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Discrete Integrable Systems

Overview of the course

e Main objective:

To present the Hirota-Miwa equation from 3 different points of view.
— the Laurent property
— explicit solutions (Hirota)

— symmetries (Miwa)



Overview of the course

e Main objective:

To present the Hirota-Miwa equation from 3 different points of view.
— the Laurent property
— explicit solutions (Hirota)

— symmetries (Miwa)

e In the second part:

To discuss reductions of the HM equation to lower dimensional lattice
equations and (if time permits) to explain the construction of Yang-Baxter
maps (and, if time still permits, to present some new results on symmetry
constraints for the HM equation).



The Laurent phenomenon

Definition: An initial value problem for a discrete (rational) equation has the
Laurent property if its general solution is a Laurent polynomial

of the initial data. [S. Fomin & A. Zelevinsky, Adv. Appl. Math. 2002]
( f _ TQrL—l + 1
For example: < fm—2
( Jo=X, =Y

2
Y241
; _( X+) +1_(Y2+1)2+X2
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The first several iterates are fo

(Y24+1)3 +2X%(Y?+1) + X*

; ; Y24+ 1D)*+3X2(Y?2+1)? +2X4(Y?*+1) + X°® + X*
4 — , 5 =

X3Y?2 X4Y3

and we see that fs, f3, f4, f5 are Laurent polynomials of X and Y.

In fact: all f,, Laurent polynomials of X and ¥ = the Laurent phenomenon !



Discrete Integrable Systems
The Laurent phenomenon

This phenomenon requires highly non-trivial factorizations to occur
in the numerator and denominator of the general solution.

( f — fm—l —|_ fm—2 —|_ 1
For example: < Jm—1 |
L Jo=X, 1 =Y.

X +Y +1 Y2+ X 2V +1

fs

for which the property fails immediately: fa

Y ’ X+Y+1



The Laurent phenomenon

This phenomenon requires highly non-trivial factorizations to occur
in the numerator and denominator of the general solution.

( f :fm—1‘|‘fm—2+1
For example: < Jm—1 |
L Jo=X, 1 =Y.

X +Y +1 Y2+ X 2V +1

fs

for which the property fails immediately: fa

Y ’ X+Y+1

The Laurent phenomenon also occurs for lattice equations

(<= the Dodgson scheme...)



The Laurent phenomenon

( fﬁ,m—lfﬁ—l,m + « (f m > O)
For example (a € C*): 4 Je—1,m-1
\ Xom ({=0o0orm=0)

fiofo1 + @ _ Xi0X01 + @

fu = Joo Xoo
_ fofuita XioXoe1Xoo + aXao + aXog
f21 - - )
f10 Xo0X10
 ufeta  XioXei Xz + aXos + aXog
f12 - - )
Jo1 XooXo1

Fop = foafio+a  X10X01 X20X02 + aX0X02 + aXooXoo + X0 Xo2 + a X5,
22 = =

fll X00X10X01



The Laurent phenomenon

The discrete KdV equation: fn = o S & O fhﬂga

fh—l—w
—1 —1 0 B —2 B —2 9
(0 )= (5) m=(8) = () w=(3) ez
uz, il .
[ ® ®
w Ul U2

has the Laurent property when defined on a so-called good domain.

[S. Fomin & A. Zelevinsky, Adv. Appl. Math. 2002, T. Mase 2013]



The Laurent phenomenon

A good domain :

. the initial value problem is well-posed, i.e.: the fundamental recursion is
defined everywhere in the domain and is uniquely defined in terms of the
initial data which lie on the border of the domain

. the evolution exhibits a kind of hyperbolicity, i.e.: an evolved point only
depends on finitely many initial data
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The Laurent phenomenon

A good domain :

. the initial value problem is well-posed, i.e.: the fundamental recursion is
defined everywhere in the domain and is uniquely defined in terms of the
initial data which lie on the border of the domain

. the evolution exhibits a kind of hyperbolicity, i.e.: an evolved point only
depends on finitely many initial data




The Laurent phenomenon
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has the Laurent property when defined on a good domain.

[S. Fomin & A. Zelevinsky, Adv. Appl. Math. 2002, T. Mase 2013]



The Laurent phenomenon

U1
U1

w
Theorem [T. Mase 2013]

The Hirota-Miwa equation and all its reductions (down to the 1-dimensional

level) have the Laurent property, when defined on a good domain.

Furthermore, this property makes it possible to explicitly calculate the degree
growth for the general solution.



The Laurent phenomenon

U1
U1

Theorem [T. Mase 2013]
&hfh—l—m fh—l—u1 + 6hfh—|—vz fh—i—uz

fh—l—w
(an, Bn € C*) has the Laurent property, if and only if its coefficients satisfy

The non-autonomous Hirota-Miwa equation f;, =

aho‘h—l-wﬁh—i—m 6h+’LL1 — ﬁhﬁh—l—w A h4vo Xhtusg

which is a necessary and sufficient condition for the existence of a gauge
transformation to the autonomous HM equation. [B. Grammaticos & A. Ramani, 2000]
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The Hirota-Miwa equation

b—c)t(l+1,mn)7(l,m+1,n+1)
+(c—a)T(I,m+1,n)7(l+1,m,n+1)
+(a—=b)7(I,m,n+1)7(l+1,m+1,n) =0

is a discrete version of KP in bilinear form, i.e. the continuum limit:

LT U LA S PR AL
a b c 2a2 202 2¢2 3a3 33 33

as |al, |b|, |c| — oo yields: (4D, Dy, — Dy —3D2 ) 7(x1, 22, x3) - T(21, T, 23) = 0

The KP equation: Upy = Vgy 5 Ugy = i(u&cl + 12uu,, ) + %vm

(where u = (log T)xlxl and v = (log 7_):1:1:(:2 )



The Hirota-Miwa equation

Hirota discovered that the HM equation has discrete solitons, similar to those

of the KP equation, when considering the equation on the cubic lattice Z?.

12 m n
_ h— _
_— 1+d (a C]) ( C]) (C C])
a—7p b—p c—p

~(a=p)b—p)"(c—p)"+d(@a—q) (b—q)" (c—q)"

Tosol = 14 dy e 4 dy £02) 4 g, d, (P1 = p2)(6 — @) o5 (P1,01)+€(p2,2)
(p1 — 92)(611 — p2)

¢ . ,
with efPidi) .— a4 — 4 b—q; C — q;
a — P b— Di C — D




The Hirota-Miwa equation

Hirota discovered that the HM equation has discrete solitons, similar to those

of the KP equation, when considering the equation on the cubic lattice Z3.
Solutions come, in fact, in two general forms:

O A O Aé\f—l £
Casorati determinants T o= | : :
fN) A, FD Aé\f—l )
I\ £ I\ m I\ T
o o (o P (B Y (o B (o) (o
bg: f _(1 a)(l b) (1 c) +%(1 a)(1 b) (1 c)
Gram determinants T = det (Q(gp(i),go*(j)))
i,j=1..N

A QD) = o) 5, (0®) | AL = 5D 5, (W), AQ = D) 5, (o)

¢ m n
Ry (M SO
45 —Pj \a4—dj b —q; C—4gj




The Hirota-Miwa equation

When considered on a cubic lattice, contrary to the case of octahedral
symmetry for the Dodgson scheme, the entries of these determinants are
no longer arbitrary but have to satisfy certain dispersion relations:

Apgo" = AN0" = A0

(Ap:=a(Se—1), Ay :=b(Sp — 1), A, :=¢(S, — 1))
14 m n
GO
a b c
or, similarly, for back-shifts: |a(1 — S[l)gp =b(1 - S;Ll)gp =c(1 - Sgl)go

o (120 (-9 00
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The discrete KP hierarchy

. These determinants also satisfy the bilinear equations proposed by

Ohta et al. as the discrete KP hierarchy:

7-517-@\1 7-627-?2 T TKNTZN
v]\7:3,...,]\4—|-12 ai as - -- ay = 0
N-2 N-2 N-2
aq as CLN

T@\k:T<€1+17---7€/€—1+17€k7€k+1+17---;€]\7+1>

for N-tuples (¢y,...,fy), and parametersa; (j=1,...,N)

[Y. Ohta et al., J. Phys. Soc. Jpn. 1993]
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The discrete KP hierarchy

.« These determinants also satisfy the bilinear equations proposed by

Ohta et al. as the discrete KP hierarchy:

7-517-!71 7-627-?2 T TKNTZN

v]\7: ,...,M—l—li ai as - -- ay = 0
N-2 N-2 N-2
aq as CLN

U =71+ 1, e+ 1, O O+ 1, Uy + 1)
for N-tuples (¢y,...,fy), and parametersa; (j=1,...,N)
e However, it can be shown that the HM-equations in the set
E={E(, mj,mk)| mj, mp € {mq,...,my}, m; # my}

generate all the bilinear equations in the dKP hierarchy.



The discrete KP hierarchy

M+1

To, T
Lattice equation of order M + 1 : Ty = 0
n=1 Hk#n(a’n o a’k)
M+1 M+1
& 5f§n[7<x— e T + e [[larn—N7 =0
n=1 k=1
M+1 CQ CM—I—l
Miwa-transf.: x = (x1,29,...,2041) = nz::l lhela '], elnl = (C, CR Y 1)
dX . —
o Do Prid e SO 20 W =x— Y el
=00 271 I

yields the KP bilinear identity at M — +o00, but this requires a certain ‘smoothness’ of 7



The discrete KP hierarchy

T: 7" — C, (b= V) TTon + (V= A) TonTin + A — ) TaTp, = 0 (HM)

for I,m,n € {l1,0y,... 0.} (all distinct) and A\ p,v € {a1,aq,...,a,} (a; € C*, distinct)

where: T etc.

= T|l—>l—|—1 o Tim = T‘l—>l—|—1,m—>m—|—1’

Definition: The discrete KP hierarchy is the set of all HM-equations (HM)
on the infinite dimensional lattice that is obtained as r — oc.

(3% the equations in this hierarchy generate the one proposed in [Y. Ohta et al. 1993].)

Definition: A tau function for the discrete KP hierarchy is a solution 7
of all HM-equations in the hierarchy, defined up to the equivalence

Ve, € C* 1 i T(l) ~ T(0),

for any triple (I, m,n) of distinct directions on the lattice.



The discrete KP hierarchy

T:72" — C, (b= V) TTon + (V= A) TonTin + A — ) TaTp, = 0 (HM)

for I,m,n € {l1,0y,... 0.} (all distinct) and A\ p,v € {a1,aq,...,a,} (a; € C*, distinct)

1 m
is generated by the linear system 1, = T Ay — ],
A — M TTim
1 7,7,
wmn — [/“?n—Vwm]a
b—V TTmn
1 7,
wln: h\ P\@Dn—V@bl]
— VUV TTin
or by its adjoint:
o = 1 77, A — ot ] = 1 Tan[ o — ] = 1 77, (AW — v
N — T LT R U=V TTom H¥m =Vl = N LTVl



Symmetries of the discrete KP hierarchy

Theorem [J.J.C. Nimmo 1997, RW et al. 1997]

Given a tau function 7 for the discrete KP hierarchy and an associated
(adjoint) eigenfunction (¢*) v , the result of the map 7 — 7 =7 X ¢

(7 — 7T =7 x %) is a tau function, i.e.: T satisfies the dKP hierarchy.



Symmetries of the discrete KP hierarchy

Theorem [J.J.C. Nimmo 1997, RW et al. 1997]
Given a tau function 7 for the discrete KP hierarchy and an associated
(adjoint) eigenfunction (¢*) v , the result of the map 7 — 7 =7 X ¢

(7 — 7T =7 x %) is a tau function, i.e.: T satisfies the dKP hierarchy.

Darboux transformations in fact give rise to a covariance of the linear problem:

5o a Y Sep — @ Sp
0

which, for generic eigenfunctions ¢ related to 7, yields a solution to the linear

problem associated to 7 = 7.



Symmetries of the discrete KP hierarchy

Theorem [J.J.C. Nimmo 1997, RW et al. 1997]

Given a tau function 7 for the discrete KP hierarchy and an associated
(adjoint) eigenfunction (¢*) v , the result of the map 7 — 7 =7 X ¢

(7 — 7T =7 x %) is a tau function, i.e.: T satisfies the dKP hierarchy.

These Darboux transformations of tau functions are the essential building blocks of the
dKP hierarchy: they generate Casorati-type solutions for the HM equations and, most

importantly, they are in fact equivalent to lattice-shifts:

n L
T s — a
E.g., defining 9" : i ( ° 1) , one obtains a solution to all adjoint linear

T a
s=2 s

1 TiT,
equations that do not involve the 1-direction: ¢* = 7k [akwk ajw*] (G, k #1)
A — a; TTjk

Hence, for this Darboux transformation: 7 +— 7¢Y* ~ 7.



Symmetries of the discrete KP hierarchy

Theorem [J.J.C. Nimmo 1997, RW et al. 1997]

Given a tau function 7 for the discrete KP hierarchy and an associated

squared eigenfunction potential (1, *), the map
re =T Q)

is a map between tau functions, i.e.: 7 satisfies the dKP hierarchy.



Symmetries of the discrete KP hierarchy

Theorem [J.J.C. Nimmo 1997, RW et al. 1997]

For any tau function 7 for the dKP hierarchy, given an eigenfunction %
and an adjoint eigenfunction ©* associated to 7, there exists a squared
eigenfunction potential €2(1),1*) defined by the relations

AﬁjQ<waw*> — w* w@ (] — ]-7 27 x ) )

(up to an additive constant). A, Ag f(¢;) =a;[f(¢;+1) — f(4;)].



Symmetries of the discrete KP hierarchy

Such binary Darboux transformations 7 +— 7 :
« generate Grammian determinant solutions to the HM equations
. realize the general action of GL(c0) on the Sato Grassmannian

« act in exactly the same way at the continuum limit, at which the
squared eigenfunction potential is defined by the exact differential

dQ (Y, ¥*) = Yp*dr + (P, — ¢¢;1)dx2 I
« explain why (¢¢*);, generates the symmetry algebra for the KP hierarchy:

u = 07 log(tQ+71/e) = u+ 02 log(l+¢eQ) = u+ e (YY*),, + O(e?)



binary Darboux transformations

Consider:
o
T —— T
5| |4
T ——— T
gg*
. . TO=7F=7¢ - Go*
consistency condition: . = =
1
One can show that if ¢* is an adjoint eigenfunction for 7, then E is an

eigenfunction associated to the tau function 7 = 7¢*.



binary Darboux transformations

Hence the Bianchi diagram:

/o .
T T
A ¢*
" /¢ = —
l [V =15
" —— T
o
Require that ¢* is the Darboux transform of g by %:
. 7\ 6 & AN
v [SE <gbq3*) Si6 gbqb*] & ald—1) <¢*> 750
and define Q(¢, ¢*) = ﬁ = ? such that |A;Q = a(S; — 1)Q = ¢* Sy

o ¢



binary Darboux transformations

In fact, (¢, ¢*) is a well-defined eigenfunction potential:

a(Sp—1)Q=¢"Sip, a;(S;—1)2=¢"S;0 ("j=2,--)

as all cross-differences are equal.

Hence, all functions in the Bianchi-diagram are defined in terms of 7, ¢ and ¢* and

in particular one has that:

P =T0(0,0)

Together with the transformation for the eigenfunctions and adjoint eigenfunctions

this defines the binary Darboux transformation:

e R At i




Special function solutions: a=z1b=1¢c=0

Tm+ D1l +1n+1)—zr(l+1)r(m+1,n+1)+(z—t(n+1)7({+1,m+1)=0

A linear system is obtained after a gauge transformation: ¢ +— (—c) "¢
b= 1 7+ 1)1(m+1)
Cz—1 717l +1,m+1)
T+ 1DT(n+1)
o0+ 1,n+1)

T(m+1)7(n+1)
Crr(m+1,n+1)

zdp(m+1) — ¢(0 + 1)

[P0+ 1)+ z¢p(n+1)]

[p(m + 1) + ¢p(n+ 1)]

If 7=1, oneobtains: | 2 ' [¢p —p({+1)] = ¢ — dp(m+1) = ¢p(n+ 1)

ie., from o, ~ ("(1—¢)"™(1—2¢)" one can build Casorati determinant solutions.



Special function solutions: a=z1b=1¢c=0

Tm+ D1l +1n+1)—zr(l+1)r(m+1,n+1)+(z—t(n+1)7({+1,m+1)=0

Trick: take arbitrary linear combinations of ¢, ~ ¢"(1 —¢)™(1 —z¢)" .

In particular, ¢, can be used to define the hypergeometric function oF :

QFﬁ(ﬂf;z)::]Xwgti_w.A'm:#*(l—tf**(l—zwﬂ%

1
Hence, using &, 5. := / e ¢PH1 =) P11 — 2¢)"“dC one obtains
0

[(n+ B)T'(m +~ —B) a—t, B+n |
I'(m+n+7) 2F1( ’Z)

T(l,m,n) =

after one Darboux transformation and, using the freedom in «, 3, , one can generate

Casorati determinant solutions in terms of the ®, g .



a special continuum limit:

Take z = 4% and rotate the axes as: ([ A=/, u=-m, v=n-+/{

= TA+Lv+D)r(p—1v—1)-FrA+D)r(p—1)+ - Drr(A+1,u—1)=0

A
Introducing | x = % , Y = 5 and taking the limit 6 — oo one obtains the 2D Toda lattice:
or Ot 0%t
Dr(v—1)+ — — — — 72 =0
v+ 1)r(v—1)+ oz 9y T@x@y T
1
& ~D,Dy7-7 = 7(v+1)1(v—1) -7

2

Its linear system is obtained from ¢ — 5_”(—52)/\ 1)

= 2o=(Llg™ M) s+ o(v+1), Zo= TR g 1)

1 e )
Hence, for 7 = 1 one obtains, ¢ ~ (¢6)" (1 — ()~ C“5(1 — W)W s—/(; n’ e Y/
=n




2DToda and Bessel: %Dnyr 7 = 1w+ Drlv—1) =72

Taking linear combinations of ¢, = n’e"™ Y/ one can construct

1 (0+)

d = — e, d 0
omi | n e, dn (zy > 0)

and if one takes n =t \/Q then, comparing to the Bessel function J4(z),
T

1 (0+) 1 Z(t 1)
J = — t7 " Ce2\" T/ dt > ()
@) =g |t (> 0)
one sees that the function ®®) can be used in Wronskian determinant solutions
for the 2D Toda lattice:

v—s 1 (0+)

(I)(s) _ <g) 2 [2_ ty—s—le\/@(t—%) dt }
X Tl

—0o0

N O (v x,y) = (3)T T (24/77)

X




Discrete Integrable Systems
Reductions of the HM equation

Let 7(I, m,n) satisfy the HM equation with parameters A, u and v.

Impose : Ty =7(,m+1,n+1)=7(,m,n)

ot

T4 ()T 50+ 5) Toay + 5+ 05) Ty +o- =7



Discrete Integrable Systems
Reductions of the HM equation

Let 7(I, m,n) satisfy the HM equation with parameters A, u and v.

Impose : T =7(,m+1,n+1)=71(,m,n) (with u+rv=0)

T+ %sz + O<%> =T or |ul —oo: T =0 (KdV)



Discrete Integrable Systems

Reductions of the HM equation: dKdV

SmSnT =T, SmSn\IJ — C\IJ : ORE Sn\lj

(041:)\/#, CVQI—)\/,LL>

9la) = (

2x2 Lax pair: $

1 — ;M u

—1
Ay

(1- a11>ul>'<i)

2
Cay

s U\ [((1—aj)wv oo (Y
"\ ) C 0 o
with compatibility condition:
1 v S
_ L _aq(ag—1)
Smu — v+ 5u ) SE U= U <5 o a;(oj—l)>
. . 1 1 o
which is the dKdV equation : —— =9 (Sgu — Smu) in disguise...
SiS,u u



Discrete Integrable Systems
Reductions of the HM equation: dKdV

1. The map (u,v) — (S,u,S¢v) is birational

and in fact even “quadrirational’ [Adler et al. Comm. Anal. Geom. 12 (2004) 967]

i.e.. the map (u, Spv) — (Spu,v) is also birational !

2. The map (u, S;v) — (S,u,v) is in fact related to a Yang-Baxter map

. uSpv—1 —AuSpv
R\ p):  (u,Spv) — <<S€v>,u—>\u5g’v’ u ung—1>



Yang-Baxter maps

i.e., it is related to certain “set-theoretical solutions” to the Yang-Baxter equation
[A. Veselov, MSJ Mem. 17 (2007) 145]
Le, toamap X x X — X X X (where X is a set)

R: XxX — X x X
W W

(z,y) — (f(7,y),9(x,y))

that satisfies the Yang-Baxter relation (with spectral parameters)

R19(A1, A2) R13(A1, A3) Ras(A2, A3)
= Ro3(A2, A3)R13(A1, A3) R12(A1, Ag)

Rij: XXXx---xX — XXX x---xX
W W

(o iy ey yy o) = (e fly ), .0 g9(T, 25), .- )



Reductions of the HM equation: dKdV

1. This Yang-Baxter map as the “companion” map
~ (1v+,uu 1v+,uu>

R p) - (u,0) = VU4 M wv+

, ~ 1 1w B
for which:  R(4,0) : (u,v) (v 50 uo +5u) = (Snu, Siv)

2. The map R is obtained from the Type II (1,1) reduction (S,Ss7 = 7(¢, m, n, k))
(T v\ (1 —ayYu ! (Vv
Ao/~ Caz'  (1—azhut)\
e U\ (1= ajay oot (VY
\ o)\ Cajagt (1 — ajag Ho! P

c.c.. |(Smu, Spv) = R(gzggg:&043(2;0—(%0{2)3(2)—2042))@7?})

—1
, c1as(ag )U)
az(a;—an)

(for v



General reduction (> 2)

SK\P — L(u7 C)\Ija

Sover S0 = (U, Sy Syt =7

((1 — a5 uy oy’ 0 0
0 (1—aztus a3 :
L(u,() = : ' 0
0 ot
\ (i 0 (1 — gy
((1 — 041042_1)1}2 041042_1 0 0
0 (1— 041043_1)1)3 041043_1 :
M(u, () = : g 0
0 arja; !
\ (gl 0 (1= a0y} o )




General reduction n>2 S-Sl =CU, S -Sppr =1

e The compatibility condition of this Lax pair yields a quadrirational map
R(a) : (u,v) — (S, Spv)
which is the companion map of a Yang-Baxter map
R(a) @ (u,Sv) — (Su,v)

related to the Yang-Baxter maps constructed by Etingof in relation to geometric
crystals of type A,_1. [P. Etingof, Comm. Algebra 31 (2003) 1961]

e The dynamical systems given by the maps R and R can always be ultradiscretized
for appropriate boundary conditions.



Example: n =3

W; (fjp1Uj41 — Vjg1Vjs1) v; Tu; .
Sy = ———————————, Suy=———  (j=123)
—1 ~1 ~1 :
for pj =1—a;,y, vj=a; —aj,, defined cyclically (uy, Vg, pha, v4) = (ug, vy, i1, 1)
=  R(u,v): (w,v) — (u,v)
o Wi — Vi) Y 1t — ViU
j= Ui =
pjty — VjUj Hity — VjUj
and R(p,v): (u,v) — (u,v)
oo W (1—1 10101 + -1Vt 105 + V1050511
] - AN AN AN
Pj—1 Ui -1+ (V41U V541 + Vj—1Vj410j-1U541
oo U (1j=1puj—1u5 + v + Vi 010541)
=

Mi—1 i1 Uj—1Uj+1 T e —1VU5 1V + VjVj4100541



(General i1dea:

The Lax equation (S1L(u))-M(v) = (S;M(v))-L(u) can be interpreted as
the factorization problem = A(x) - A(y) = A(y) - A(x) for a matrix
A(X) = Z (QSZEM + Oéz'+1Ez',i+1) with <Ez',j)kl — 5ik‘5jl and

1=1..n

1 —1
— a;)Sevjp
1

= (1= oy u, y=(ag

zj=(1—aj)Siupn, ¥ = (o' —ajh)vin

Such factorizations, if uniquely solvable, are known to give rise to Yang-Baxter maps
R: (x,y) — (%3),ic:

R: (u,Sv) — (Su,v)

The dynamical system obtained from the Lax equation corresponds to its companion map

~

R: (u,v) — (Su,S;v)

[A. Veselov, Phys. Lett. A 314 (2003) 214]



General idea:

The Lax equation yields a unique evolutionary system, defined in terms of E,
with conserved quantities

A = Hl’] H —ajy), Y= H% H — a0}

J=1 J=1

The factorization problem has a trivial solution z; = y;, y; = x;, which violates the
conservation law if ai; = 1. Hence there is a unique factorization compatible with

the solitonic evolution, given by the Yang-Baxter map:

R (xy) & (X,7)
~.:}jj_1x. i = b n
J Pj J J P] | J
Wlth P Z Hy]+k H .flfj_|_k
(=1 k=1 k=0+1

[K. Kajiwara et al., Lett. Math. Phys. 60 (2002) 211], [P. Etingof, Comm. Algebra 31 (2003) 1961],
[Y. Suris & A. Veselov, J. Nonl. Math. Phys. 10 (2003) 223]



General reduction n>2 S-Sl =CU, S -Sppr =1

e There exists a systematic construction of (ultradiscretizable) companion maps to
Yang-Baxter maps.

e These Yang -Baxter maps are identical to those that arise for A, -type geometric crystals.

e They are obtained from general reductions of the dKP hierarchy;

Other reductions like e.g.
Si...S, T="T

are obtained through degeneracy of the general case: ay,11 = ag.

e However, not all reductions lead to simple maps. E.g.:

Tl +1,m1+ 1,mo+ 1) = 7(¢,mq, my)



Symmetry constraints [B. Konopelchenko & W. Strampp 1991]

“ NLS is obtained from the KP hierarchy by symmetry-constraint... ”



Symmetry constraints [B. Konopelchenko & W. Strampp 1991]

“ NLS is obtained from the KP hierarchy by symmetry-constraint... ”

u(xy, T2, x3) : solution to the KP equation

V(x1, w9, x3) © solution to Y, = Yy e, + 2w, ---
V* (21,9, x3) ¢ solution to ) = —(¥% . +2uy*), ---

prg — ¢x1x1 + 2(¢¢*)¢

symmetry constraint : u,, = ), = b N x
ety e > {0 T e

(as (1p*),, generates the (generalized) symmetries for the KP hierarchy)



Symmetry constraints [B. Konopelchenko & W. Strampp 1991]

Ugy = (pr*)xl

Various problems concerning such reductions :

« How to obtain Lax pairs ? [Y. Cheng 1991]

« How to obtain solutions, especially for u = ¢ + yYy* ? [RW & I. Loris 1999]



Discrete Integrable Systems
Reductions of the HM equation: discrete NLS

Let 7(I, m,n) satisfy the HM equation with parameters A\, u and v ;
let ¢ and ¢* be an eigenfunction and adjoint eigenfunction associated to 7.

Impose : |vT1, =7 X Q(¢, ")

or: v(r—-1)=17xQ = 1,+02)=71Q

V| =0 T, =70 = 0zllogT:Qxlnggb*

“Cuy = (667),7 (NLS)
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Discrete Integrable Systems

Reductions of the HM equation: discrete NLS

Let 7(I, m,n) satisfy the HM equation with parameters A\, u and v ;

let ¢ and ¢* be an eigenfunction and adjoint eigenfunction associated to 7.

Impose : |vT1, =7 X Q(¢, ")

= Am(T_) = = ¢*¢m Oor [m© = 1- —¢ Pmn with Pn +— @
T 1% TTmn j 924 n
¢ — (/’L¢m_y¢n) And M¢m_y¢n: 1 1«
H—V TTmn _ ﬁqb Spmn




Discrete Integrable Systems
Reductions of the HM equation: discrete NLS

Let 7(I, m,n) satisfy the HM equation with parameters A\, u and v ;

let ¢ and ¢* be an eigenfunction and adjoint eigenfunction associated to 7.

Impose : |vT1, =7 X Q(¢, ")

= AL(E) =6 o | =1 g, | with o, =
T v TTrm v .
¢ — (/’L¢m_y¢n) And M¢m_y¢n: 1 1«
W=V TTmn — ﬁ¢ Omn
1 77n .
Prmn = (10 — vm) but what does ¢ satsify ?



Discrete Integrable Systems
Reductions of the HM equation: discrete NLS

Let 7(I, m,n) satisfy the HM equation with parameters A\, u and v ;
let ¢ and ¢* be an eigenfunction and adjoint eigenfunction associated to 7.

Casorati solutions to HM :  7(V) = |A-7_1 D)

ij=1..N
(where the f@(¢) satisfy Ay, fD(0) = Ay f@(£) for all possible directions on the lattice)

~(N+1) (N—1)

7(N)

-
7(N)

then, in general: OF = and ¢ =



Discrete Integrable Systems
Reductions of the HM equation: discrete NLS

Let 7(I, m,n) satisfy the HM equation with parameters A\, u and v ;

let ¢ and ¢* be an eigenfunction and adjoint eigenfunction associated to 7.

Casorati solutions to HM :  7(V) = |Aj_1 D)

ij=1..N

(where the f@(¢) satisfy Ay, fD(0) = Ay f@(£) for all possible directions on the lattice)

. . 7'(N+1) T(N_l)
then, in general: Q* = ™ and ¢ = ™
7_/ 7_/ 7_/
However, think of ¢ as ¢ :== = = ¢, =—, or: = —, which is also
T n T
. . 1 7Ty
an eigenfunction for 7 : Omn = (,ugﬁn - Vsﬁm)
=V TTmn




discrete NLS: solutions

For example, for N = 2:

must both be eigenfunctions... Hence: f®

= fi)




discrete NLS: solutions

For example, for N = 2:

f(1) f(l)
O = and O = -
O AfM O AfM
@ AfR) @ AfR)
must both be eigenfunctions... Hence: f(® Wy

Solutions are therefore given by bi-directional Casorati determinants:

i) = |ATATTL ()

ij=1..N

(where f satisfies Ay, f = Ay, f for all possible directions on the lattice)

g g (T )
. * 7 _ 2 . bid n
Thid Thid Thid




Discrete Integrable Systems
Reductions of the HM equation: discrete NLS

Let 7(I, m,n) satisfy the HM equation with parameters A\, u and v ;
let ¢ and ¢* be an eigenfunction and adjoint eigenfunction associated to 7.

Impose : |vT1, =7 X Q(¢, ")

. 1 1 T, L,
T 1% 1% TTmn U
¢ — (/’L¢m_y¢n) <~ M¢m_y¢n: 1 1«
U—V TTmn 1—ﬁ</5 Pmn
1 7,7 (1t — V) Pmn
Crmn = (on —vom) |y — Vom = T
,u — VUV TTmn T ﬁ¢ Spmn




Discrete Integrable Systems

discrete NLS

[P, — VO, = e , MPn — Vo, = T )* (ANLS)
B ﬁ¢ Pmn 1 - ﬁ¢ Pmn
(N+1) ~(N=1)
has solutions ¢* = 24~ o = bud (with 7.y a bi-directional Casoratian)

T, T, (V)
bid bid



discrete NLS

. . (=) (1 — V) Pmn
pey, — vo,, = s HPn — VPm = T (ANLS)
— ﬁ¢ Pmn — ﬁ¢ Omn
(N+1) _(N-1)
has solutions ¢* = b“(iN) . o= b“(lN) (with Tég) a bi-directional Casoratian)
Thid Thid
and a Lax pair: (U : Z? — C?%)
1 M —¥m
v, = ( ) > Y,
p—=r \¢ N_/{_;(/ﬁ*gpm
1 v —¥n
v, = -
V=R \9" V_R_%gb*gpn

[E. Date etal. 1983]



semi-discrete NLS

* * — UV ¢* — V)¥mn
— ﬁ¢ Pmn — ﬁﬁb Omn

At the limit |v| — oo one obtains a time-discretisation of the NLS equation:

’

1
pldr, — @%) = ¢, — ;(cb*)%m

1(om — ) = (Pm)e, + %¢*(me>2

\
[E. Date etal. 1983]

with Lax pair




NLS

. . — v)o* —V)Pmn
udh, — vy, = LD v, = LR (dNLS)

|l [v] — o0

{ gb;z - _(¢;1w1 + 2(¢*)2gp>

Py = Pz T 2¢*(702 (NLS)
with Lax pair ko =@
\Ijxl _— * \Ij
o 0
K* + PO — g — Ky
U, = ad
KQ* — @y, —¢*p
| 9 i ~(N-1) +(N+1)
(N) . YNt 2 _ *
and solutions 7\ : ‘(3@-1) LN ¥ —(N) ¢ —~(N)




discrete Broer-Kaup
[R. Willox & M. Hattori 2014]

This discrete NLS equation is intimately related to:

( oo H,U,(u—vH,,)
e Un(p — vH,)
\
uv(H, — Hy,) ul,, vU, H,
U= + —
\ (v —vH,)(p—vHy) (p—vHy,) (p—vH,)

the continuum limit ( |y, |v| — oco) of which is the Broer-Kaup system

x1

{ Ney = (hay + 2u + h?)

Ugpy = (2uh — ux1>:1:1

in the dependent variables u = (log 7)., and h = (logy),, , obtained from

m _ mn 1
the ansatz H::go_:1+u Vh and U::TT =14+ —u.
D 1% T T, %




Discrete Integrable Systems

Symmetry constraints of the discrete KP hierarchy

Theorem [R. Willox & M. Hattori 2014]

Let S represent an arbitrary shift on the discrete KP lattice, and v € C~*.

The constraint |~ S(T) = 7Q(¢, ¢*)| on a tau function 7 (and ¢ and ¢*),

is compatible with the discrete KP hierarchy.



Discrete Integrable Systems

Symmetry constraints of the discrete KP hierarchy

Theorem [R. Willox & M. Hattori 2014]

v S(1) = 7Q(¢, ¢")

The constrained hierarchy has solutions 7, ¢* and ¢:

(N+1) S(T(N—l))

(N) . i—1 A j— * _
Mg = Ay AT ij=1.N "= 7(N) 7 ¢ = 7(N)

(7 :=1)

where Ag := (S — 1) and f (/) satisfies Ay, f(¢) = Ay, f(€) for all £;,£; on the lattice.



Discrete Integrable Systems 47

Symmetry constraints of the discrete KP hierarchy

Theorem [R. Willox & M. Hattori 2014]

Let S represent an arbitrary shift on the discrete KP lattice, and v € C*.

The constraint |y S(7) = 7Q(¢,¢*)| on a tau function 7 (and ¢ and ¢*),

is compatible with the discrete KP hierarchy.

The constrained hierarchy has solutions 7, ¢* and ¢:

(N+1) S(rV-1)
T

R — (O) —
¢ T(N) ) ¢ T(N) (7_ ’ 1 )

N i— 1 p
Tzfqzd) = |Ag FA 1][(@

i,j=1..N

where Ag := v(S — 1) and f(¢) satisfies Ay, f({) = Ay, f(£) for all £;, £; on the lattice.

5 (r9)

« For any constrained 7, the function ¢ := is a dKP eigenfunction

. 7a systematic procedure to construct Lax pairs for the constrained systems



discrete Yajima-Oikawa
[R. Willox & M. Hattori 2014]

Choosing ~ = —puv and S : S(f(m,n)) = f(m+ 1,n+ 1), one obtains:
( 2M3(Um’n’ - U) — Spmqb:;/ - Spn(rb;kn’

O+ P = 200"

. Pm + Pn = 2(]SDmn

_/\

T Tmn

forv =—pand U = , which is a discretisation of the Yajima-Oikawa system

TmTn
( Uy = (070)ay
Gry = — (P50, T+ 2ud”)

( Pazo = Pziay T 2up

N\

% ‘primed’ subscripts denote downshifts.



Interesting questions / open problems

. Does the Laurent phenomenon for a bilinear equation, give any
(useful) information on the behaviour of the singularities or of the
solutions of the (nonlinear) systems that can be obtained from it ?

. Is there any information that can be obtained regarding the (Lie)
algebraic structure of reductions of the HM equation (or of the
discrete KP hierarchy) ?

. What about B-type discrete systems, e.g., the Miwa-equation and
its reductions 7

Or what about discrete versions of integrable systems with C or D
type symmetries, such as Kaup-Kuperschmidt or Toda lattices of

C and D-type ?



