1z + -+ + agz®.

If ag # 0, then the degree of P is deg(P) = d.

e Rational functions:

where P and () are polynomials.

If P and ) have no common factors, then the degree of R is

deg(R) = max{deg(P), deg(P)}.



Entire and meromorphic functions

e A complex function f is called entire if it is differentiable at all z € C.

This is equivalent to saying that there is a power series > a,2", with infinite

)

radius of convergence, such that

f(z) = Z a,z",

n=0

for all z € C.
e Fixamples of entire functions: constant functions, polynomials, e*, sin 2, cos z.

e A function is said to be meromorphic (on C) if it is analytic everywhere except at

poles.

e Fquivalently, a function is meromorphic if and only if it can be written as g(z)/h(z),

where g and h are entire.
e Fxamples of meromorphic functions: entire fns, rational fns, tan z, p(z).

e Fixamples of non-meromorphic functions:



Jensen’s formula

e Suppose f is analytic and nowhere vanishing in the disc D = {z:|z] < r}.
e Then log f(z) is analytic in D.

e Cauchy’s integral formula for log f gives

log f(0) = L/| 1ng<z>dz.

271 z

e On taking the real part we have

1 2T '
log | f(0)] = %/0 log ‘f(rew)| de.



Jensen’s formula

e Now let f be any meromorphic function.

e For simplicity we assume that f(0) # 0 or oo.

e Then f has finitely many zeros aq,...,a, and poles by,...,b, in D.
e Then the function
H B(aj, z)
9(2) = f(z),
H B(bk, Z)
where ,
re—az
B —_

has no zeros or poles in D.

1 2T '
e From log|g(0)| = %/ log ’g(rew)‘ df, we obtain Jensen’s formula:
0

1 21
1og|f(0)|:%/0 log‘ffre ’d@—kZlogwk’ Zlog|a|.



A symmetric form of Jensen’s formula

e For any x > 0, define log" z := max(log z, 0).
e Then logz = log™ 2 — log* (2™ 1).
e Jensen’s formula can now be written as

1 o + 0 r
%/O log ‘f(re )’ d@%—Zlogm

2T
1 -

log

a9+ " log — +log | £(0).

[

1
o 0 f(rew)
1

2m
e Define the proximity function to be m(r, f) = 2—/ log™ | f(re”)| df.
™ Jo

"n(l, f)
0 t
where n(r, f) is the number of poles of f (counting multiplicities) in |z| < r.

e The enumerative function is N(r, f):= / dt,



The Nevanlinna characteristic

1 2m '
e The proximity function is m(r, ) = 2—/ log™ | f(re')| do,
T Jo

where log™ z := max(log x, 0).

it f)
t

0
where n(r, f) is the number of poles of f (counting multiplicities) in |z| < r.

e The enumerative function is N(r, f):= /

e The Nevanlinna characteristic function T'(r, f) = m(r, f) + N(r, f)

measures “the affinity” of f for infinity.

e Similarly, T° (T’fia> = m (rvfia) +N (T’fia)

measures ‘the affinity” of f for the value a.

e Jensen’s formula becomes

T(r, f) =T(r,1/f) +log|f(0)].



Elementary properties of log™

q q
log™ Ha- Z log™ aj,

q q
+ | + +
log g 1 a; | <log (q gyzgcq aj> < g 1 log" a; + logg,
j= j=

loga =log™ a —log™(1/a),
[loga | =1log"a+log"(1/a),
log™ a < log™ b, Va < D.



Elementary properties of the Nevanlinna functions



Nevanlinna’s First Main Theorem

(Nevanlinna’s First Main Theorem)

For any merormorphic function f and any a € C, we have

T(r, : ):T(r,f)JrO(l), "o oo,

f—a
where f # a.
Proof:
T(r,f—a) <T(r,f)+T(r,a)+log2.
Similarly
T(r,f) <T(r,f —a)+T(r,a)+log2.
Hence

T(r. f —a)— T(r, f)] < T(r.a) +log2 = log* |a| + log 2.
So
‘T(r,f) T (’r,fiaﬂ < T(r f) = T(r f—a)| + |T(r. f —a) - T (7“,
< log™ |a| +log2 +log™ | f(a)l.




Summary of the story so far

1 2T '
e The proximity function is m(r, f) = 2—/ log™ | f(re™)| b,
™ Jo
where log™ z := max(log x, 0).
"n(t
e The enumerative functionis N(r, f):= il t’ f)dt,

0
where n(r, f) is the number of poles of f (counting multiplicities) in |z| < r.

e The Nevanlinna characteristic function T'(r, f) = m(r, f) + N(r, f)

measures “the affinity” of f for infinity.

e Nevanlinna’s First Main Theorem
For a € C,

T (’r,fia> T )40, 1 — oo

e The function exp(z) is never 0 or co but it stays near these values on large parts of

the circle |z| = r for r >> 1.



The order of an meromorphic function

e For any meromorphic function f, T'(r, f) is continuous and nondecreasing.

e The order of a meromorphic function f is

o(f) = limsup log T'(r, /)

Y,
o0 logr

e For an entire function, T'(r, f) behaves like
log M (r, f) where M (r, f) = max |f(z)|.

|z|=r
e Theorem

Let f be a non-constant entire function. Let r > 0 be sufficiently large that
M(r, f) == max,—, | f(z)| = 1. Then for all finite R > r we have

R+r
—r

T(r,f) <logM(r, f) < T(R, [).



Functions with a finite number of poles

e A meromorphic function has a finite number of poles if and only if
N(r. f) = O(logr).
e A meromorphic function f is rational if and only if T'(r, f) = O(logr).

e For any transcendental function f, we have logr = o(T'(r, f).



The Lemmma on the Logarithmic Derivative

We use S(r, f) to denote any function of r that is o(T'(r, f)) outside some set of finite

linear measure.

Lemma on the Logarithmic Derivative

Let f be a nonconstant meromorphic function. Then

m(r, ') f) = S(r, ).

Furthermore, if f has finite order then

m(r, '/ f) = O(logr).

There are many methods available to deal with the exceptional sets that arise in

Nevanlinna theory:.

One simple corollary of the lemma is that T'(r, f) < 27(r, f).



Application to the first Painlevé equation

Let y be a transcendental meromorphic solution of the first Painlevé equation,

Py =64+ z

2
y? =61 (yy— — z) :
y

An obvious property of the proximity function m is m(r, y*) = 2m(r,y). Hence

y// y//
2m(r,y) = m(r,y*) = m (7“, 6 (y— — z)) <m(r,67) +m (7“, y— — z)
Y

Y

/!
<m (r, yy—> + m(r, z) + log 2
Yy
14

< m(r,y) +m (r, %) + O(logr)

=m(r,y) + S(r,y) + O(logr).

Then

SO
m(r,y) = S(r,y) + O(logr).



Application to the first Painlevé equation

e Let y be a transcendental meromorphic solution of the first Painlevé equation,
P: ' =62+ 2z

e Then m(r,y) = S(r,y) + O(logr).

e Suppose that y has only finitely many poles. Then N(r,y) = O(logr).

e Therefore
T(r,y) =m(r,y) + N(r,y) = S(r,y) + O(logr).

e Recall that if y is transcendental then logr = o(T(r,y)).
e Therefore our solution y satisfies T'(r,y) = S(r,y), which means that T'(r,y) =

o(T(r,y)) as 1 — oo outside of some possible exceptional set E of finite linear

measure, which is clearly a contradiction.



A useful identity

(Valiron-Mohon’ko))
Let

() a2+ a2 2)
Rz f(2)) = bo(2) + b1(2) f(2) + - + by(2) f4(2)

be a rational function of f of degree d = max(p, ¢) with coefficients a; and b; satisfying
T(r,a) = S(r, f) and T(r,by) = S(r, f).

Then
T(r,R(z, f(2))) =dT(r, f)+ S(r, f).



Malmquist’s theorem

(Malmquist’s theorem)

Let f be a meromorphic solution of the equation

by ap(z) Far(2)f(2) + - ap(2) fP(2)
fz) = Rz J(2)) = bo(2) + b1(2) f(2) + - - + by(2) fi(z)

where the coefficients a; and b; satisty

T(r,a;) = S(r, f) and T'(r,b;) = S(r, f),

and the degree of R as a function of f is d = max(p,q). Then equation (1) is the

Riccati equation
f'(2) = ao(2) + a1(2) f(2) + as(2) f*(2).

Proof: (Yosida)
Using the Valiron-Mohon’ko theorem and the fact that (T'(r, f') < 2T'(r, f), we have

dT(r, f)+ S(r, f) =T(r,R(z, f(2))) = T(r, [') < 2T(r, ) + S(r, f).

Hence d < 2.



Proof of Malmquist’s theorem

e We have shown that if f/ = P(z, f)/Q(z, f), where P and @ are relatively prime in
fithen P(z, f) = ap(z) + ai(2) f + aa(2) fZ and Q(z, f) = bo(2) + bi(2) f + ba(2) f*.
e [t remains to show that () is independent of f.

e Without loss of generality we assume that ag(z) # 0.
e Now the function g := 1/f satisfies the equation

~

2, 2
—~ P

g/ _ _g (a()g T ayg -+ CL2> _ R(z,g) _ N(ng>7

bog® + brg + b Q(z,9)

where P(z, g) = —g*(aog* + a1g+az) = —g*P(z,1/g) and Q(z, g) = ¢*Q(z,1/g).
e From the First Main Theorem we have T'(r, g) = T'(r, f) + O(1). Hence T'(r, a;) =
S(r,g) and T(r,;) = S(r,g)

e So R has degree at most 2. Therefore two of the roots (counting multiplicites) of the
quartic polynomial P = —g¢*P(z,1/¢) must be shared by Q(z, ¢) = 22Q(z,1/g).

e Recall that P and @ are relatively prime and 0 is not a root of P (since ag #Z 0).
So g2 must divide Q(z,1/g). Hence by = by = 0. ]



Nevanlinna’s second main theorem

e Nevanlinna’s second main theorem
Let f be a nonconstant meromorphic function. For ¢ > 2, let a4,...,a, € C be ¢

distinct points. Then

(q—1DT(r, f) < +ZN<7“

where Nram(r, f) =2N(r, f) — N(r, f') + N(r, 1/ f).

e Using the ramification term, we have the following immediate corollary:

(q—1)T(r, f) < +ZN<7°

where N(r, f) counts poles ignoring multiplicities.

)+ 505),

e Corollary: Picard’s theorem
Let f be a meromorphic function missing three distinct values in C U {oo}. Then
f is a constant.
Let f be a meromorphic function which takes each of three distinct values in CU{oo}

at most finitely many times. Then f is rational.



Other corollaries/analogues

e Defect relations

e Totally ramified values

e Shared values

e New direction: Yamanoi

e Replacing f' by more general linear operators

e Vojta's dictionary



Summary of part 1(a): General Nevanlinna theory

e Nevanlinna characteristic:
T(r, f)=m(r, f) + N(r, f)
e First Main Theorem:

T(r, : ):T(r,f)+0(1), r o oo,

f—a
e Lemma on the lemma on the logarithmic derivative:

m(r, ') f) = S(r, f).

e Simple applications to differential equations

e Sccond Main Theorem:




PART 1(b): Applications to differential equations



Clunie’s Lemma

Let f be a transcendental solution of

FYP(z, ) = Q2 f),
where P and @) are differential polynomials in f with coefficients that are S(r, f). If
the total degree of () is no greater than N, then
m (r, Pz, f)) = 5(r, f).
e In particular, if the coeflicient functions are rational and f is transcendental mero-
morphic, then m (r, P(z, f)) = S(r, f).

e The result we derived earlier about the first Painlevé equation, f” = 62 + z, now

follows immediately:.



Mohonko’s Theorem

e (A. Mohon’ko and V. Mohon’ko)

Let f be a transcendental meromorphic solution of

Pz f, f..., f") =0, (2)

where P is a nonzero polynomial in all of its arguments. If the constant a € C does

not solve equation (2), then

e Application to F.



Second-order equations
oy’ =P(z,y).
oy =6y’ + f(2).
oy =2y°+ f(2)y +g(2).



Extending Painlevé analysis to find particular solutions

e Suppose that a solution of

dQQ 2
12 6y” + f(2)

has a pole at a point zy where f is analytic.

e The series expansion of the solution is necessarily of the form

oo

y(2) = Z an(z — 29)"2, ag = 1.

n=0

e Substituting and equating coeffs gives a; = a9 = a3 = 0 and the recurrence relation

(n+1)(n—6)a —6Zaman m + 14> Fln= )(zo)

e There is a resonance at n = 6 which gives f”(zy) = 0. If this is true for “enough”

Zo then ,
d-y
dz?

where A and B are constants.

— 6y> + Az + B,



Using Nevanlinna theory to find particular solutions

e Nevanlinna theory has been used to find all solutions of Hayman’s equation,

‘= a(2)w + B(2)w + v(2)

ww// L w/
that are

1. meromorphic, when «, 3 and ~ are constants. (with Yik Man Chiang); and

2. admissible meromorphic, when «, § and 7 are meromorphic. (with Jun Wang)

e Further generalisations (with Khadija Al-Amoudi).



Algebroid solutions

e A function f is called algebroid if it is algebraic over the meromorphic functions,

i.e., it satisfies

ap(2) +ai(2) f(2) + -+ ana(2) f(2)" + f(2)" =0,
for meromorphic functions ag, ..., a,_1.

e Malmquist actually showed that if F'(z,y,y’) = 0 has an algebroid solution, where
F' is rational, then the equation can be reduced to either a Riccati equation or the

equation for the Weierstrass elliptic function.

e Thomas Kecker and I have shown that the only admissible degree 2 algebroid
solutions of
Y =co(2) + - A a2yt + 9
can be expressed in terms of either admissible solutions of Riccati equations or the

fourth Painlevé equation (or its degenerations).



Differential equations

e The Painlevé property
An ODE is said to possess the Painlevé property if all solutions are single-

valued about all movable singularities.

e The only equation with this property of the form

dy
7 — R(z:
dz (ij>7

where R is rational in v, is the Riccati equation
dy
o=
The general solution is given by

p(2)y” + q(2)y +7(2).

where




The Painlevé Property and Integrability
An ODE is said to possess the Painlevé property if all solutions are single-valued

about all movable singularities.

e Kowalevskaya (classical top)

e Painlevé, Gambier, Fuchs (classification)

y' = F(y,y'; 2)

e There are six Painlevé eqns. The first two are

Py =6yt + 2
P]] y” = 2y3—|—zy—|—oz.

e Ablowitz, Ramani and Segur conjecture:

All ODE reductions of equations solvable by the inverse scattering transform

(IST) possess the Painlevé property (possibly after a transformation of vari-
ables).



PART 2: Detecting integrability in discrete systems

e Singularity confinement
e Measures of complexity in discrete systems

— Growth of meromorphic solutions (Nevanlinna theory)
— Diophantine integrability
— Algebraic entropy



Discrete equations: Singularity confinement
Grammaticos, Ramani and Papageorgiou (1991);

Ramani, Grammaticos and Hietarinta (1991)

an + bnyn
Yn+1 T Yn—1 = —
Yn1 =k + o(1),
Yyn = 0 + €, 6 ==1
Ypil = —%jbnel + O(1),
Ui = 0+ 20by,41 — 0b, — an 0(&2),

a, + 6b,,
A + an (an—i-Q - an) - e(bn—i—Z - 2bn—l—1 + bn> -1

Confinement:

Yn+1 + Yn—1 — 5



Example of Hietarinta and Viallet

a
Ynt1l + Yn—1 = Yp T 5

n

Yn—1 = k + O(l),

Yn = €,



First-Order Difference Equations

e Consider the difference equation
y(z +1) = R(y(2)). (3)
e If R is rational then equation (3) admits a non-constant meromorphic solution.
e If R is polynomial then equation (3) admits a non-constant entire solution.
e An immediate consequence of this theorem is that the Logistic map,
y(z +1) = ay(z)(1 — y(2)),

has a non-constant entire solution, y(z) = w(z).

e The logistic map has a family of entire solutions:
y(z) = w(z — p(z)), where p is periodic.

e Nevanlinna theory provides a concept of “nice” meromorphic functions: functions
of finite order.



Nevanlinna Theory

e Nevanlinna characteristic T'(r, f).

e For an entire function f,

T(r, f) ~log M(r, f), M(r, f) = max|f(z)].

|2|=r

e More generally, for a meromorphic function f,

T(r, f) = m(r, f) + N(r, f),

where m(r, f) is a measure of how large f is on |z| = r and N(r, f) is a measure
of how many poles f hasin D, :={z:|z] <r}.

log(T'
e The order of f is limsup Og(l (r, /) .
r—00 ogr

e Fixamples of finite-order meromorphic functions:

e*, cos z, tan z, p(2).

e Infinite-order:

exp(exp z).



Difference equations of Painlevé type

e (Ablowitz, H, Herbst) An analogue of the Painlevé property for difference equations

is the existence of sufficiently many finite-order meromorphic solutions.

e Theorem (Yanagihara) If the difference equation

y(z +1) = R(z,y(2)),

where
_ap(z) +ai(2)y + -+ ap(2)y”
R(z,y) = bo(2) + b1(2)y + -+ + by(2)ye’

admits a finite-order non-rational meromorphic solution, then max(p, ¢) < 1.

e This gives the difference Riccati equation

y(z +1) =

which is linearized by




e Necessary conditions for higher order equations studied by
— Yanagihara;
— Ablowitz, H, and Herbst;
— Heittokangas, Korhonen, Laine, Rieppo, Tohge:
— Grammaticos, Tamizhmani, Ramani, Tamizhmani.

e None of the above results give information about the z-dependence of the coeflicient

functions in the equations.



Theorem (H. and Korhonen, 2007)

If the equation W+ w= R(z,w), (1)

has an admissible meromorphic solution of finite order, then either w satisfies the
discrete Riccati eqn w = (pw + q)/(w + p), or (f) can be transformed by a linear

change of variables to one of the following equations:

_ T2 + 79
W+ W+ w = + R
w
T2+ 7
T—w4w=——"4(—1)k
w
L 7T12—|—7T3
w+w = + 79
w
Tz + K I
phw=TET T
w w
T2+ RKi)w+ 7
@+w:<1 ﬂ 2
(1) —w?
T2+ Ki)w + 7
@+w:<1 D 2
1 — w?

WW + ww =p

w+w=pw-+q

where p, q, 7, ki are “small” functions and 7, and kj are periodic with period &.



Theorem (H. and Korhonen, 2006)

Let f be a finite-order meromorphic function and ¢ € C. Then

. ( %) — o(T(r, f),

for all > 1 and 0 < 1, outside of a possible exceptional set of finite logarithmic

measure. A similar result was obtained by Chiang and Feng, 2007.

e This plays an important role in theclassification of difference equations

e Corollaries include difference analogues for finite-order functions of the following
1. Clunie’s lemma and the Mohon’ko lemma
2. Nevanlinna’s second main theorem, Picard’s theorem, defect relations and

Nevanlinna’s five values theorem
e There is a g-difference version of all of the above
e Holomorphic curves version

e (Generalisation to other linear operators



Finite-order solutions and singularity (non-)confinement

Recall that n(r,y) is the number of poles of y in {2z : |z| < r}.

For any admissible meromorphic solution ¥y of

yz+1)+ylz—1)=
it can be shown that —

if n(r,1/y) < an(r +1,y), where @ < 1, then y has infinite-order.

e [f y has a zero of order £ at z = 2z, then it has a pole of order at least 2k at either

2o+ 1orzg— 1.

o Let Z(zg) = (zo—m,...,20—1,20,20+1,...,20+n) be the longest sequence such

that y has a zero of order k at each zy + 27 and a pole of order at least 2k at each

20+ 27 + 1. Let R = { poles/t zeros in Z(zy) (counting multiplicities).

o [f Z(zy) has an even number of points then R > 2.

o If Z(z) has an odd number [ of points then there are at least (I — 1)k /2 poles and

at most (I + 1)k/2 zeros. So R>2(l—1)/(I+1) > 4/3ifl > 5.



Singularity confinement

yz+ 1) +ylz—1) =

e Recall that if n(r,1/y) < an(r + 1,y), where a < 1, then y has infinite-order.
e We have just seen that either the chain of zeros and poles
Z(z0)=(20—my....20— 1, 20,20+ 1,..., 20+ n)

has exactly three points, or

P f poles in Z(zy) (counting multiplicities) S 4

~ f zeros in Z(z) (counting multiplicities) ~ 3

e Nevanlinna theory shows that there are “a lot of” (infinitely many, in particular)

poles of y.

e So if y is of finite order then there must be infinitely many points z, such that y
has zeros of some order £ at z, + 1 and z, — 1, a pole of order 2k at z, and the

points z, + 2 and z, — 2 are either regular or poles of order less than 2k.

e This gives the first (of two) levels of confinement.



The example of Hietarinta and Viallet

e Hietarinta and Viallet showed that the equation

a
Yn+1 + Yn—1 = Yn + R

n

appears to possess the singularity confinement property and yet it exhibits chaos.
k, € ae’i—k+e aci—k+O0("), —e+0(), k+O0(e)

e Now suppose that y is a meromorphic solution of
a

y*(2)
satisfying y(0) = 0 and y(—1) = k # 0, 00. Then for z near 0,

(z=1) = k+0(2), yl2)=0(2), ylz+1)=ay *(2) —k+y()
y(z+2) = ay(2) —k+O(y'(2))
(2 +3)
(z+4)

ylz+ 1) +ylz =1 =ylz) +

= —y(2) + O(y'(2))

e So even if all of the singularities of are “confined”, we have

n(r,1/y) < %n(r +1Ly) = Ty =T 1/y) < %T(r + 1, 1).



Differential-delay equations
e Several differential-delay equations have been obtained as similarity reductions of
integrable equations.
e In 1992, Quispel, Capel and Sahadevan obtained the equation
w(2)w(z +1) —w(z —1)] = aw(z) + bw'(2).
e Other reductions differential-delay equations have been obtained by Levi and Win-
ternitz, and Joshi.

e How special is the value distribution of solutions of these equations?



Diophantine integrability
e Osgood noticed that there is a formal similarity between Nevanlinna theory and
Diophantine approximation.
e Vojta devised a “dictionary” to translate defns and thms between these theories.

e Statements concerning the Nevanlinna characteristic of a meromorphic function

correspond to statements about the heights of an infinite set of numbers.
e For v = p/q € Q, the height is H(p/q) = max(|p|, |q|).

e Next consider rational iterates of a discrete equation of the form
Yn+1l + Yn—1 = R(n7 yn> (A)

e Vojta’s dictionary suggests the following definition.
Equation (A) is Diophantine integrable if the logarithmic heights of the (rational)

iterates v, are bounded by a polynomial in n.
e This is very easy to check numerically.

e Heights have been used to numerically estimate the complexity of a map in Abarenkova,
Angles d’Auriac, Boukraa, Hassani and Maillard, 1999.



Log plots — loglog H(yy,) vs logn

a
Yn+l T Yn—1 = — + bn

Yn

1
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qPyr — loglog H(yn) vs logn
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loglog H(yn) vs logn

1 a
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Integrable case: a = 1. Other case: a = 2.



Addition law on the cubic

y' =2’ +ax + b

e il

R

A

3

The elliptic curve is best considered in P?.
Let v = X/Z and y = Y/Z, where (XY, 7Z) € P~
Then the elliptic curve C is ZY? = X? +aX 7 + bZ°.
As well as points in R?, it includes the “point at infinity” (0, 1,0),

which is usually taken to be the zero element in the group on C.



Addition law on the cubic

y' =2’ +ax + b

Az
e il
5 R

3

Let P = (z,9) and P, = (xy, Yn), n € Z be points on C such that

P,=F),+ nﬁ
20zx, + a)(x, + )+ 4b
(&0 = 2)% |

Ln+1 + Tp—1 =



Mordell’s theorem

e Theorem If a non-singular planar cubic has a rational point, then the group of

rational points is finitely generated.

e One of the main ideas in the proot of Mordell’s theorem is to consider the height of
rational points on the curve obtained by repeatedly “adding” a given rational point

on the curve.
e Recall that the height of a rational number x = a/b is H(x) = max{|al, |b|}.

e The logarithmic height is h(x) := log H(x). The height of a rational point on a

curve is defined to be the height of its x-coordinate.

e For an elliptic curve,
h(Py +nP) = 0(n?).



The symmetric QRT map

The symmetric Quispel-Roberts-Thompson map is

. fl(xn) — xn—1f2<xn>

et = fozn) — 2p1 f3(zn)

where
J1 x% o, By,
fo] = (AoX,) x (AX,), Xp=lax, |, Aj=1|05 ¢ ¢ |, =01
J3 1 Vi G K
XTAX
This system has the conserved quantity K = ﬁ.

This definition can be rewritten as

aroxs  + B(xewn 1 + 2wt ) + (@ + 22, ) + exntnyn + (T + 1) + =0,

where a = ag — Koy, = 0y — Kf1, v =0 — K, ete.

[t follows that

vzt + Cxy + p
ax? + fr, +7

ﬁx% +ex, +C
ar? + B, + 7

Ln+1 + Tp_1 = — and Ln4+1Lpn—1 =



Height growth for the symmetric QRT

Bz + ex, + ¢
ar? + B, + 7

Vot + (o + p
ax? + Br, +v

Tpi1+Tpo1 = — and X, 1T, 1 =

o In QP?, H(ug, w1, us) == max;—o 121 |u;|}, where u; € Z and ged{u0, uy, us} = 1.

H(L Tp+1 T Tn-1, xn—lxn+1>

= H(ax? + Bx, + 7, B2 + ex, + Cva? + Cay + 1) < cH(x,)%
e A standard identity for heights is 2H (1, u + v, uv) > H(u)H (v).
e We therefore have H(2y11)H (x,-1) < $H ().
e We see that the logarithmic height, h(x,) = log H(x,), satisfies
Btnin) — 2z, + b, 1) < log(c/2).
e So h(z) = O(n?).
e This fact is used in the proof of Mordell’s theorem.



Height growth and the discrete Painlevé equations

Define h,(y,) = Z h(1y,).

n=rg

Let (y,) € @\ {0} be a solution of

=+ Bpyn + Yol
Yn+1 T Yn—1 = 2 ; (T)
where «,, Z 0, 6, and 7, are in Q(n) and max{h,(c,), h-(5,), h (7))} = o(h.(y,)).

[f
h<yn> - O(TLU),

for some o, then

o, = ag, B, = by + bin, and Y = 0.

e If by = 0 then equation () can be solved in terms of elliptic functions.

e If by # 0 then equation (1) is the following discrete Painlevé equation,

A+ ny,
Yn+1 + Yn—1 = 9 .

n




Absolute values on

An absolute value on a field k is a mapping | - | : & — R such that for all z,y € £,

1. |z| > 0 with equality if and only if 2 = 0;

2. |lzy| = |z[|y|;
3. |z +y| < |z + |yl

The p-adic absolute value

Let p be a fixed prime. Any non-zero rational number x can be written as

ra

T=p, where p [ ab.

The p-adic absolute value of x is |x|, == p™".

Theorem (Ostrovski)
Any non-trivial absolute value on Q is equivalent to a p-adic absolute value, for some

prime p, or to the usual absolute value (denoted by | - |.)



The p-adic absolute value

If v =p"3 #0, where p / ab, then |z|, == p~".

Note that
N—-1
Y o2t =RV =2 =0
n=0 2
SO
1424224 42" 4= —1,

with respect to the 2-adic absolute value.

Another important property of the p-adic absolute value is that it is non-Archimedean,

l.c.

)

[z 4yl < max{|zlp, [ylp;, Vo, € Q.

The usual absolute value, | - |, is Archimedean.



The logarithmic height and absolute values on Q

Again suppose that
r ==

qilqzn b !
Where Pis---sPm-4q1, ...,y arec prime.

The logarithmic height of z is given by
h(z) = log H(z) = max{log |a|s, log ||~ }
= 1og|b|se + max{log |a|s — 10g |blae, 0} = log |b|se + log™ |a/bs,
where log" 1 := max{logn, 0}.
S0

hiz) = logq;' +logqy? + -+ +log ¢ + log™ |x]s = Z log™ |x|, = h(1/x).

P00



Singularity confinement using absolute values

For each absolute value | - | and for sufficiently small 6 > 0, we can define a “scale”

given by €,, which depends on nearby values of «; and 3; such that if (y,,) satisfies

O+ GnlYn
yn+&'+'yn—l — 9

n

and if for some particular k, |y.| < €, and |1 < |yp|~'/?, then

L. Y1 = Z—§ - g—l’: + Ay, where [Ag] < |y 712

2. Ykv2 = —Yr + ﬁﬁ—?y% + By, where |By| < |y[*™"

k42
Qg o—Qf ﬁk—l—2_2 ay, 5k+1+5k

y[2g_|_2 Yk+2

+ (., where

3. Yk+3 =

Cx| < max{\%#k_%ﬂymg]l_(s oY 2} for non-Archimedean absolute values

and
1Cx| < 2\%};&“ pro "0 4 3|y 72 for Archimedean absolute values.



Lemma
Let (x,,) € Q\ {0} be a solution of

2

oy, + By + VT
2
xn

Tptl T Tp—1 =

Y

where a7, # 0 for all n > ry. Choose a prime p < 0o, § € (0,1/2)
and define ¢, > 0 by

6175 = Cpmax{l, |an’;1> |atn—1lp; [ns1lps [Bnlps [Bn=1lps [Bn+1lps

h/n|p7 ’7n—1|;;17 ’%H—l‘;l};
where C), = 1 if p < co and C, = 3. Then for any n € Z such that |z, |, < €,, either

Ty = |xn|;(2_6) and |Zp2lp = € o |Tp_ifp 2 ’xn|;;(2_6) and |z,—2[) > €.



Associating large and small iterates

25

|xm+1‘ > ’xm’_< |£Cn_1‘ > |$n‘_(2_5)

|xm| < € ’l’n’ < €



Exponential growth
Let Si(r):={n€Z : ro <n <rand|x,| <e}and So(r) := [ro,r] \ Si(r).

Zlog |z, g Z log™ 2], Ly Z log™ T, !

n=rg nes(r neSs(r
Now
r+1
1
§j og* eyt < Y log* [l
nesS(r n=rg—1

Z log™ \azn];l < Z log 6;1 <6t Z log |C) max{1, ||, |ozn_1];1, |an+1];1, o}

neSo(r) n=rg n=ro

n=ro
Define h,.( Z h(z,) Z ET: log" |2,],.- Then
n=rg P<0o0 N=rY)

1
he(z,) = h(1/z,) < ﬁhr+1(ajn> + log heights of coefficients.



Height growth and a discrete Painlevé equation

Let (y,) C Q\ {—1, 1} be an admissible solution of

A, + 0pY +cyn7 (4)
1—y2

where a,, b, and ¢, are rational functions of n with coefficients in Q and the right
hand side of (4) is irreducible. Then either

Yn+1 + Yn—1 =

l.a, =a, b, = n -+, ¢, =0 for constants «, 3, ; or

2. Yy 1s also an admissible solution of the difference Riccati equation
1/2<an T ebn o 2(9) + Yn

, where 8 = —1 or 1; or
1_(9yn

Yn+1 =

. loglog >, 1e(yn)
lim sup

> 1.
r—00 logr



Heights on number fields

e A number field % is a finite extension of the rational numbers, e.g. Q(v/2 + 51/3).
e A place on k is an equivalence class of absolute values.

e Let M), be the set of places on k.

e There are [k : Q] < co Archimedian places on k.

e For any x € k \ {0}, the Artin-Whaples product formula is
H ||, = 1.

e The (absolute) logarithmic height of x is
1
(0)= g 3 o'l

UEMk



H(x1+ x2) < 2H(x1)H (x9);
H(z1)H(z9) < H(z1)H(x2);
H(x1x9 + 203 + x371) < 3H(21)H (202) H (233).

Taking log of the above expressions gives

h(CU1 + ZlZQ) < h(ZIZ1> + h(:l?g) + log 2,
h([IZ1£IZQ> S h(ZIZ1> + h(ZIZ2>,
h(x1x9 + oxs + x321) < h(x1) + h(xs) + h(x3) + log 3.

Compare with expressions from Nevanlinna theory:

T(r,f+9) < T(r,f)+T(r,g) +log2;

T(r, fg) < T(r, f)+T(r,g);
< T(r, f) + T(r, g) + T(r, h) +log3.



Estimates involving rational functions

Let
ap +a1x + - - - + apa?

bo+ bix + -+ + byxt’
be an irreducible rational function of x of degree

R =

d = max{p, ¢}.

Then
C1H(z)' < H(R) < CoH (z)?,

where ('] and C are polynomials in the heights of the coeflicients a;, b;.

So the logarithmic height h(-) = log H( - ) satisfies
[(R) = dhfz)] <logC,

where C' is a polynomial in H(a;) and H(b;).



Heights and discrete equations

e Consider the equation
) )yt )y
n+1 — )
" bo(n) + b1(n)y, + - -+ + by(n)yn

where the a;’s and b;’s are polynomials in n.

e Taking the logarithmic height gives
h(Yn+1) = d h(y,) + O(logn).

e So if H(y,) grows faster than any polynomial in n then h(y,) grows exponentially
unless d < 1.
e Similarly, if
Ynt+1 + Yn—1 = R(n, yn) or Ypr1yn—1 = R(n, yn)
then d := deg, (R(n,y,)) < 2.

e Are there deeper connections between the (discrete) Painlevé equations and number

theory (esp. arithmetic geometry)?



Algebraic entropy

e [ntegrability as low complexity: Arnold (1990), Veselov (1992)

e Algebraic entropy: Falqui and Viallet (1993), Bellon and Viallet (1999)
log d,,

lim
n—oo M

e [ixample with confinement and positive algebraic entropy: Hietarinta and Viallet
(1998)

e Regularised map using blow-ups: Takenawa (2001)
e Upper bound by looking for cancellations: van der Kamp (2012)

Standard methods of calculating algebraic entropy: heuristic vs rigorous.



Degree of a rational function

There are two equivalent definitions of the degree of a rational function.
P(z)
Q(z)
1. deg(2) = max{deg(P(z)), deg(Q(2))}.

2. Let @ be any number in the extended complex plane CP' = C U {oo}. Then the

deg(R) is the number of pre-images of a in CP' counting multiplicities.

Let R(z) = . where P and @) are polynomials with no common factors. Then

For example, the degree of the rational function
20° —4at + 208+ +1 z+1

972
r(r — 1) xr(r — 1) e

1S .



Singularity confinement revisited

N Gyt byYn
Yn+1 T Yn—-1 = 1 — y%
Yn—1 = k+ 0<1>7
Yn = 0 + €, 0==41, e=(z—2)"f(2), [ analyticat zy, f(20)#0
a, + 0b, 4

— 1

. 2 n+1 — n — Qn 2
yn+2 - 9 + an + an € + O<€ )7

p + ebn (an—i—Q — an) — (9<bn—i—2 — 2bn+1 + bn) —1
Ints = o { (261 — by) — an ¢ +0l)

Also, if y,_1 ~ az and y,, ~ Bz as z — o0, then y,,.1 ~ —az.
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Exact formula for degrees

We have .
dpt1 =2N,+1 and d, =N, + 5 (dp1—1).
Eliminating N,, gives
dn_|_1 - Zdn ‘|_ dn_l — 2
We also have the initial conditions dy = d; = 1. Hence
n(n —1)
2

d, = + 1.



Example of Hietarinta and Viallet revisited

a
Ynt1l + Yn—1 = Yp T 5

n

Yn—1 = k + O(l),

Yn = €,

We will choose yg ~ az+ 3 and y; ~ vz + 6 as z — oo, where ay(ar — ) # 0. Then

Y, has a simple pole at z = oo for all n.



Takenawa’s sequence of blow-ups for the Hietarinta-Viallet equation

E13-E14
ES

E9-E10
H1-E5-E6-E9 \

y=inf

E11-E12

x=inf | HO-E1-E2-E9
=
i HO+H1-E9-E10-E11
E3-E4 E4
H1-E1 E2-E3
_ /
y=0 E1-E2

He provided a rigorous proof that the algebraic entropy is
3+ 5
7
This value had been calculated using more heuristic methods by Hietarinta and Viallet




00 o0 00 00
o ® O ®
<O X Np_1 X0 | x 2N,,_1 oo| x 2N,,_1 O] x D
QXNn ool x 2N, ool X 2Ny
O X Nn_|_1 ool X 2Np41
<O X Npy2
Yn—1 Yn Yn+1 Yn+2

dn—|—2 — Nn—|—2 + Np—1
dni1 = Q(Nn -+ Nn—l) +1



Substituting
Nn -+ Nn—l — (dn—l—l - 1)/2 and Nn—|—2 - Nn—l — dn—|—2
n
(Nn + Nn—l) - (Nn + Nn—3> + (Nn—Z + Nn—3> — (Nn—l + Nn—2> =0

gives
dn—l—l — Sdn -+ dn—l = 1.

Together with the initial conditions dy = d; = 1, this gives

S Vo1 (345 n+\/5+1 3—5 n_l
BEVE 2 V5 2 |
It follows that the algebraic entropy is

3+5
o



Summary



