Versatility of Singular Value Decomposition (SVD)

January 7, 2015

•
$$A = \underbrace{B}_{\text{Real Data}} + \underbrace{C}_{\text{Noise}}$$
.

•
$$A = \underbrace{B}_{\text{Real Data}} + \underbrace{C}_{\text{Noise}}$$

• $\text{rank}(B) \le k. ||C|| (= \text{Max}_{|u|=1} ||Cu|) \le \Delta.$

•
$$A = \underbrace{B}_{\text{Real Data}} + \underbrace{C}_{\text{Noise}}$$

• $\operatorname{rank}(B) \le k$. $||C|| (= \operatorname{Max}_{|u|=1} ||Cu|) \le \Delta$.
• $k << n, d$. Δ small.

- Each Data Point is a column of the *n* × *d* Data Matrix *A*.
- $A = \underbrace{B}_{\text{Real Data}} + \underbrace{C}_{\text{Noise}}$. • $\text{rank}(B) \le k$. $||C||(= \text{Max}_{|u|=1}||Cu|) \le \Delta$. • k << n, d. Δ small. • Caution: $||C||_F(=\sqrt{\sum C_{ij}^2})$ need not be smaller than for example
 - $||B||_{F}$. In words, overall noise can be larger than overall real data.

- Each Data Point is a column of the *n* × *d* Data Matrix *A*.
- $A = \underbrace{B}_{\text{Real Data}} + \underbrace{C}_{\text{Noise}}$ • $\text{rank}(B) \le k$. $||C|| (= \text{Max}_{|u|=1} ||Cu|) \le \Delta$. • k << n, d. Δ small.
 - Caution: $||C||_F (= \sqrt{\sum C_{ij}^2})$ need not be smaller than for example $||B||_F$. In words, overall noise can be larger than overall real data.
- Given any A, Singular Value Decomposition (SVD) finds B of rank k (or less) for which ||A B|| is minimum. Space spanned by columns of B is the best-fit subspace for A in the sense of least sum over all data points of squared distances to subspace.

- Each Data Point is a column of the n × d Data Matrix A.
- $A = \underbrace{B}_{\text{Real Data}} + \underbrace{C}_{\text{Noise}}$ • $\text{rank}(B) \le k$. $||C|| (= \text{Max}_{|u|=1} ||Cu|) \le \Delta$. • $k \le n.d$. Δ small.
 - Caution: $||C||_F (= \sqrt{\sum C_{ij}^2})$ need not be smaller than for example $||B||_F$. In words, overall noise can be larger than overall real data.
- Given any A, Singular Value Decomposition (SVD) finds B of rank k (or less) for which ||A B|| is minimum. Space spanned by columns of B is the best-fit subspace for A in the sense of least sum over all data points of squared distances to subspace.
- A very powerful tool. Decades of theory, algorithms. Here: Example applications.

• $F(x) = w_1 N(\mu_1, \sigma_1^2) + w_2 N(\mu_2, \sigma_2^2) + \dots + w_k N(\mu_k, \sigma_k^2)$, in *d* dimensions.

• $F(x) = w_1 N(\mu_1, \sigma_1^2) + w_2 N(\mu_2, \sigma_2^2) + \dots + w_k N(\mu_k, \sigma_k^2)$, in *d* dimensions.

- $F(x) = w_1 N(\mu_1, \sigma_1^2) + w_2 N(\mu_2, \sigma_2^2) + \dots + w_k N(\mu_k, \sigma_k^2)$, in *d* dimensions.
- Learning Problem: Given i.i.d. samples from *F*(·), find the components (μ_i, σ_i, w_i). Really a Clustering Problem.

- $F(x) = w_1 N(\mu_1, \sigma_1^2) + w_2 N(\mu_2, \sigma_2^2) + \dots + w_k N(\mu_k, \sigma_k^2)$, in *d* dimensions.
- Learning Problem: Given i.i.d. samples from *F*(·), find the components (μ_i, σ_i, w_i). Really a Clustering Problem.
- In 1-dimension, we can solve the learning problem if Means of the component densities are Ω(1) standard deviations apart.

- $F(x) = w_1 N(\mu_1, \sigma_1^2) + w_2 N(\mu_2, \sigma_2^2) + \dots + w_k N(\mu_k, \sigma_k^2)$, in *d* dimensions.
- Learning Problem: Given i.i.d. samples from *F*(·), find the components (μ_i, σ_i, w_i). Really a Clustering Problem.
- In 1-dimension, we can solve the learning problem if Means of the component densities are Ω(1) standard deviations apart.
- But in d dimensions: Approximate k means fails. Pair of Sample from different clusters may be closer than a pair from the same !

• For a mixture of *k* spherical Gaussians (with different variances), the best-fit *k* dimensional subspace (found by SVD) passes through all the *k* centers. Vempala, Wang.

SVD to the Rescue

- For a mixture of *k* spherical Gaussians (with different variances), the best-fit *k* dimensional subspace (found by SVD) passes through all the *k* centers. Vempala, Wang.
- Beautiful proof: For one spherical Gaussian with non-zero mean, the best fit 1-dim subspace passes through the mean. And any k-dim subspace containing the mean is a best-fit k- dimensional space.

SVD to the Rescue

- For a mixture of *k* spherical Gaussians (with different variances), the best-fit *k* dimensional subspace (found by SVD) passes through all the *k* centers. Vempala, Wang.
- Beautiful proof: For one spherical Gaussian with non-zero mean, the best fit 1-dim subspace passes through the mean. And any k-dim subspace containing the mean is a best-fit k- dimensional space.
- So, now if a k dimensional space contains all the k means, it is individually the best for each component Gaussian !!

SVD to the Rescue

- For a mixture of *k* spherical Gaussians (with different variances), the best-fit *k* dimensional subspace (found by SVD) passes through all the *k* centers. Vempala, Wang.
- Beautiful proof: For one spherical Gaussian with non-zero mean, the best fit 1-dim subspace passes through the mean. And any k-dim subspace containing the mean is a best-fit k- dimensional space.
- So, now if a k dimensional space contains all the k means, it is individually the best for each component Gaussian !!
- Simple Observation to finish : Given the k space containing the means, we need only solve a k – dim problem. Can be done in time exponential only in k

Planted Clique Problem

• Given $G = G(n, 1/2) + S \times S$, (*S* unknown, |S| = s), find *S* in poly time. Best known: $s \ge \Omega(\sqrt{n})$.

$$A = \begin{bmatrix} 1 & 1 & 1 & \pm 1 \\ 1 & 1 & 1 & \pm 1 \\ 1 & 1 & 1 & \pm 1 \\ \pm 1 & \pm 1 \\ \pm 1 & \pm 1 \\ \pm 1 & \pm 1 \\ \pm 1 & \pm 1 \\ \pm 1 & \pm 1 \\ \pm 1 & \pm 1 \end{bmatrix}$$

Planted Clique Problem

• Given $G = G(n, 1/2) + S \times S$, (S unknown, |S| = s), find S in poly time. Best known: $s \ge \Omega(\sqrt{n})$.

	[1	1	1	±1	±1	±1	±1	±1	
A =	1	1	1	±1	±1	±1	±1	±1	
	1	1	1	±1	±1	±1	±1	±1	
	±1	±1	±1	±1	±1	±1	±1	±1	
	±1	±1	±1	±1	±1	±1	±1	±1	
	±1	±1	±1	±1	±1	±1	±1	±1	
	±1	±1	±1	±1	±1	±1	±1	±1	
	±1	±1	±1	±1	±1	±1	±1	±1 ±1	

• || Planted Clique || = s. Random Matrix Theory: Random ± 1 matrix has norm at most $2\sqrt{n}$. So, SVD finds S when $s \ge \sqrt{n}$. Alon, Boppanna-1985.

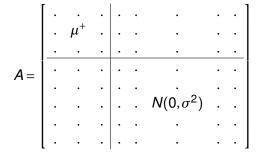
Planted Clique Problem

• Given $G = G(n, 1/2) + S \times S$, (*S* unknown, |S| = s), find *S* in poly time. Best known: $s \ge \Omega(\sqrt{n})$.

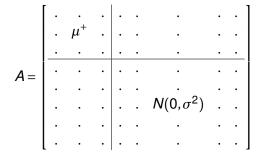
	[1	1	1	±1	±1	±1	±1	±1	
	1	1	1	±1	±1	±1	±1	±1	
			1						l
	±1	±1	±1	±1	±1	±1	±1	±1	
	±1	±1	±1	±1	±1	±1	±1	±1	
	±1	±1	±1	±1	±1	±1	±1	±1	
	±1	±1	±1	±1	±1	±1	±1	±1	
	±1	±1	±1	±1	±1	±1	±1	±1	

- || Planted Clique || = s. Random Matrix Theory: Random ± 1 matrix has norm at most $2\sqrt{n}$. So, SVD finds S when $s \ge \sqrt{n}$. Alon, Boppanna-1985.
- Feldman, Grigorescu, Reyzin, Vempala, Xiao (2014): Cannot be beaten by Statistical Learning Algorithms.

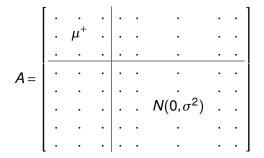
• $A n \times n$ matrix and $S \subseteq [n], |S| = k$.



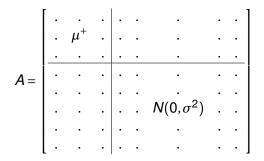
- $A n \times n$ matrix and $S \subseteq [n], |S| = k$.
- A_{ij} all independent r.v.'s



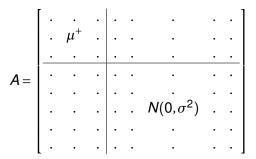
- $A n \times n$ matrix and $S \subseteq [n], |S| = k$.
- A_{ij} all independent r.v.'s
- For $i, j \in S$, $Pr(A_{ij} \ge \mu) \ge 1/2$. (Eg. $N(\mu, \sigma^2)$). Signal = μ .

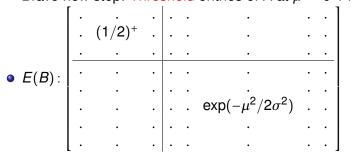


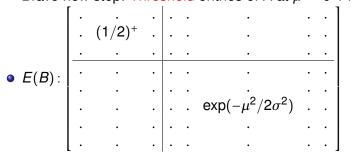
- $A n \times n$ matrix and $S \subseteq [n], |S| = k$.
- A_{ij} all independent r.v.'s
- For $i, j \in S$, $Pr(A_{ij} \ge \mu) \ge 1/2$. (Eg. $N(\mu, \sigma^2)$). Signal = μ .
- For other *i*, *j*, A_{ij} is $N(0, \sigma^2)$. Noise = σ .

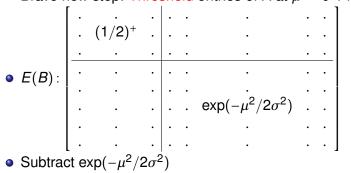


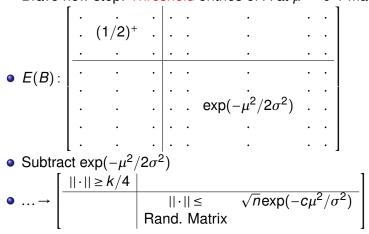
- $A n \times n$ matrix and $S \subseteq [n], |S| = k$.
- A_{ij} all independent r.v.'s
- For $i, j \in S$, $Pr(A_{ij} \ge \mu) \ge 1/2$. (Eg. $N(\mu, \sigma^2)$). Signal = μ .
- For other *i*, *j*, A_{ij} is $N(0, \sigma^2)$. Noise = σ .
- Given A, μ, σ , find S. [Recall Planted Clique.]

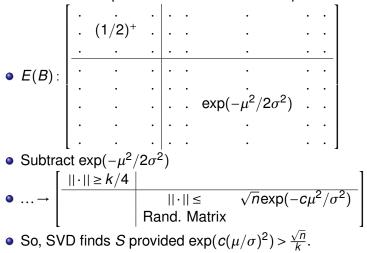


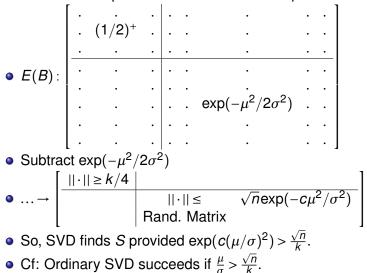












• Data points $\{A_1, A_2, \dots, A_j, \dots\}$ in \mathbf{R}^d , *d* features.

- Data points $\{A_1, A_2, \dots, A_j, \dots\}$ in \mathbb{R}^d , *d* features.
- Data points are in 2 "SOFT" clusters: Data point *j* belongs *w_j* to cluster 1 and 1 *w_i* to cluster 2. (More Generally, *k* clusters)

- Data points $\{A_1, A_2, \dots, A_j, \dots\}$ in \mathbb{R}^d , *d* features.
- Data points are in 2 "SOFT" clusters: Data point *j* belongs *w_j* to cluster 1 and 1 *w_j* to cluster 2. (More Generally, *k* clusters)
- Each cluster has some some dominant features and each data point has a dominant cluster.

- Data points $\{A_1, A_2, \dots, A_j, \dots\}$ in \mathbf{R}^d , *d* features.
- Data points are in 2 "SOFT" clusters: Data point *j* belongs *w_j* to cluster 1 and 1 *w_j* to cluster 2. (More Generally, *k* clusters)
- Each cluster has some some dominant features and each data point has a dominant cluster.
- A_{ij} ≥ µ if feature i is a dominant feature of the dominant topic of data point j.

Thresholding: Second Plus

- Data points $\{A_1, A_2, \dots, A_j, \dots\}$ in \mathbf{R}^d , *d* features.
- Data points are in 2 "SOFT" clusters: Data point *j* belongs *w_j* to cluster 1 and 1 *w_j* to cluster 2. (More Generally, *k* clusters)
- Each cluster has some some dominant features and each data point has a dominant cluster.
- *A_{ij}* ≥ µ if feature *i* is a dominant feature of the dominant topic of data point *j*.
- $A_{ij} \leq \sigma$ otherwise.

Thresholding: Second Plus

- Data points $\{A_1, A_2, \dots, A_j, \dots\}$ in \mathbf{R}^d , *d* features.
- Data points are in 2 "SOFT" clusters: Data point *j* belongs *w_j* to cluster 1 and 1 *w_j* to cluster 2. (More Generally, *k* clusters)
- Each cluster has some some dominant features and each data point has a dominant cluster.
- *A_{ij}* ≥ µ if feature *i* is a dominant feature of the dominant topic of data point *j*.
- $A_{ij} \leq \sigma$ otherwise.
- If variance above μ is larger than gap between μ and σ, a
 2-clustering criterion (like 2-means) may split the high weight cluster instead of separating it from the others.

Thresholding: Second Plus

- Data points $\{A_1, A_2, \dots, A_j, \dots\}$ in \mathbf{R}^d , *d* features.
- Data points are in 2 "SOFT" clusters: Data point *j* belongs *w_j* to cluster 1 and 1 *w_j* to cluster 2. (More Generally, *k* clusters)
- Each cluster has some some dominant features and each data point has a dominant cluster.
- A_{ij} ≥ µ if feature i is a dominant feature of the dominant topic of data point j.
- $A_{ij} \leq \sigma$ otherwise.
- If variance above μ is larger than gap between μ and σ, a
 2-clustering criterion (like 2-means) may split the high weight cluster instead of separating it from the others.
- Two Differences from Mixtures: Soft, High Variance in dominant features.

Joint Work with T. Bansal and C. Bhattacharyya

d features - words in the dictionary. A document is a d- (column) vector.

- d features words in the dictionary. A document is a d- (column) vector.
- *k* topics. Topic *l* is a d-vector. (Probabilities of words in topic).

- d features words in the dictionary. A document is a d- (column) vector.
- k topics. Topic l is a d-vector. (Probabilities of words in topic).
- To generate doc *j*, generate a random convex combination of topic vectors.

- d features words in the dictionary. A document is a d- (column) vector.
- k topics. Topic l is a d-vector. (Probabilities of words in topic).
- To generate doc *j*, generate a random convex combination of topic vectors.
- Generate words of doc. *j* in i.i.d. trials , each from the multinomial with prob.s = Convex Combination. ***DRAW PICTURE ON BOARD WITH SPORTS, POLITICS, WEATHER***

- d features words in the dictionary. A document is a d- (column) vector.
- k topics. Topic l is a d-vector. (Probabilities of words in topic).
- To generate doc *j*, generate a random convex combination of topic vectors.
- Generate words of doc. *j* in i.i.d. trials , each from the multinomial with prob.s = Convex Combination. ***DRAW PICTURE ON BOARD WITH SPORTS, POLITICS, WEATHER***
- The Topic Modeling Problem Given only A, find an approximation to all topic vectors so that the l₁ error in each topic vector is at most ε. l₁ error crucial. (l₂ misses small words.)

- d features words in the dictionary. A document is a d- (column) vector.
- *k* topics. Topic *l* is a d-vector. (Probabilities of words in topic).
- To generate doc *j*, generate a random convex combination of topic vectors.
- Generate words of doc. *j* in i.i.d. trials , each from the multinomial with prob.s = Convex Combination. ***DRAW PICTURE ON BOARD WITH SPORTS, POLITICS, WEATHER***
- The Topic Modeling Problem Given only *A*, find an approximation to all topic vectors so that **the** l_1 **error** in each topic vector is at most ε . l_1 error crucial. (l_2 misses small words.)
- Generally NP-hard.

Topic Modeling is Soft Clustering

• Topic Vectors = Cluster Centers

Topic Modeling is Soft Clustering

- Topic Vectors = Cluster Centers
- Each data point (doc) belongs to a weighted combination of clusters. Generated from a distribution (happens to be multinomial) with expectation = weighted combination.

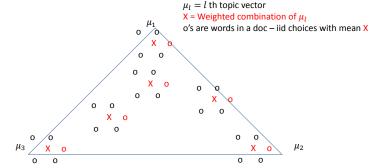
Topic Modeling is Soft Clustering

- Topic Vectors = Cluster Centers
- Each data point (doc) belongs to a weighted combination of clusters. Generated from a distribution (happens to be multinomial) with expectation = weighted combination.
- Even if we manage to solve the clustering problem somehow, it is not true that cluster centers are averages of documents. Big Distinction from Learning Mixtures which is hard clusetring.

Topic Modeling = Soft Clustering

Given doc's (means of o's), find μ_l .

Helps to find nearly pure docs (X near corner)



 Under Pure Topics and Primary Words (1 – ε of words are primary) Assumptions, SVD solves it. Papadimitriou, Raghavan, Tamaki, Vempala.

- Under Pure Topics and Primary Words (1 ε of words are primary) Assumptions, SVD solves it. Papadimitriou, Raghavan, Tamaki, Vempala.
- Belief: SVD cannot do the non-pure topic case.

- Under Pure Topics and Primary Words (1 ε of words are primary) Assumptions, SVD solves it. Papadimitriou, Raghavan, Tamaki, Vempala.
- Belief: SVD cannot do the non-pure topic case.
- LDA : Most used model. Blei, Ng, Jordan. Multiple topics per doc.

- Under Pure Topics and Primary Words (1 ε of words are primary) Assumptions, SVD solves it. Papadimitriou, Raghavan, Tamaki, Vempala.
- Belief: SVD cannot do the non-pure topic case.
- LDA : Most used model. Blei, Ng, Jordan. Multiple topics per doc.
- Anandkumar, Foster, Hsu, Kakade, Liu do Topic Modeling under LDA, to *l*₂ error using clever tensor methods. Parameters.

- Under Pure Topics and Primary Words (1 ε of words are primary) Assumptions, SVD solves it. Papadimitriou, Raghavan, Tamaki, Vempala.
- Belief: SVD cannot do the non-pure topic case.
- LDA : Most used model. Blei, Ng, Jordan. Multiple topics per doc.
- Anandkumar, Foster, Hsu, Kakade, Liu do Topic Modeling under LDA, to *l*₂ error using clever tensor methods. Parameters.
- Arora, Ge, Moitra Assume Anchor Word + Other parameters : Each topic has one word (a) occurring only in that topic (b) with high frequency. First Provable Algorithm.
- Our Goals

- Under Pure Topics and Primary Words (1 ε of words are primary) Assumptions, SVD solves it. Papadimitriou, Raghavan, Tamaki, Vempala.
- Belief: SVD cannot do the non-pure topic case.
- LDA : Most used model. Blei, Ng, Jordan. Multiple topics per doc.
- Anandkumar, Foster, Hsu, Kakade, Liu do Topic Modeling under LDA, to *l*₂ error using clever tensor methods. Parameters.
- Arora, Ge, Moitra Assume Anchor Word + Other parameters : Each topic has one word (a) occurring only in that topic (b) with high frequency. First Provable Algorithm.

Our Goals

• Intuitive, empirically verified assumptions.

- Under Pure Topics and Primary Words (1 ε of words are primary) Assumptions, SVD solves it. Papadimitriou, Raghavan, Tamaki, Vempala.
- Belief: SVD cannot do the non-pure topic case.
- LDA : Most used model. Blei, Ng, Jordan. Multiple topics per doc.
- Anandkumar, Foster, Hsu, Kakade, Liu do Topic Modeling under LDA, to *l*₂ error using clever tensor methods. Parameters.
- Arora, Ge, Moitra Assume Anchor Word + Other parameters : Each topic has one word (a) occurring only in that topic (b) with high frequency. First Provable Algorithm.

- Intuitive, empirically verified assumptions.
- Natural, provable Algorithm.

• Intuitive to Topic Modeling, not numerical parameters like condition number.

- Intuitive to Topic Modeling, not numerical parameters like condition number.
- Catchwords: Each topic has a set of words: (a) each occurs more frequently in the topic than others and (b) together, they have high frequency.

- Intuitive to Topic Modeling, not numerical parameters like condition number.
- Catchwords: Each topic has a set of words: (a) each occurs more frequently in the topic than others and (b) together, they have high frequency.
- Dominant Topics Each Document has a dominant topic which has weight (in that doc) of at least some α, whereas, non-dominant topics have weight at most some β.

- Intuitive to Topic Modeling, not numerical parameters like condition number.
- Catchwords: Each topic has a set of words: (a) each occurs more frequently in the topic than others and (b) together, they have high frequency.
- Dominant Topics Each Document has a dominant topic which has weight (in that doc) of at least some α, whereas, non-dominant topics have weight at most some β.
- Nearly Pure Documents Each topic has a (small) fraction of documents which are 1δ pure for that topic.

- Intuitive to Topic Modeling, not numerical parameters like condition number.
- Catchwords: Each topic has a set of words: (a) each occurs more frequently in the topic than others and (b) together, they have high frequency.
- Dominant Topics Each Document has a dominant topic which has weight (in that doc) of at least some α, whereas, non-dominant topics have weight at most some β.
- Nearly Pure Documents Each topic has a (small) fraction of documents which are 1δ pure for that topic.
- No Local Min.: For every word, the plot of number of documents versus number of occurrences of word (conditioned on dominant topic) has no local min. [Zipf's law Or Unimodal.]

 s = No. of docs. For this talk, probability that each topic is dominant is 1/k.

- s = No. of docs. For this talk, probability that each topic is dominant is 1/k.
- **Threshold** Compute the threshold for each word *i*: First "Gap": Max ζ : $A_{ij} \ge \zeta$ for $\ge (s/2k) j's$ and $A_{ij} = \zeta$ for $\le \varepsilon s j's$.

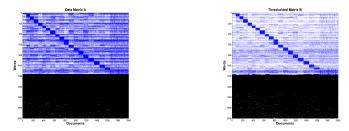
- s = No. of docs. For this talk, probability that each topic is dominant is 1/k.
- **Threshold** Compute the threshold for each word *i*: First "Gap": Max ζ : $A_{ij} \ge \zeta$ for $\ge (s/2k) j's$ and $A_{ij} = \zeta$ for $\le \varepsilon s j's$.
- **SVD** Use SVD on thresholded matrix to get starting centers for *k*-means algorithm.

- s = No. of docs. For this talk, probability that each topic is dominant is 1/k.
- **Threshold** Compute the threshold for each word *i*: First "Gap": Max ζ : $A_{ij} \ge \zeta$ for $\ge (s/2k) j's$ and $A_{ij} = \zeta$ for $\le \varepsilon s j's$.
- SVD Use SVD on thresholded matrix to get starting centers for k-means algorithm.
- k-means Run k-means. Will show: This identifies dominant topic.

- s = No. of docs. For this talk, probability that each topic is dominant is 1/k.
- **Threshold** Compute the threshold for each word *i*: First "Gap": Max ζ : $A_{ij} \ge \zeta$ for $\ge (s/2k) j's$ and $A_{ij} = \zeta$ for $\le \varepsilon s j's$.
- SVD Use SVD on thresholded matrix to get starting centers for k-means algorithm.
- k-means Run k-means. Will show: This identifies dominant topic.
- Identify Catchwords Find the set of high frequency words in each cluster. Will show: Set of Catchwords for topic.

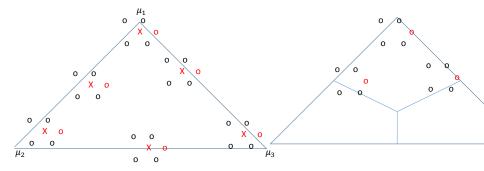
- s = No. of docs. For this talk, probability that each topic is dominant is 1/k.
- **Threshold** Compute the threshold for each word *i*: First "Gap": Max ζ : $A_{ij} \ge \zeta$ for $\ge (s/2k) j's$ and $A_{ij} = \zeta$ for $\le \varepsilon s j's$.
- SVD Use SVD on thresholded matrix to get starting centers for k-means algorithm.
- k-means Run k-means. Will show: This identifies dominant topic.
- Identify Catchwords Find the set of high frequency words in each cluster. Will show: Set of Catchwords for topic.
- Identify Pure Docs Find the set of documents with highest total number of occurrences of set of catchwords. Show: Nearly Pure Docs. Their average ≈ topic vector.

The advantage of Thresholding



Diagonal blue blocks are Catchwords for each topic. Black: Non-Catchwords.

Thresh+SVD+k-means ---- Dominant Topics



 Using no local min., show: No threshold splits any dominant topic in the "middle". So, threshlded matrix is a "block" matrix for catchwords. But for non-catchwords, can be high on several topics.

- Using no local min., show: No threshold splits any dominant topic in the "middle". So, threshlded matrix is a "block" matrix for catchwords. But for non-catchwords, can be high on several topics.
- PICTURE ON THE BOARD OF A BLOCK MATRIX.

- Using no local min., show: No threshold splits any dominant topic in the "middle". So, threshlded matrix is a "block" matrix for catchwords. But for non-catchwords, can be high on several topics.
- PICTURE ON THE BOARD OF A BLOCK MATRIX.
- Done ? No. Need inter-cluster separation ≥ intra-cluster spread (variance inside cluster).

- Using no local min., show: No threshold splits any dominant topic in the "middle". So, threshlded matrix is a "block" matrix for catchwords. But for non-catchwords, can be high on several topics.
- PICTURE ON THE BOARD OF A BLOCK MATRIX.
- Done ? No. Need inter-cluster separation ≥ intra-cluster spread (variance inside cluster).
- Catchwords provide sufficient inter-cluster separation.

- Using no local min., show: No threshold splits any dominant topic in the "middle". So, threshlded matrix is a "block" matrix for catchwords. But for non-catchwords, can be high on several topics.
- PICTURE ON THE BOARD OF A BLOCK MATRIX.
- Done ? No. Need inter-cluster separation ≥ intra-cluster spread (variance inside cluster).
- Catchwords provide sufficient inter-cluster separation.
- Inside-cluster variance bounded with machinery from Random Matrix Theory. Beware: Only columns are independent. Rows are not.

- Using no local min., show: No threshold splits any dominant topic in the "middle". So, threshlded matrix is a "block" matrix for catchwords. But for non-catchwords, can be high on several topics.
- PICTURE ON THE BOARD OF A BLOCK MATRIX.
- Done ? No. Need inter-cluster separation ≥ intra-cluster spread (variance inside cluster).
- Catchwords provide sufficient inter-cluster separation.
- Inside-cluster variance bounded with machinery from Random Matrix Theory. Beware: Only columns are independent. Rows are not.
- Appeal to a result on k-means (Kumar, K.: If inter-cluster separation ≥ inside-cluster directional stan. dev, then SVD followed by k-means clusters.

PICTURE OF SIMPLEX with columns of M as extreme points and cluster of doc.s with each dominant topic. Taking average of docs in T_l no good.

Emprircal Results: Datasets

- NIPS: 1,500 NIPS full papers
- NYT: Random subset of 30,000 documents from the New York Times dataset
- **Pubmed**: Random subset of 30,000 documents from the Pubmed abstracts dataset
- 20NG: 13,389 documents from 20NewsGroup dataset

Empirical Results: Assumptions

Corpus	Documents	K	Fraction of Documents		
			<i>α</i> = 0.4	<i>α</i> = 0.8	α = 0.9
NIPS	1,500	50	56.6%	10.7%	4.8%
NYT	30,000	50	63.7%	20.9%	12.7%
Pubmed	30,000	50	62.2%	20.3%	10.7%
20NG	13,389	20	74.1%	54.4%	44.3%

Table: Fraction of documents satisfying dominant topic assumption.

Corpus	К	Mean per topic frequency of CW	% Topics with CW
NIPS	50	0.05	95%
NYT	50	0.11	100%
Pubmed	50	0.05	90%
20NG	20	0.06	100%

Table: CatchWords (CW) assumption with $\rho = 1.1$, $\varepsilon = 0.25$

Empirical Results: Semi-synthetic Data

- Generate semi-synthetic corpora from LDA model trained by MCMC, to ensure that the synthetic corpora retain the characteristics of real data
- Gibbs sampling is run for 1000 iterations on all the four datasets and the final word-topic distribution is used to generate varying number (*s*) of synthetic documents with document-topic distribution drawn from a symmetric Dirichlet with hyper-parameter 0.01
- Note that the synthetic data is *not* guaranteed to satisfy dominant topic assumption for every document, on average about 80% documents satisfy the assumption

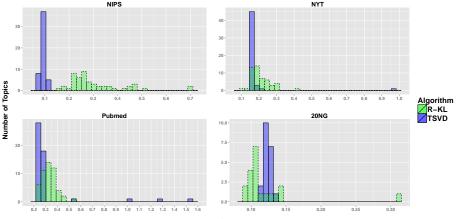
Empirical Results: L1 Recnstruction Error

And percent improvement over Recover-KL. Total average improvement over R-KL is **20%**

Corpus	Documents	Tensor	R-L2	R-KL	TSVD	% Improvement
NIPS	40,000	0.298	0.342	0.308	0.094	68.5%
	60,000	0.296	0.346	0.311	0.089	69.9%
	80,000	0.285	0.335	0.303	0.087	69.4%
	100,000	0.280	0.344	0.306	0.086	69.3%
	150,000	0.320	0.336	0.302	0.084	72.2%
	200,000	0.322	0.335	0.301	0.113	62.5%
	40,000	0.379	0.388	0.332	0.326	1.8%
	60,000	0.317	0.372	0.328	0.287	9.5%
Pubmed	80,000	0.321	0.358	0.320	0.276	13.8%
Fubilieu	100,000	0.304	0.350	0.315	0.276	9.2%
	150,000	0.355	0.344	0.313	0.239	23.6%
	200,000	0.322	0.334	0.309	0.225	27.3%
	40,000	0.174	0.126	0.120	0.124	-3.3%
	60,000	0.207	0.114	0.110	0.106	3.6%
20NG	80,000	0.203	0.110	0.108	0.095	12.0%
2014G	100,000	0.151	0.103	0.102	0.087	14.7%
	200,000	0.162	0.096	0.097	0.072	25.8%
	40,000	0.316	0.214	0.208	0.174	16.3%
NYT	60,000	0.330	0.205	0.200	0.156	22.0%
	80,000	0.330	0.198	0.196	0.168	14.3%
1411	100,000	0.353	0.198	0.196	0.163	16.8%

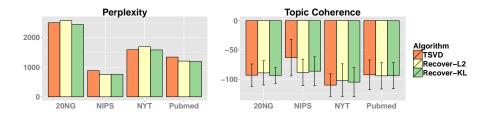
Empirical Results: L1 Recnstruction Eror

Histogram of L1 error across topics for 40k synthetic documents. On majority of the topic (> 90%) the recovery error for TSVD is significantly smaller than Recover-KL.



L1 Reconstruction Error

Empirical Results: Perplexity & Topic Coherence



Top 5 words of some topics on the real NYT dataset. Catchwords, anchor highlighted. "zzz"- identifier placed by NYT dataset.

TSVD	Recover-KL	Gibbs	
cup minutes add	cup minutes tablespoon	cup minutes add	
tablespoon oil	add oil	tablespoon oil	
team season coach	game team season play	team season game	
zzz_ram game	zzz_ram	coach zzz_nfl	
patient doctor drug	patient drug doctor	patient doctor drug	
cancer study	percent found	medical cancer	
zzz_john_mccain	zzz_john_mccain	zzz_john_mccain	
zzz_mccain zzz_bush	zzz_george_bush	zzz_george_bush	
zzz_george_bush	campaign republican	campaign zzz_bush	
campaign	voter	zzz_mccain	
house room building	room show look home	room look water house	
wall floor	house	hand	
film movie actor	film show movie music	film movie character play	
character zzz_oscar	book	director	
zzz_god christian religious zzz_jesus church	pope church book jewish religious	religious church jewish jew zzz_god	