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Assumption : Data = Real Data + Noise

Each Data Point is a column of the n×d Data Matrix A.

A= B︸︷︷︸
Real Data

+ C︸︷︷︸
Noise

.

rank (B)≤ k . ||C||(=Max|u|=1||Cu|) ≤ ∆.

k << n,d . ∆ small.
Caution: ||C||F (=

√∑
C2

ij ) need not be smaller than for example
||B||F . In words, overall noise can be larger than overall real data.

Given any A, Singular Value Decomposition (SVD) finds B of rank
k (or less) for which ||A−B|| is minimum. Space spanned by
columns of B is the best-fit subspace for A in the sense of least
sum over all data points of squared distances to subspace.
A very powerful tool. Decades of theory, algorithms. Here:
Example applications.
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Example I- Mixture of Spherical Gaussians

F (x)=w1N(µ1,σ2
1)+w2N(µ2,σ2

2)+·· ·+wkN(µk ,σ2
k ), in d

dimensions.

Learning Problem: Given i.i.d. samples from F (·), find the
components (µi ,σi ,wi ). Really a Clustering Problem.
In 1-dimension, we can solve the learning problem if Means of the
component densities are Ω(1) standard deviations apart.
But in d dimensions: Approximate k means fails. Pair of Sample
from different clusters may be closer than a pair from the same !
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SVD to the Rescue

For a mixture of k spherical Gaussians (with different variances),
the best-fit k dimensional subspace (found by SVD) passes
through all the k centers. Vempala, Wang.

Beautiful proof: For one spherical Gaussian with non-zero mean,
the best fit 1-dim subspace passes through the mean. And any
k-dim subspace containing the mean is a best-fit k− dimensional
space.
So, now if a k− dimensional space contains all the k means, it is
individually the best for each component Gaussian !!
Simple Observation to finish : Given the k− space containing the
means, we need only solve a k− dim problem. Can be done in
time exponential only in k
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Planted Clique Problem

Given G =G(n,1/2)+S×S, (S unknown, |S| = s), find S in poly
time. Best known: s ≥Ω(pn).

A=



1 1 1 ±1 ±1 ±1 ±1 ±1
1 1 1 ±1 ±1 ±1 ±1 ±1
1 1 1 ±1 ±1 ±1 ±1 ±1
±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1
±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1
±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1
±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1
±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1



|| Planted Clique || = s. Random Matrix Theory: Random ±1
matrix has norm at most 2

p
n. So, SVD finds S when s ≥p

n.
Alon, Boppanna-1985.
Feldman, Grigorescu, Reyzin, Vempala, Xiao (2014): Cannot be
beaten by Statistical Learning Algorithms.
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Planted Gaussians: Signal and Noise

A n×n matrix and S ⊆ [n], |S| = k .

Aij all independent r.v.’s

For i , j ∈S, Pr(Aij ≥µ)≥ 1/2. (Eg. N(µ,σ2)). Signal =µ.

For other i , j , Aij is N(0,σ2). Noise =σ.
Given A,µ,σ, find S. [Recall Planted Clique.]

A=



. . . . . . . .

. µ+ . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .
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Exponential Advantage in SNR by Thresholding

Brave new step: Threshold entries of A at µ → 0-1 matrix B.

E(B) :



. . . . . . . .

. (1/2)+ . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . exp(−µ2/2σ2) . .

. . . . . . . .

. . . . . . . .


Subtract exp(−µ2/2σ2)

. . . →

 || · || ≥ k/4
|| · || ≤ p

nexp(−cµ2/σ2)
Rand. Matrix


So, SVD finds S provided exp(c(µ/σ)2)>

p
n

k .

Cf: Ordinary SVD succeeds if µ
σ >

p
n

k .
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Thresholding: Second Plus

Data points {A1,A2, . . . ,Aj , . . .} in Rd , d features.

Data points are in 2 “SOFT” clusters: Data point j belongs wj to
cluster 1 and 1−wj to cluster 2. (More Generally, k clusters)
Each cluster has some some dominant features and each data
point has a dominant cluster.
Aij ≥µ if feature i is a dominant feature of the dominant topic of
data point j .
Aij ≤σ otherwise.
If variance above µ is larger than gap between µ and σ, a
2-clustering criterion (like 2-means) may split the high weight
cluster instead of separating it from the others.
Two Differences from Mixtures: Soft, High Variance in dominant
features.
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Topic Modeling: The Problem

Joint Work with T. Bansal and C. Bhattacharyya
d features - words in the dictionary. A document is a d− (column)
vector.

k topics. Topic l is a d− vector. (Probabilities of words in topic).
To generate doc j , generate a random convex combination of topic
vectors.
Generate words of doc. j in i.i.d. trials , each from the multinomial
with prob.s = Convex Combination. ***DRAW PICTURE ON
BOARD WITH SPORTS, POLITICS, WEATHER***
The Topic Modeling Problem Given only A, find an
approximation to all topic vectors so that the l1 error in each topic
vector is at most ε. l1 error crucial. (l2 misses small words.)
Generally NP-hard.
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Topic Modeling is Soft Clustering

Topic Vectors ≡ Cluster Centers

Each data point (doc) belongs to a weighted combination of
clusters. Generated from a distribution (happens to be
multinomial) with expectation = weighted combination.
Even if we manage to solve the clustering problem somehow, it is
not true that cluster centers are averages of documents. Big
Distinction from Learning Mixtures which is hard clusetring.
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Geometry

Topic Modeling = Soft Clustering 

𝜇1

𝜇2𝜇3

Given doc’s (means of o’s), find 𝜇𝑙. 

Helps to find nearly pure docs (X near corner) 

o      o
X     o

o       o

o      o
X     o

o       o

o      o
X     o

o       o
o      o

X     o
o       o

o      o
X     o

o       o

o      o
X     o

o       o

𝜇𝑙 = 𝑙 th topic vector
X = Weighted combination of 𝜇𝑙
o’s are words in a doc – iid choices with mean X 



Prior Results and Assumptions

Under Pure Topics and Primary Words (1−ε of words are primary)
Assumptions, SVD solves it. Papadimitriou, Raghavan, Tamaki,
Vempala.

Belief: SVD cannot do the non-pure topic case.
LDA : Most used model. Blei, Ng, Jordan. Multiple topics per doc.
Anandkumar, Foster, Hsu, Kakade, Liu do Topic Modeling under
LDA, to l2 error using clever tensor methods. Parameters.
Arora, Ge, Moitra Assume Anchor Word + Other parameters :
Each topic has one word (a) occurring only in that topic (b) with
high frequency. First Provable Algorithm.

Our Goals

Intuitive, empirically verified assumptions.
Natural, provable Algorithm.
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Our Assumptions

Intuitive to Topic Modeling, not numerical parameters like
condition number.

Catchwords: Each topic has a set of words: (a) each occurs
more frequently in the topic than others and (b) together, they
have high frequency.
Dominant Topics Each Document has a dominant topic which
has weight (in that doc) of at least some α, whereas,
non-dominant topics have weight at most some β.
Nearly Pure Documents Each topic has a (small) fraction of
documents which are 1−δ pure for that topic.
No Local Min.: For every word, the plot of number of documents
versus number of occurrences of word (conditioned on dominant
topic) has no local min. [Zipf’s law Or Unimodal.]
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The Algorothm - Threshold SVD (TSVD)

s = No. of docs. For this talk, probability that each topic is
dominant is 1/k .

Threshold Compute the threshold for each word i : First “Gap”:
Maxζ : Aij ≥ ζ for ≥ (s/2k) j ′s and Aij = ζ for ≤ εs j ′s.

SVD Use SVD on thresholded matrix to get starting centers for
k−means algorithm.
k−means Run k−means. Will show: This identifies dominant
topic.
Identify Catchwords Find the set of high frequency words in
each cluster. Will show: Set of Catchwords for topic.
Identify Pure Docs Find the set of documents with highest total
number of occurrences of set of catchwords. Show: Nearly Pure
Docs. Their average ≈ topic vector.
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The advantage of Thresholding

Diagonal blue blocks are Catchwords for each topic.
Black: Non-Catchwords.
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Properties of Thresholding

Using no local min., show: No threshold splits any dominant topic
in the “middle”. So, threshlded matrix is a “block” matrix for
catchwords. But for non-catchwords, can be high on several
topics.

PICTURE ON THE BOARD OF A BLOCK MATRIX.
Done ? No. Need inter-cluster separation ≥ intra-cluster spread
(variance inside cluster).
Catchwords provide sufficient inter-cluster separation.
Inside-cluster variance bounded with machinery from Random
Matrix Theory. Beware: Only columns are independent. Rows are
not.
Appeal to a result on k−means (Kumar, K.: If inter-cluster
separation ≥ inside-cluster directional stan. dev, then SVD
followed by k−means clusters.
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Getting Topic Vectors

PICTURE OF SIMPLEX with columns of M as extreme points and
cluster of doc.s with each dominant topic.
Taking average of docs in Tl no good.



Emprircal Results: Datasets

NIPS: 1,500 NIPS full papers
NYT: Random subset of 30,000 documents from the New York
Times dataset
Pubmed: Random subset of 30,000 documents from the Pubmed
abstracts dataset
20NG: 13,389 documents from 20NewsGroup dataset



Empirical Results: Assumptions

Corpus Documents K Fraction of Documents
α= 0.4 α= 0.8 α= 0.9

NIPS 1,500 50 56.6% 10.7% 4.8%
NYT 30,000 50 63.7% 20.9% 12.7%

Pubmed 30,000 50 62.2% 20.3% 10.7%
20NG 13,389 20 74.1% 54.4% 44.3%

Table: Fraction of documents satisfying dominant topic assumption.

Corpus K
Mean per topic % Topics

frequency of CW with CW
NIPS 50 0.05 95%
NYT 50 0.11 100%

Pubmed 50 0.05 90%
20NG 20 0.06 100%

Table: CatchWords (CW) assumption with ρ = 1.1, ε= 0.25



Empirical Results: Semi-synthetic Data

Generate semi-synthetic corpora from LDA model trained by
MCMC, to ensure that the synthetic corpora retain the
characteristics of real data
Gibbs sampling is run for 1000 iterations on all the four datasets
and the final word-topic distribution is used to generate varying
number (s) of synthetic documents with document-topic
distribution drawn from a symmetric Dirichlet with
hyper-parameter 0.01
Note that the synthetic data is not guaranteed to satisfy dominant
topic assumption for every document, on average about 80%
documents satisfy the assumption



Empirical Results: L1 Recnstruction Error

And percent improvement over Recover-KL. Total average
improvement over R-KL is 20%

Corpus Documents Tensor R-L2 R-KL TSVD % Improvement

NIPS

40,000 0.298 0.342 0.308 0.094 68.5%
60,000 0.296 0.346 0.311 0.089 69.9%
80,000 0.285 0.335 0.303 0.087 69.4%

100,000 0.280 0.344 0.306 0.086 69.3%
150,000 0.320 0.336 0.302 0.084 72.2%
200,000 0.322 0.335 0.301 0.113 62.5%

Pubmed

40,000 0.379 0.388 0.332 0.326 1.8%
60,000 0.317 0.372 0.328 0.287 9.5%
80,000 0.321 0.358 0.320 0.276 13.8%

100,000 0.304 0.350 0.315 0.276 9.2%
150,000 0.355 0.344 0.313 0.239 23.6%
200,000 0.322 0.334 0.309 0.225 27.3%

20NG

40,000 0.174 0.126 0.120 0.124 -3.3%
60,000 0.207 0.114 0.110 0.106 3.6%
80,000 0.203 0.110 0.108 0.095 12.0%

100,000 0.151 0.103 0.102 0.087 14.7%
200,000 0.162 0.096 0.097 0.072 25.8%

NYT

40,000 0.316 0.214 0.208 0.174 16.3%
60,000 0.330 0.205 0.200 0.156 22.0%
80,000 0.330 0.198 0.196 0.168 14.3%

100,000 0.353 0.198 0.196 0.163 16.8%
150,000 0.310 0.192 0.192 0.156 18.8%
200,000 0.292 0.189 0.189 0.173 8.5%



Empirical Results: L1 Recnstruction Eror

Histogram of L1 error across topics for 40k synthetic documents. On
majority of the topic (> 90%) the recovery error for TSVD is significantly
smaller than Recover-KL.
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Empirical Results: Perplexity & Topic Coherence
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Top 5 words of some topics on the real NYT dataset. Catchwords,
anchor highlighted. “zzz”- identifier placed by NYT dataset.

TSVD Recover-KL Gibbs
cup minutes add
tablespoon oil

cup minutes tablespoon
add oil

cup minutes add
tablespoon oil

team season coach
zzz_ram game

game team season play
zzz_ram

team season game
coach zzz_nfl

patient doctor drug
cancer study

patient drug doctor
percent found

patient doctor drug
medical cancer

zzz_john_mccain
zzz_mccain zzz_bush

zzz_george_bush
campaign

zzz_john_mccain
zzz_george_bush

campaign republican
voter

zzz_john_mccain
zzz_george_bush

campaign zzz_bush
zzz_mccain

house room building
wall floor

room show look home
house

room look water house
hand

film movie actor
character zzz_oscar

film show movie music
book

film movie character play
director

zzz_god christian
religious zzz_jesus

church

pope church book jewish
religious

religious church jewish
jew zzz_god


