The Contextual Bandits Problem <u>A New, Fast, and Simple Algorithm</u>

Alekh Agarwal (MSR) Daniel Hsu (Columbia) Satyen Kale (Yahoo) John Langford (MSR) Lihong Li (MSR) <u>Rob Schapire</u> (MSR/Princeton)

- repeat:
 - 1. website visited by user (with profile, browsing history, etc.)
 - 2. website chooses ad/content to present to user
 - 3. user responds (clicks, leaves page, etc.)
- goal: make choices that elicit desired user behavior

- repeat:
 - 1. doctor visited by patient (with symptoms, test results, etc.)
 - 2. doctor chooses treatment
 - 3. patient responds (recovers, gets worse, etc.)
- goal: make choices that maximize favorable outcomes

The Contextual Bandits Problem

• repeat:

- 1. learner presented with context
- 2. learner chooses an action
- 3. learner observes reward (but only for chosen action)
- goal: learn to choose actions to maximize rewards

The Contextual Bandits Problem

• repeat:

- 1. learner presented with context
- 2. learner chooses an action
- 3. learner observes reward (but only for chosen action)
- goal: learn to choose actions to maximize rewards
- general and fundamental problem: how to learn to make intelligent decisions through experience

- classic dilemma:
 - exploit what has already been learned
 - explore to learn which behaviors give best results

<u>Issues</u>

- classic dilemma:
 - exploit what has already been learned
 - explore to learn which behaviors give best results
- in addition, must use context effectively
 - many choices of behavior possible
 - may never see same context twice

<u>Issues</u>

- classic dilemma:
 - exploit what has already been learned
 - explore to learn which behaviors give best results
- in addition, must use context effectively
 - many choices of behavior possible
 - may never see same context twice
- selection bias: if explore while exploiting, will tend to get highly skewed data

<u>Issues</u>

- classic dilemma:
 - exploit what has already been learned
 - explore to learn which behaviors give best results
- in addition, must use context effectively
 - many choices of behavior possible
 - may never see same context twice
- selection bias: if explore while exploiting, will tend to get highly skewed data
- efficiency

- new and general algorithm for contextual bandits
- optimal statistical performance
- far faster and simpler than predecessors

repeat

1a. learner observes context x_t

- 2. learner selects action $a_t \in \{1, \ldots, K\}$
- 3. learner receives observed reward $r_t(a_t)$

repeat

1a. learner observes context x_t

1b. reward vector $\mathbf{r}_t \in [0,1]^K$ chosen (but not observed)

- 2. learner selects action $a_t \in \{1, \ldots, K\}$
- 3. learner receives observed reward $r_t(a_t)$

repeat

1a. learner observes context x_t

1b. reward vector $\mathbf{r}_t \in [0, 1]^K$ chosen (but not observed)

- 2. learner selects action $a_t \in \{1, \ldots, K\}$
- 3. learner receives observed reward $r_t(a_t)$
- goal: maximize total reward:

$$\sum_{t=1}^{T} r_t(a_t)$$

repeat

- 1a. learner observes context x_t
- 1b. reward vector $\mathbf{r}_t \in [0,1]^K$ chosen (but not observed)
 - 2. learner selects action $a_t \in \{1, \ldots, K\}$
 - 3. learner receives observed reward $r_t(a_t)$
- goal: maximize total reward:

$$\sum_{t=1}^{T} r_t(a_t)$$

• assume pairs (x_t, \mathbf{r}_t) chosen at random i.i.d.

Actions		
1	2	3
	1	Action: 1 2

	Actions		
Context	1	2	3
(<i>Male</i> , 50,)	1.0	0.2	0.0

	Actions		
Context	1	2	3
(<i>Male</i> , 50,)	1.0		

	Actions		
Context	1	2	3
(<i>Male</i> , 50,)	1.0	0.2	0.0

total reward = 0.2 +

	Actions		
Context	1	2	3
(<i>Male</i> , 50,)	1.0	0.2	0.0
$(Female, 18, \ldots)$			

total reward = 0.2 +

	Actions		
Context	1	2	3
(<i>Male</i> , 50,)	1.0	0.2	0.0
$(Female, 18, \ldots)$	1.0		

total reward = 0.2 +

	Actions		
Context	1	2	3
(<i>Male</i> , 50,)	1.0	0.2	
$(Female, 18, \ldots)$	1.0		1.0

total reward = 0.2 + 1.0 +

	Actions		
Context	1	2	3
(<i>Male</i> , 50,)	1.0	0.2	
$(Female, 18, \ldots)$	1.0		1.0
(<i>Female</i> , 48,)			

total reward = 0.2 + 1.0 +

	Actions		
Context	1	2	3
(<i>Male</i> , 50,)	1.0	0.2	
$(Female, 18, \ldots)$	1.0		1.0
(<i>Female</i> , 48,)	0.5		

total reward = 0.2 + 1.0 +

	Actions		
Context	1	2	3
(<i>Male</i> , 50,)	1.0	0.2	
$(Female, 18, \ldots)$	1.0		1.0
(<i>Female</i> , 48,)	0.5	0.1	
÷		÷	

total reward = $0.2 + 1.0 + 0.1 + \cdots$

Special Case: Multi-armed Bandit Problem

- no context
- try to do as well as best single action

Special Case: Multi-armed Bandit Problem

- no context
- try to do as well as best single action
 - tacitly assuming there is one action that gives high rewards
 - e.g.: single treatment/ad/content that is right for entire population

- in contextual bandits setting, can use context to choose actions
- may exist good policy (decision rule) for choosing actions based on context

- in contextual bandits setting, can use context to choose actions
- may exist good policy (decision rule) for choosing actions based on context

• e.g.:

 $\begin{array}{ll} \mbox{If (sex = male)} & \mbox{choose action 2} \\ \mbox{Else if (age > 45)} & \mbox{choose action 1} \\ \mbox{else} & \mbox{choose action 3} \end{array}$

- in contextual bandits setting, can use context to choose actions
- may exist good policy (decision rule) for choosing actions based on context

• e.g.:

 $\begin{array}{ll} \mbox{If (sex = male)} & \mbox{choose action 2} \\ \mbox{Else if (age > 45)} & \mbox{choose action 1} \\ \mbox{else} & \mbox{choose action 3} \end{array}$

• policy π : (context x) \mapsto (action a)

- in contextual bandits setting, can use context to choose actions
- may exist good policy (decision rule) for choosing actions based on context
- e.g.:

 $\begin{array}{ll} \mbox{If (sex} = \mbox{male}) & \mbox{choose action 2} \\ \mbox{Else if (age > 45)} & \mbox{choose action 1} \\ \mbox{else} & \mbox{choose action 3} \end{array}$

- policy π : (context x) \mapsto (action a)
- learner generally working with some rich policy space Π
 - e.g.: all decision trees ("if-then-else" rules)

- in contextual bandits setting, can use context to choose actions
- may exist good policy (decision rule) for choosing actions based on context
- e.g.:

 $\begin{array}{ll} \mbox{If (sex = male)} & \mbox{choose action 2} \\ \mbox{Else if (age > 45)} & \mbox{choose action 1} \\ \mbox{else} & \mbox{choose action 3} \end{array}$

- policy π : (context x) \mapsto (action a)
- learner generally working with some rich policy space Π
 - e.g.: all decision trees ("if-then-else" rules)
 - assume Π finite, but typically extremely large
 - tacit assumption:
 - \exists (unknown) policy $\pi \in \Pi$ that gives high rewards

Learning with Context and Policies

- goal: learn through experimentation to do (almost) as well as best $\pi\in\Pi$
- policies may be very complex and expressive
 - \Rightarrow powerful approach

Learning with Context and Policies

- goal: learn through experimentation to do (almost) as well as best $\pi \in \Pi$
- policies may be very complex and expressive
 - \Rightarrow powerful approach
- challenges:
 - extremely large
 - need to be learning about all policies simultaneously while also performing as well as the best
 - when action selected, only observe reward for policies that would have chosen same action
 - exploration versus exploitation on a gigantic scale!

Formal Model (revisited)

- repeat
 - 1a. learner observes context x_t
 - 1b. reward vector $\mathbf{r}_t \in [0, 1]^K$ chosen (but not observed)
 - 2. learner selects action $a_t \in \{1, \ldots, K\}$
 - 3. learner receives observed reward $r_t(a_t)$
- goal: want high total (or average) reward relative to best policy $\pi \in \Pi$

Formal Model (revisited)

- repeat
 - 1a. learner observes context x_t
 - 1b. reward vector $\mathbf{r}_t \in [0, 1]^K$ chosen (but not observed)
 - 2. learner selects action $a_t \in \{1, \ldots, K\}$
 - 3. learner receives observed reward $r_t(a_t)$
- goal: want high total (or average) reward relative to best policy π ∈ Π
 - i.e., want small regret:

Formal Model (revisited)

- repeat
 - 1a. learner observes context x_t
 - 1b. reward vector $\mathbf{r}_t \in [0, 1]^K$ chosen (but not observed)
 - 2. learner selects action $a_t \in \{1, \ldots, K\}$
 - 3. learner receives observed reward $r_t(a_t)$
- goal: want high total (or average) reward relative to best policy π ∈ Π
 - i.e., want small regret:

best policy's average reward

learner's average reward
[Auer, Cesa-Bianchi, Freund, Schapire]

- Exp4 solves this problem
 - maintains weights over all policies in Π

[Auer, Cesa-Bianchi, Freund, Schapire]

- Exp4 solves this problem
 - maintains weights over all policies in Π
- regret is essentially optimal:

$$O\left(\sqrt{\frac{K\ln|\Pi|}{T}}\right)$$

• even works for adversarial (i.e., non-random, non-iid) data

[Auer, Cesa-Bianchi, Freund, Schapire]

- Exp4 solves this problem
 - maintains weights over all policies in Π
- regret is essentially optimal:

$$O\left(\sqrt{\frac{K\ln|\Pi|}{T}}\right)$$

- even works for adversarial (i.e., non-random, non-iid) data
- but: time/space are linear in $|\Pi|$
 - too slow if $|\Pi|$ gigantic

[Auer, Cesa-Bianchi, Freund, Schapire]

- Exp4 solves this problem
 - maintains weights over all policies in Π
- regret is essentially optimal:

$$O\left(\sqrt{\frac{K\ln|\Pi|}{T}}\right)$$

- even works for adversarial (i.e., non-random, non-iid) data
- but: time/space are linear in $|\Pi|$
 - too slow if $|\Pi|$ gigantic
- seems hopeless to do better for fully general policy spaces
- this talk: aim for time/space only poly(log |∏|) when ∏ is "well structured"

• say see rewards for all actions

• say see rewards for all actions

• say see rewards for all actions

	Actions			
Context	1	2	3	
(<i>Male</i> , 50,)	1.0	0.2	0.0	= learner's action

say see rewards for all actions

learner's total reward = 0.2 +

• say see rewards for all actions

	Actions		
Context	1	2	3
(<i>Male</i> , 50,)	1.0	0.2	0.0
$(Female, 18, \ldots)$	1.0	0.0	1.0
(<i>Female</i> , 48,)	0.5	0.1	0.7
:		÷	
			~ ~

= learner's action

learner's total reward = $0.2 + 1.0 + 0.1 + \cdots$

say see rewards for all actions

• for any π , can compute rewards would have received

say see rewards for all actions

• for any π , can compute rewards would have received

say see rewards for all actions

learner's total reward = $0.2 + 1.0 + 0.1 + \cdots$ π 's total reward = $0.0 + 1.0 + 0.5 + \cdots$

- for any π , can compute rewards would have received
 - average is good estimate of π 's expected reward

say see rewards for all actions

= learner's action $= \pi \text{'s action}$

learner's total reward = $0.2 + 1.0 + 0.1 + \cdots$ π 's total reward = $0.0 + 1.0 + 0.5 + \cdots$

- for any π , can compute rewards would have received
 - average is good estimate of π 's expected reward
- choose empirically best $\pi \in \Pi$

• regret =
$$O\left(\sqrt{\frac{\ln|\Pi|}{T}}\right)$$

"Arg-Max Oracle" (AMO)

- to apply, just need "oracle" (algorithm/subroutine) for finding best $\pi\in\Pi$ on observed rewards
- input: $(x_1, \mathbf{r}_1), \dots, (x_T, \mathbf{r}_T)$

 $x_t = \text{context}$

 $\mathbf{r}_t = (r_t(1), \dots, r_t(K)) =$ rewards for all actions

• output:

$$\hat{\pi} = \arg \max_{\pi \in \Pi} \sum_{t=1}^{T} r_t(\pi(x_t))$$

<u>"Arg-Max Oracle" (AMO)</u>

- to apply, just need "oracle" (algorithm/subroutine) for finding best $\pi\in\Pi$ on observed rewards
- input: $(x_1, \mathbf{r}_1), \dots, (x_T, \mathbf{r}_T)$

 $x_t = \text{context}$

 $\mathbf{r}_t = (r_t(1), \dots, r_t(K)) =$ rewards for all actions

• output:

$$\hat{\pi} = \arg \max_{\pi \in \Pi} \sum_{t=1}^{T} r_t(\pi(x_t))$$

• really just (cost-sensitive) classification:

context	\leftrightarrow	example
action	\leftrightarrow	label/class
policy	\leftrightarrow	classifier
reward	\leftrightarrow	gain/(negative) cost

<u>"Arg-Max Oracle" (AMO)</u>

- to apply, just need "oracle" (algorithm/subroutine) for finding best $\pi\in\Pi$ on observed rewards
- input: $(x_1, \mathbf{r}_1), \dots, (x_T, \mathbf{r}_T)$

 $x_t = \text{context}$

 $\mathbf{r}_t = (r_t(1), \dots, r_t(K)) =$ rewards for all actions

• output:

$$\hat{\pi} = \arg \max_{\pi \in \Pi} \sum_{t=1}^{T} r_t(\pi(x_t))$$

• really just (cost-sensitive) classification:

 $\begin{array}{rcl} \mathsf{context} & \leftrightarrow & \mathsf{example} \\ \mathsf{action} & \leftrightarrow & \mathsf{label/class} \\ \mathsf{policy} & \leftrightarrow & \mathsf{classifier} \\ \mathsf{reward} & \leftrightarrow & \mathsf{gain/(negative)} \ \mathsf{cost} \end{array}$

• so: if have "good" classification algorithm for Π, can use to find good policy (in full-information setting)

	Actions		
Context	1	2	3
(<i>Male</i> , 50,)	1.0	0.2	0.0
(<i>Female</i> , 18,)	1.0	0.0	1.0
(<i>Female</i> , 48,)	0.5	0.1	0.7
÷		÷	

		Actions	5	
Context	1	2	3	
(<i>Male</i> , 50,)	1.0	0.2		= learner's action
$(Female, 18, \ldots)$	1.0		1.0	
(<i>Female</i> , 48,)	0.5	0.1		
÷		÷		

	/	Actions	5	
Context	1	2	3	
(<i>Male</i> , 50,)	1.0	0.2		= learner's action
$(Female, 18, \ldots)$	1.0		1.0	
(<i>Female</i> , 48,)	0.5	0.1		
÷		÷		
learner's total reward =	0.2 +	1.0 +	$0.1 + \cdots$	

• ...only see rewards for actions taken

• for any policy π , only observe π 's rewards on subset of rounds

• ...only see rewards for actions taken

• for any policy π , only observe π 's rewards on subset of rounds

...only see rewards for actions taken

learner's total reward = $0.2 + 1.0 + 0.1 + \cdots$ π 's total reward = ?? + 1.0 + ?? + \cdots

- for any policy π , only observe π 's rewards on subset of rounds
- might like to use AMO to find empirically good policy
- problems:
 - only see some rewards
 - observed rewards highly biased (due to skewed choice of actions)

- still: AMO is a natural primitive
- key question: can we solve the contextual bandits problem given access to AMO?

- still: AMO is a natural primitive
- key question: can we solve the contextual bandits problem given access to AMO?
- can we use an AMO on bandit data by somehow:
 - filling in missing data
 - overcoming bias

- still: AMO is a natural primitive
- key question: can we solve the contextual bandits problem given access to AMO?
- can we use an AMO on bandit data by somehow:
 - filling in missing data
 - overcoming bias
- want:
 - optimal regret
 - time/space bounds poly(log |Π|)

- still: AMO is a natural primitive
- key question: can we solve the contextual bandits problem given access to AMO?
- can we use an AMO on bandit data by somehow:
 - filling in missing data
 - overcoming bias
- want:
 - optimal regret
 - time/space bounds poly(log |Π|)
- AMO is theoretical idealization
- captures structure in policy space
- in practice, can use off-the-shelf classification algorithm

- partially solved by the $\epsilon\text{-greedy/epoch-greedy}$ algorithm
- on each round, choose action:
 - according to "best" policy so far (with probability $1-\epsilon$)
 - uniformly at random (with probability ϵ)

- partially solved by the $\epsilon\text{-greedy/epoch-greedy}$ algorithm
- on each round, choose action:
 - according to "best" policy so far $\left(\mathsf{with} \ \mathsf{probability} \ 1-\epsilon
 ight)$
 - uniformly at random

[can find with AMO] (with probability ϵ)

[can find with AMO] (with probability ϵ)

- partially solved by the $\epsilon\text{-greedy/epoch-greedy}$ algorithm
- on each round, choose action:
 - according to "best" policy so far $\left(\mathsf{with} \ \mathsf{probability} \ 1-\epsilon
 ight)$
 - uniformly at random
- regret = $O\left(\left(\frac{K\ln|\Pi|}{T}\right)^{1/3}\right)$
- fast and simple, but not optimal

"Monster" Algorithm

[Dudík, Hsu, Kale, Karampatziakis, Langford, Reyzin & Zhang]

- RandomizedUCB (aka "Monster") algorithm gets optimal regret using AMO
- solves multiple optimization problems using ellipsoid algorithm
- very slow: calls AMO about $\tilde{O}(T^4)$ times on every round

Main Result

- new, simple algorithm for contextual bandits with AMO access
- (nearly) optimal regret: $\tilde{O}\left(\sqrt{\frac{K\ln|\Pi|}{T}}\right)$
- fast: calls AMO far less than once per round!
 - on average, calls AMO

$$ilde{O}\left(\sqrt{rac{\mathcal{K}}{\mathcal{T}\ln|\Pi|}}
ight)\ll 1$$

times per round

Main Result

- new, simple algorithm for contextual bandits with AMO access
- (nearly) optimal regret: $\tilde{O}\left(\sqrt{\frac{K\ln|\Pi|}{T}}\right)$
- fast: calls AMO far less than once per round!
 - on average, calls AMO

$$\tilde{O}\left(\sqrt{\frac{K}{T\ln|\Pi|}}
ight)\ll 1$$

times per round

• rest of talk: sketching main ideas of the algorithm

- selection bias is major problem:
 - only observe reward for single action
 - exploring while exploiting leads to inherently biased estimates

- selection bias is major problem:
 - only observe reward for single action
 - exploring while exploiting leads to inherently biased estimates
- nevertheless: can use simple trick to get unbiased estimates for all actions

De-biasing Biased Estimates (cont.)

say r(a) = (unknown) reward for action a
 p(a) = (known) probability of choosing a
- say r(a) = (unknown) reward for action a p(a) = (known) probability of choosing a
- define $\hat{r}(a) = \begin{cases} r(a)/p(a) & \text{if } a \text{ chosen} \\ 0 & \text{else} \end{cases}$
- then $E[\hat{r}(a)] = r(a)$

- say r(a) = (unknown) reward for action a
 p(a) = (known) probability of choosing a
- define $\hat{r}(a) = \begin{cases} r(a)/p(a) & \text{if } a \text{ chosen} \\ 0 & \text{else} \end{cases}$
- then $E[\hat{r}(a)] = r(a)$ unbiased!
- ... can estimate reward for all actions

- say r(a) = (unknown) reward for action a
 p(a) = (known) probability of choosing a
- define $\hat{r}(a) = \begin{cases} r(a)/p(a) & \text{if } a \text{ chosen} \\ 0 & \text{else} \end{cases}$
- then $E[\hat{r}(a)] = r(a)$ unbiased!
- ... can estimate reward for all actions
- \therefore can estimate expected reward for any policy π :

$$\hat{R}(\pi) = rac{1}{t-1} \sum_{ au=1}^{t-1} \hat{r}_{ au}(\pi(x_{ au})) = \hat{\mathrm{E}}\left[\hat{r}(\pi(x))
ight]$$

- say r(a) = (unknown) reward for action a
 p(a) = (known) probability of choosing a
- define $\hat{r}(a) = \begin{cases} r(a)/p(a) & \text{if } a \text{ chosen} \\ 0 & \text{else} \end{cases}$
- then $E[\hat{r}(a)] = r(a)$ unbiased!
- ... can estimate reward for all actions
- \therefore can estimate expected reward for any policy π :

$$\hat{R}(\pi) = rac{1}{t-1} \sum_{ au=1}^{t-1} \hat{r}_{ au}(\pi(x_{ au})) = \hat{\mathrm{E}}\left[\hat{r}(\pi(x))
ight]$$

 \therefore can estimate regret of any policy π :

$$\widehat{\mathsf{Regret}}(\pi) = \max_{\hat{\pi} \in \Pi} \hat{R}(\hat{\pi}) - \hat{R}(\pi)$$

• can find maximizing $\hat{\pi}$ using AMO

• estimates are unbiased — done?

- estimates are unbiased done?
- no! variance may be extremely large

- estimates are unbiased done?
- no! variance may be extremely large
- can show variance $(\hat{r}(a)) \leq \frac{1}{p(a)}$

- estimates are unbiased done?
- no! variance may be extremely large
- can show variance $(\hat{r}(a)) \leq \frac{1}{p(a)}$

 \therefore to get good estimates, must ensure that 1/p(a) not too large

• need to choose actions (semi-)randomly

- need to choose actions (semi-)randomly
- approach: on each round,
 - compute distribution Q over policy space Π
 - randomly pick $\pi \sim \mathbf{Q}$
 - on current context x, choose action $\pi(x)$

- need to choose actions (semi-)randomly
- approach: on each round,
 - compute distribution **Q** over policy space Π
 - randomly pick $\pi \sim \mathbf{Q}$
 - on current context x, choose action $\pi(x)$
- **Q** induces distribution over actions (for any *x*):

$$Q(a|x) = \Pr_{\pi \sim \mathbf{Q}} [\pi(x) = a]$$

- need to choose actions (semi-)randomly
- approach: on each round,
 - compute distribution **Q** over policy space Π
 - randomly pick $\pi \sim \mathbf{Q}$
 - on current context x, choose action $\pi(x)$
- **Q** induces distribution over actions (for any *x*):

$$Q(a|x) = \Pr_{\pi \sim \mathbf{Q}} [\pi(x) = a]$$

- seems will require time/space O(|∏|) to compute Q over space Π
 - will see later how to avoid!

- on each round, want to pick Q with:
 - 1. low (estimated) regret
 - i.e., choose actions think will give high reward

- on each round, want to pick Q with:
 - 1. low (estimated) regret
 - i.e., choose actions think will give high reward
 - 2. low (estimated) variance
 - i.e., ensure future estimates will be accurate

- on each round, want to pick **Q** with:
 - 1. low (estimated) regret
 - i.e., choose actions think will give high reward
 - 2. low (estimated) variance

i.e., ensure future estimates will be accurate

[exploit]

[explore]

• $\widehat{\mathsf{Regret}}(\pi) = \mathsf{estimated regret of } \pi$

Low Regret

- $\widehat{\mathsf{Regret}}(\pi) = \mathsf{estimated} \ \mathsf{regret} \ \mathsf{of} \ \pi$
- so: estimated regret for random $\pi \sim \mathbf{Q}$ is

$$\sum_{\pi} Q(\pi) \ \widehat{\mathsf{Regret}}(\pi) = \mathrm{E}_{\pi \sim \mathbf{Q}} \left[\widehat{\mathsf{Regret}}(\pi) \right]$$

Low Regret

- $\widehat{\mathsf{Regret}}(\pi) = \mathsf{estimated} \ \mathsf{regret} \ \mathsf{of} \ \pi$
- so: estimated regret for random $\pi \sim \mathbf{Q}$ is

$$\sum_{\pi} Q(\pi) \ \widehat{\mathsf{Regret}}(\pi) = \mathrm{E}_{\pi \sim \mathbf{Q}} \left[\widehat{\mathsf{Regret}}(\pi) \right]$$

• want small:

$$\sum_{\pi} Q(\pi) \ \widehat{\mathsf{Regret}}(\pi) \leq [\mathsf{small}]$$

- $\frac{1}{Q(a|x)} =$ variance of estimate of reward for action *a*
- so $\frac{1}{Q(\pi(x)|x)}$ = variance if action chosen by π

- $\frac{1}{Q(a|x)}$ = variance of estimate of reward for action a
- so 1/Q(π(x)|x) = variance if action chosen by π
 can estimate expected variance for actions chosen by π:

$$\hat{V}^Q(\pi) = \hat{\mathrm{E}}\left[rac{1}{Q(\pi(x)|x)}
ight] = rac{1}{t-1}\sum_{ au=1}^{t-1}rac{1}{Q(\pi(x_ au)|x_ au)}$$

- $\frac{1}{Q(a|x)}$ = variance of estimate of reward for action *a*
- so 1/Q(π(x)|x) = variance if action chosen by π
 can estimate expected variance for actions chosen by π:

$$\hat{V}^{Q}(\pi) = \hat{\mathrm{E}}\left[\frac{1}{Q(\pi(x)|x)}\right] = \frac{1}{t-1}\sum_{\tau=1}^{t-1}\frac{1}{Q(\pi(x_{\tau})|x_{\tau})}$$

• want small:

 $\hat{V}^Q(\pi) \leq [\text{small}] \text{ for all } \pi \in \Pi$

- $\frac{1}{Q(a|x)}$ = variance of estimate of reward for action *a*
- so 1/Q(π(x)|x) = variance if action chosen by π
 can estimate expected variance for actions chosen by π:

$$\hat{V}^{Q}(\pi) = \hat{\mathrm{E}}\left[\frac{1}{Q(\pi(x)|x)}\right] = \frac{1}{t-1}\sum_{\tau=1}^{t-1}\frac{1}{Q(\pi(x_{\tau})|x_{\tau})}$$

• want small:

 $\hat{V}^Q(\pi) \leq [\text{small}] \text{ for all } \pi \in \Pi$

• detail: problematic if Q(a|x) too close to zero

- $\frac{1}{Q^{\mu}(a|x)}$ = variance of estimate of reward for action *a*
- so ¹/_{Q^μ(π(x)|x)} = variance if action chosen by π
 can estimate expected variance for actions chosen by π:

$$\hat{V}^Q(\pi) = \hat{\mathrm{E}}\left[rac{1}{Q^\mu(\pi(x)|x)}
ight] = rac{1}{t-1}\sum_{ au=1}^{t-1}rac{1}{Q^\mu(\pi(x_ au)|x_ au)}$$

want small:

 $\hat{V}^Q(\pi) \leq [\text{small}] \text{ for all } \pi \in \Pi$

- detail: problematic if Q(a|x) too close to zero
 - to avoid, "smooth" probabilities by occassionally picking action uniformly at random:

$$Q^{\mu}(a|x) = (1 - K\mu)Q(a|x) + \mu$$

• want **Q** such that:

$$\sum_{\pi} Q(\pi) \ \widehat{\mathsf{Regret}}(\pi) \leq [\mathsf{small}]$$
$$\hat{V}^Q(\pi) \leq [\mathsf{small}] \qquad \qquad \text{for all } \pi \in \Pi$$

• want **Q** such that:

$$\sum_{\pi} Q(\pi) \ \widehat{\mathsf{Regret}}(\pi) \leq [\mathsf{small}]$$

$$\hat{V}^Q(\pi) \leq [\mathsf{small}] \quad \text{for all } \pi \in \Pi$$

$$\sum_{\pi} Q(\pi) = 1$$

• want **Q** such that:

$$\sum_{\pi} Q(\pi) \ \widehat{\mathsf{Regret}}(\pi) \leq \mathcal{C}_{0}$$
 $\mathcal{C}_{1} \cdot \hat{V}^{Q}(\pi) \leq \mathcal{C}_{0}$
 $\sum_{\pi} Q(\pi) = 1$

for all
$$\pi \in \Pi$$

• can fill in constants

• want **Q** such that:

$$\sum_{\pi} Q(\pi) \ \widehat{\operatorname{Regret}}(\pi) \leq C_0$$

 $C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \widehat{\operatorname{Regret}}(\pi)$ for all $\pi \in \Pi$
 $\sum_{\pi} Q(\pi) = 1$

- can fill in constants
- make easier by:
 - allowing higher variance for policies with higher regret (poor policies can be eliminated even with fairly poor performance estimates)

• want Q such that:

$$\sum_{\pi} Q(\pi) \ \widehat{\operatorname{Regret}}(\pi) \leq C_0$$

$$C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \widehat{\operatorname{Regret}}(\pi) \quad \text{ for all } \pi \in \Pi$$

$$\sum_{\pi} Q(\pi) \leq 1$$

- can fill in constants
- make easier by:
 - allowing higher variance for policies with higher regret (poor policies can be eliminated even with fairly poor performance estimates)
 - only require Q to be sub-distribution (can put all remaining mass on π̂ with maximum estimated reward)

find \mathbf{Q} such that:

$$\begin{split} \sum_{\pi} Q(\pi) \ \widehat{\mathsf{Regret}}(\pi) &\leq C_0 \\ C_1 \cdot \hat{V}^Q(\pi) &\leq C_0 + \widehat{\mathsf{Regret}}(\pi) \quad \text{for all } \pi \in \Pi \\ \sum_{\pi} Q(\pi) &\leq 1 \end{split}$$

find **Q** such that:

 $\sum_{\pi} Q(\pi) \ \widehat{\mathsf{Regret}}(\pi) \le C_0 \qquad [\text{regret constraint}]$ $C_1 \cdot \hat{V}^Q(\pi) \le C_0 + \widehat{\mathsf{Regret}}(\pi) \quad \text{for all } \pi \in \Pi \quad [\text{variance constraint}]$ $\sum_{\pi} Q(\pi) \le 1 \qquad [\text{sub-distribution}]$

find **Q** such that:

 $\sum_{\pi} Q(\pi) \ \widehat{\mathsf{Regret}}(\pi) \le C_0 \qquad [\text{regret constraint}]$ $C_1 \cdot \hat{V}^Q(\pi) \le C_0 + \widehat{\mathsf{Regret}}(\pi) \quad \text{for all } \pi \in \Pi \quad [\text{variance constraint}]$ $\sum_{\pi} Q(\pi) \le 1 \qquad [\text{sub-distribution}]$

• similar to [Dudík et al.]

find **Q** such that:

$$\begin{split} \sum_{\pi} Q(\pi) \ \widehat{\mathsf{Regret}}(\pi) &\leq C_0 & [\mathsf{regret constraint}] \\ C_1 \cdot \hat{V}^Q(\pi) &\leq C_0 + \widehat{\mathsf{Regret}}(\pi) & \text{for all } \pi \in \Pi & [\mathsf{variance constraint}] \\ \sum_{\pi} Q(\pi) &\leq 1 & [\mathsf{sub-distribution}] \end{split}$$

- similar to [Dudík et al.]
- seems awful:
 - I∏ variables
 - |∏| constraints
 - constraints involve nasty non-linear functions (recall $\hat{V}^Q(\pi) = \hat{E} \left[\frac{1}{Q^{\mu}(\pi(x)|x)} \right]$)
 - not even clear if feasible

If We Can Solve It...

٠

• Theorem: if can solve OP on every round (for appropriate constants), then will get regret

$$\tilde{O}\left(\sqrt{\frac{K\ln|\Pi|}{T}}\right)$$

If We Can Solve It...

• Theorem: if can solve OP on every round (for appropriate constants), then will get regret

$$\tilde{O}\left(\sqrt{\frac{K\ln|\Pi|}{T}}\right)$$

• proof idea:

٠

- regret constraint ensures low regret (if estimates are good enough)
- variance constraint ensures that they actually will be good enough
- essentially same approach as [Dudík et al.]

How to Solve?

- basic idea:
 - find a violated constraint
 - (attempt to) fix it
 - repeat
How to Solve? (cont.)

- $\mathbf{Q} \leftarrow \mathbf{0}$
- repeat:
 - 1. if ${\boldsymbol{\mathsf{Q}}}$ "too big" then rescale
 - (i.e., multiply ${\sf Q}$ by scalar < 1)
 - ensures sub-distribution and regret constraints are satisfied

How to Solve? (cont.)

- $\mathbf{Q} \leftarrow \mathbf{0}$
- repeat:
 - 1. if \mathbf{Q} "too big" then rescale
 - (i.e., multiply ${\sf Q}$ by scalar < 1)
 - ensures sub-distribution and regret constraints are satisfied
 - 2. find $\pi \in \Pi$ for which corresponding variance constraint is violated
 - a. if none exists, halt and output ${\bf Q}$
 - b. else $Q(\pi) \leftarrow Q(\pi) + \alpha$ where $\alpha = [$ some formula]

More Detail: Rescaling Step

1. [detailed version]

if $\sum_{\pi} Q(\pi)(C_0 + \widehat{\text{Regret}}(\pi)) > C_0$ then rescale **Q** (multiply by scalar < 1) so holds with equality

More Detail: Rescaling Step

1. [detailed version]

if $\sum_{\pi} Q(\pi)(C_0 + \widehat{\text{Regret}}(\pi)) > C_0$ then rescale **Q** (multiply by scalar < 1) so holds with equality

• after this step, have

$$\sum_{\pi} Q(\pi)(C_0 + \widehat{\mathsf{Regret}}(\pi)) \leq C_0$$

More Detail: Rescaling Step

1. [detailed version]

if $\sum_{\pi} Q(\pi)(C_0 + \widehat{\text{Regret}}(\pi)) > C_0$ then rescale **Q** (multiply by scalar < 1) so holds with equality

• after this step, have

$$\sum_{\pi} Q(\pi)(C_0 + \widehat{\mathsf{Regret}}(\pi)) \leq C_0$$

which implies:

- $\sum_{\pi} Q(\pi) \leq 1$
- $\sum_{\pi} Q(\pi) \operatorname{Regret}(\pi) \leq C_0$

[sub-distribution] [regret constraint]

2. [detailed version]

find $\pi \in \Pi$ for which $C_1 \cdot \hat{V}^Q(\pi) - \widehat{\mathsf{Regret}}(\pi) > C_0$

a. if none exists, halt and output ${\bf Q}$

b. else $Q(\pi) \leftarrow Q(\pi) + \alpha$ where $\alpha = [$ some formula]

2. [detailed version]

find $\pi \in \Pi$ for which $C_1 \cdot \hat{V}^Q(\pi) - \widehat{\mathsf{Regret}}(\pi) > C_0$

a. if none exists, halt and output ${\bf Q}$

b. else $Q(\pi) \leftarrow Q(\pi) + \alpha$ where $\alpha = [$ some formula]

• if halts then $C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \widehat{\text{Regret}}(\pi)$ for all $\pi \in \Pi$ [variance constraint]

2. [detailed version]

find $\pi \in \Pi$ for which $C_1 \cdot \hat{V}^Q(\pi) - \widehat{\mathsf{Regret}}(\pi) > C_0$

- a. if none exists, halt and output \mathbf{Q}
- b. else $Q(\pi) \leftarrow Q(\pi) + \alpha$ where $\alpha = [$ some formula]
- if halts then $C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \widehat{\text{Regret}}(\pi)$ for all $\pi \in \Pi$ [variance constraint]
- can execute step using AMO:
 - can construct "pseudo-rewards" $\tilde{\mathbf{r}}_{\tau}$ for which $(\forall \pi)$:

$$C_1 \cdot \hat{V}^Q(\pi) - \widehat{\mathsf{Regret}}(\pi) = \sum_{\tau} \tilde{r}_{\tau}(\pi(x_{\tau})) + [\mathsf{constant}]$$

2. [detailed version]

find $\pi \in \Pi$ for which $C_1 \cdot \hat{V}^Q(\pi) - \widehat{\mathsf{Regret}}(\pi) > C_0$

- a. if none exists, halt and output \mathbf{Q}
- b. else $Q(\pi) \leftarrow Q(\pi) + \alpha$ where $\alpha = [$ some formula]
- if halts then $C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \widehat{\text{Regret}}(\pi)$ for all $\pi \in \Pi$ [variance constraint]
- can execute step using AMO:
 - can construct "pseudo-rewards" $\tilde{\mathbf{r}}_{\tau}$ for which $(\forall \pi)$:

$$C_1 \cdot \hat{V}^Q(\pi) - \widehat{\mathsf{Regret}}(\pi) = \sum_{\tau} \tilde{r}_{\tau}(\pi(x_{\tau})) + [\mathsf{constant}]$$

- so: can maximize with AMO
- will find violating constraint (if one exists)

2. [detailed version]

find $\pi \in \Pi$ for which $C_1 \cdot \hat{V}^Q(\pi) - \widehat{\mathsf{Regret}}(\pi) > C_0$

- a. if none exists, halt and output \mathbf{Q}
- b. else $Q(\pi) \leftarrow Q(\pi) + \alpha$ where $\alpha = [$ some formula]
- if halts then $C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \widehat{\text{Regret}}(\pi)$ for all $\pi \in \Pi$ [variance constraint]
- can execute step using AMO:
 - can construct "pseudo-rewards" $\tilde{\mathbf{r}}_{\tau}$ for which $(\forall \pi)$:

$$C_1 \cdot \hat{V}^Q(\pi) - \widehat{\mathsf{Regret}}(\pi) = \sum_{\tau} \tilde{r}_{\tau}(\pi(x_{\tau})) + [\mathsf{constant}]$$

- so: can maximize with AMO
- will find violating constraint (if one exists)
- \therefore one AMO call per iteration

- so: if halts, then outputs solution to OP
- but how long will it take to halt (if ever)?
- to answer, analyze using a potential function

• define potential function to quantify progress:

$$\Phi(\mathbf{Q}) = A \underbrace{\hat{\mathbb{E}}\left[\operatorname{RE}\left(\operatorname{uniform} \parallel Q^{\mu}(\cdot|x)\right)\right]}_{\text{low variance}} + B \underbrace{\sum_{\pi} Q(\pi) \ \widehat{\operatorname{Regret}}(\pi)}_{\text{low regret}}$$

• define potential function to quantify progress:

 defined for all nonnegative vectors Q over Π (not just sub-distributions)

• define potential function to quantify progress:

$$\Phi(\mathbf{Q}) = A \underbrace{\hat{\mathbb{E}}\left[\operatorname{RE}\left(\operatorname{uniform} \parallel Q^{\mu}(\cdot|x)\right)\right]}_{\text{low variance}} + B \underbrace{\sum_{\pi} Q(\pi) \ \widehat{\operatorname{Regret}}(\pi)}_{\text{low regret}}$$

- defined for all nonnegative vectors Q over Π (not just sub-distributions)
- properties:
 - $\Phi(\mathbf{Q}) \geq 0$
 - convex

• define potential function to quantify progress:

$$\Phi(\mathbf{Q}) = A \cdot \underbrace{\hat{\mathbb{E}} \left[\operatorname{RE} \left(\operatorname{uniform} \parallel Q^{\mu}(\cdot | x) \right) \right]}_{\text{low variance}} + B \cdot \underbrace{\sum_{\pi} Q(\pi) \ \widehat{\operatorname{Regret}}(\pi)}_{\text{low regret}}$$

- defined for all nonnegative vectors Q over Π (not just sub-distributions)
- properties:
 - $\Phi(\mathbf{Q}) \geq 0$
 - convex
 - if **Q** minimizes Φ then **Q** is a solution to OP
 - key proof step: $\partial \Phi / \partial Q(\pi) \propto$ variance constraint for π
 - .:. OP is feasible

• algorithm turns out to be (roughly) coordinate descent on Φ

• each step adjusts **Q** along one coordinate direction $Q(\pi)$

- algorithm turns out to be (roughly) coordinate descent on Φ
 - each step adjusts **Q** along one coordinate direction $Q(\pi)$
- can lower-bound how much Φ decreases on each update
- can also show rescaling step never increases $\boldsymbol{\Phi}$

- algorithm turns out to be (roughly) coordinate descent on Φ
 - each step adjusts **Q** along one coordinate direction $Q(\pi)$
- can lower-bound how much Φ decreases on each update
- can also show rescaling step never increases $\boldsymbol{\Phi}$
- since $\Phi \geq 0,$ gives bound on number of iterations of the algorithm

- algorithm turns out to be (roughly) coordinate descent on Φ
 - each step adjusts **Q** along one coordinate direction $Q(\pi)$
- can lower-bound how much Φ decreases on each update
- can also show rescaling step never increases Φ
- since $\Phi \geq 0,$ gives bound on number of iterations of the algorithm
- Theorem: On round t, algorithm halts after at most

$$\tilde{O}\left(\sqrt{rac{\kappa t}{\ln|\Pi|}}
ight)$$

iterations (and calls to AMO).

- algorithm turns out to be (roughly) coordinate descent on Φ
 - each step adjusts **Q** along one coordinate direction $Q(\pi)$
- can lower-bound how much Φ decreases on each update
- can also show rescaling step never increases Φ
- since $\Phi \geq 0,$ gives bound on number of iterations of the algorithm
- Theorem: On round t, algorithm halts after at most

$$\tilde{O}\left(\sqrt{rac{\kappa t}{\ln|\Pi|}}
ight)$$

iterations (and calls to AMO).

as corollary, also get bound on sparsity of Q

Epochs and Warm Start

• so far, assumed solve OP from scratch on each round

- naively, gives $\tilde{O}\left(T^{3/2}\right)$ calls to AMO in T rounds
- can do much better!

Epochs and Warm Start

- so far, assumed solve OP from scratch on each round
 - naively, gives $\tilde{O}\left(T^{3/2}\right)$ calls to AMO in T rounds
 - can do much better!
- first improvement: since data iid, can use same solution for many rounds, i.e., for long "epochs"
 - gives same (near optimal) regret
 - essentially no computation required on rounds where Q not updated

Epochs and Warm Start

- so far, assumed solve OP from scratch on each round
 - naively, gives $\tilde{O}\left(T^{3/2}\right)$ calls to AMO in T rounds
 - can do much better!
- first improvement: since data iid, can use same solution for many rounds, i.e., for long "epochs"
 - gives same (near optimal) regret
 - essentially no computation required on rounds where Q not updated
- second improvement: can initialize algorithm with the previous solution (rather than starting fresh each time)
 - works because each new example can only cause Φ to increase slightly

Epochs and Warm Start (cont.)

• putting together:

if only update ${\bf Q}$ on rounds $1,4,9,16,25,\ldots$

- get same (near optimal) regret
- only need

$$\tilde{O}\left(\sqrt{\frac{\mathcal{KT}}{\ln|\Pi|}}\right)$$

calls to AMO total for entire sequence of \mathcal{T} rounds

- new algorithm for contextual bandits problem with AMO access
- (nearly) optimal regret
- simple and fast
- only requires an average of

$$ilde{O}\left(\sqrt{rac{\mathcal{K}}{\mathcal{T}\ln|\Pi|}}
ight)\ll 1$$

AMO calls per round

Open Problems and Future Directions

- try out experimentally
- is there an algorithm that uses an online (rather than batch) oracle?
- is there a lower bound on number of AMO calls necessary to solve this problem?
- can we find a similar algorithm that handles adversarial data?