The Contextual Bandits Problem

A New, Fast, and Simple Algorithm

Alekh Agarwal (MSR)
Daniel Hsu (Columbia)
Satyen Kale (Yahoo)
John Langford (MSR)
Lihong Li (MSR)
Rob Schapire (MSR/Princeton)

Example: Ad/Content Placement

- repeat:

1. website visited by user (with profile, browsing history, etc.)
2. website chooses ad/content to present to user
3. user responds (clicks, leaves page, etc.)

- goal: make choices that elicit desired user behavior

Example: Medical Treatment

- repeat:

1. doctor visited by patient (with symptoms, test results, etc.)
2. doctor chooses treatment
3. patient responds (recovers, gets worse, etc.)

- goal: make choices that maximize favorable outcomes

The Contextual Bandits Problem

- repeat:

1. learner presented with context
2. learner chooses an action
3. learner observes reward (but only for chosen action)

- goal: learn to choose actions to maximize rewards

The Contextual Bandits Problem

- repeat:

1. learner presented with context
2. learner chooses an action
3. learner observes reward (but only for chosen action)

- goal: learn to choose actions to maximize rewards
- general and fundamental problem: how to learn to make intelligent decisions through experience

Issues

- classic dilemma:
- exploit what has already been learned
- explore to learn which behaviors give best results

Issues

- classic dilemma:
- exploit what has already been learned
- explore to learn which behaviors give best results
- in addition, must use context effectively
- many choices of behavior possible
- may never see same context twice

Issues

- classic dilemma:
- exploit what has already been learned
- explore to learn which behaviors give best results
- in addition, must use context effectively
- many choices of behavior possible
- may never see same context twice
- selection bias: if explore while exploiting, will tend to get highly skewed data

Issues

- classic dilemma:
- exploit what has already been learned
- explore to learn which behaviors give best results
- in addition, must use context effectively
- many choices of behavior possible
- may never see same context twice
- selection bias: if explore while exploiting, will tend to get highly skewed data
- efficiency

This Talk

- new and general algorithm for contextual bandits
- optimal statistical performance
- far faster and simpler than predecessors

Formal Model

- repeat

1a. learner observes context x_{t}
2. learner selects action $a_{t} \in\{1, \ldots, K\}$
3. learner receives observed reward $r_{t}\left(a_{t}\right)$

Formal Model

- repeat

1a. learner observes context x_{t}
1b. reward vector $\mathbf{r}_{t} \in[0,1]^{K}$ chosen (but not observed)
2. learner selects action $a_{t} \in\{1, \ldots, K\}$
3. learner receives observed reward $r_{t}\left(a_{t}\right)$

Formal Model

- repeat

1a. learner observes context x_{t}
1b. reward vector $\mathbf{r}_{t} \in[0,1]^{K}$ chosen (but not observed)
2. learner selects action $a_{t} \in\{1, \ldots, K\}$
3. learner receives observed reward $r_{t}\left(a_{t}\right)$

- goal: maximize total reward:

$$
\sum_{t=1}^{T} r_{t}\left(a_{t}\right)
$$

Formal Model

- repeat

1a. learner observes context x_{t}
1b. reward vector $\mathbf{r}_{t} \in[0,1]^{K}$ chosen (but not observed)
2. learner selects action $a_{t} \in\{1, \ldots, K\}$
3. learner receives observed reward $r_{t}\left(a_{t}\right)$

- goal: maximize total reward:

$$
\sum_{t=1}^{T} r_{t}\left(a_{t}\right)
$$

- assume pairs $\left(x_{t}, \mathbf{r}_{t}\right)$ chosen at random i.i.d.

Example

	Actions		
Context	1	2	3
$($ Male, $50, \ldots)$			

Example

	Actions		
Context	1	2	3
$($ Male, $50, \ldots)$	1.0	0.2	0.0

Example

	Actions		
Context	1	2	3
$($ Male, $50, \ldots)$	1.0	0.2	0.0

Example

total reward $=0.2+$

Example

	Actions		
Context	1	2	3
$($ Male $, 50, \ldots)$	1.0	0.2	0.0
$($ Female $, 18, \ldots)$			

total reward $=0.2+$

Example

	Actions		
Context	1	2	3
$($ Male, $50, \ldots)$	1.0	0.2	0.0
$($ Female $, 18, \ldots)$	1.0	0.0	1.0

total reward $=0.2+$

Example

	Actions		
Context	1	2	3
(Male, 50, ...)	1.0	0.2	0.0
$($ Female $, 18, \ldots)$		0.0	1.0

total reward $=0.2+1.0+$

Example

	Actions		
Context	1	2	3
(Male, 50, ...)	1.0	0.2	0.0
$($ Female, 18, ...)	1.0	0.0	1.0
$($ Female $, 48, \ldots)$			

total reward $=0.2+1.0+$

Example

	Actions		
Context	1	2	3
(Male, 50, ...)	1.0	0.2	0.0
(Female, 18, ...)	1.0	0.0	1.0
(Female, 48, ...)	0.5	0.1	0.7

total reward $=0.2+1.0+$

Example

	Actions		
Context	1	2	3
$($ Male, 50, $\ldots)$	1.0	0.2	0.0
$($ Female $, 18, \ldots)$	1.0	0.0	1.0
$($ Female $, 48, \ldots)$	0.5	0.1	0.7
\vdots		\vdots	

total reward $=0.2+1.0+0.1+\cdots$

Special Case: Multi-armed Bandit Problem

- no context
- try to do as well as best single action

Special Case: Multi-armed Bandit Problem

- no context
- try to do as well as best single action
- tacitly assuming there is one action that gives high rewards
- e.g.: single treatment/ad/content that is right for entire population

Policies

- in contextual bandits setting, can use context to choose actions
- may exist good policy (decision rule) for choosing actions based on context

Policies

- in contextual bandits setting, can use context to choose actions
- may exist good policy (decision rule) for choosing actions based on context
- e.g.:

If (sex $=$ male) choose action 2
Else if (age > 45) choose action 1
else choose action 3

Policies

- in contextual bandits setting, can use context to choose actions
- may exist good policy (decision rule) for choosing actions based on context
- e.g.:

If (sex = male) choose action 2
Else if (age >45) choose action 1
else choose action 3

- policy π : (context $x) \mapsto($ action $a)$

Policies

- in contextual bandits setting, can use context to choose actions
- may exist good policy (decision rule) for choosing actions based on context
- e.g.:

If (sex $=$ male) choose action 2
Else if (age > 45) choose action 1
else choose action 3

- policy π : (context $x) \mapsto($ action $a)$
- learner generally working with some rich policy space Π
- e.g.: all decision trees ("if-then-else" rules)

Policies

- in contextual bandits setting, can use context to choose actions
- may exist good policy (decision rule) for choosing actions based on context
- e.g.:

If (sex = male) choose action 2
Else if (age > 45) choose action 1
else choose action 3

- policy π : (context $x) \mapsto($ action $a)$
- learner generally working with some rich policy space Π
- e.g.: all decision trees ("if-then-else" rules)
- assume Π finite, but typically extremely large
- tacit assumption:
\exists (unknown) policy $\pi \in \Pi$ that gives high rewards

Learning with Context and Policies

- goal: learn through experimentation to do (almost) as well as best $\pi \in \Pi$
- policies may be very complex and expressive \Rightarrow powerful approach

Learning with Context and Policies

- goal: learn through experimentation to do (almost) as well as best $\pi \in \Pi$
- policies may be very complex and expressive \Rightarrow powerful approach
- challenges:
- П extremely large
- need to be learning about all policies simultaneously while also performing as well as the best
- when action selected, only observe reward for policies that would have chosen same action
- exploration versus exploitation on a gigantic scale!

Formal Model (revisited)

- repeat

1a. learner observes context x_{t}
1b. reward vector $\mathbf{r}_{t} \in[0,1]^{K}$ chosen (but not observed)
2. learner selects action $a_{t} \in\{1, \ldots, K\}$
3. learner receives observed reward $r_{t}\left(a_{t}\right)$

- goal: want high total (or average) reward relative to best policy $\pi \in \Pi$

Formal Model (revisited)

- repeat

1a. learner observes context x_{t}
1b. reward vector $\mathbf{r}_{t} \in[0,1]^{K}$ chosen (but not observed)
2. learner selects action $a_{t} \in\{1, \ldots, K\}$
3. learner receives observed reward $r_{t}\left(a_{t}\right)$

- goal: want high total (or average) reward relative to best policy $\pi \in \Pi$
- i.e., want small regret:

Formal Model (revisited)

- repeat

1a. learner observes context x_{t}
1b. reward vector $\mathbf{r}_{t} \in[0,1]^{K}$ chosen (but not observed)
2. learner selects action $a_{t} \in\{1, \ldots, K\}$
3. learner receives observed reward $r_{t}\left(a_{t}\right)$

- goal: want high total (or average) reward relative to best policy $\pi \in \Pi$
- i.e., want small regret:

$$
\underbrace{\max _{\pi \in \Pi} \frac{1}{T} \sum_{t=1}^{T} r_{t}\left(\pi\left(x_{t}\right)\right)}_{\text {best policy's average reward }}-\underbrace{\frac{1}{T} \sum_{t=1}^{T} r_{t}\left(a_{t}\right)}_{\text {learner's average reward }}
$$

An Algorithm that Solves this Problem

[Auer, Cesa-Bianchi, Freund, Schapire]

- Exp4 solves this problem
- maintains weights over all policies in Π

An Algorithm that Solves this Problem

[Auer, Cesa-Bianchi, Freund, Schapire]

- Exp4 solves this problem
- maintains weights over all policies in Π
- regret is essentially optimal:

$$
O\left(\sqrt{\frac{K \ln |\Pi|}{T}}\right)
$$

- even works for adversarial (i.e., non-random, non-iid) data

An Algorithm that Solves this Problem

[Auer, Cesa-Bianchi, Freund, Schapire]

- Exp4 solves this problem
- maintains weights over all policies in Π
- regret is essentially optimal:

$$
O\left(\sqrt{\frac{K \ln |\Pi|}{T}}\right)
$$

- even works for adversarial (i.e., non-random, non-iid) data
- but: time/space are linear in $|\Pi|$
- too slow if $|\Pi|$ gigantic

An Algorithm that Solves this Problem

[Auer, Cesa-Bianchi, Freund, Schapire]

- Exp4 solves this problem
- maintains weights over all policies in Π
- regret is essentially optimal:

$$
O\left(\sqrt{\frac{K \ln |\Pi|}{T}}\right)
$$

- even works for adversarial (i.e., non-random, non-iid) data
- but: time/space are linear in $|\Pi|$
- too slow if $|\Pi|$ gigantic
- seems hopeless to do better for fully general policy spaces
- this talk: aim for time/space only poly $(\log |\Pi|)$ when Π is "well structured"

The (Fantasy) Full-Information Setting

- say see rewards for all actions

The (Fantasy) Full-Information Setting

- say see rewards for all actions

$$
\square=\text { learner's action }
$$

The (Fantasy) Full-Information Setting

- say see rewards for all actions

$$
\square=\text { learner's action }
$$

The (Fantasy) Full-Information Setting

- say see rewards for all actions

	Actions		
Context	1	2	3
$($ Male, $50, \ldots)$	1.0	0.2	0.0

$$
\square=\text { learner's action }
$$

learner's total reward $=0.2+$

The (Fantasy) Full-Information Setting

- say see rewards for all actions

	Actions		
Context	1	2	3
$($ Male, $50, \ldots)$	1.0	0.2	0.0
$($ Female $, 18, \ldots)$	1.0	0.0	1.0
$($ Female $, 48, \ldots)$	0.5	0.1	0.7
\vdots		\vdots	

$$
\square=\text { learner's action }
$$

learner's total reward $=0.2+1.0+0.1+\cdots$

The (Fantasy) Full-Information Setting

- say see rewards for all actions

	Actions		
Context	1	2	3
$($ Male, $50, \ldots)$	1.0	0.2	0.0
$($ Female, $18, \ldots)$	1.0	0.0	1.0
$($ Female $, 48, \ldots)$	0.5	0.1	0.7
\vdots		\vdots	

$$
\square=\text { learner's action }
$$

learner's total reward $=0.2+1.0+0.1+\cdots$

- for any π, can compute rewards would have received

The (Fantasy) Full-Information Setting

- say see rewards for all actions

	Actions		
Context	1	2	3
$($ Male, $50, \ldots)$	1.0	0.2	0.0
$($ Female $, 18, \ldots)$	1.0	0.0	1.0
$($ Female $, 48, \ldots)$	0.5	0.1	0.7
\vdots		\vdots	

$\square=$ learner's action
$\bigcirc=\pi$'s action
learner's total reward $=0.2+1.0+0.1+\cdots$

$$
\pi \text { 's total reward }=0.0+1.0+0.5+\cdots
$$

- for any π, can compute rewards would have received

The (Fantasy) Full-Information Setting

- say see rewards for all actions

	Actions		
Context	1	2	3
$($ Male, $50, \ldots)$	1.0	0.2	0.0
$($ Female $, 18, \ldots)$	1.0	0.0	1.0
$($ Female $, 48, \ldots)$	0.5	0.1	0.7
\vdots		\vdots	

$\square=$ learner's action
$\bigcirc=\pi$'s action
learner's total reward $=0.2+1.0+0.1+\cdots$

$$
\pi \text { 's total reward }=0.0+1.0+0.5+\cdots
$$

- for any π, can compute rewards would have received
- average is good estimate of π 's expected reward

The (Fantasy) Full-Information Setting

- say see rewards for all actions

	Actions		
Context	1	2	3
$($ Male $, 50, \ldots)$	1.0	0.2	0.0
$($ Female $, 18, \ldots)$	1.0	0.0	1.0
$($ Female $, 48, \ldots)$	0.5	0.1	0.7
\vdots		\vdots	

$\square=$ learner's action
$\bigcirc=\pi$'s action
learner's total reward $=0.2+1.0+0.1+\cdots$

$$
\pi \text { 's total reward }=0.0+1.0+0.5+\cdots
$$

- for any π, can compute rewards would have received
- average is good estimate of π 's expected reward
- choose empirically best $\pi \in \Pi$
- regret $=O\left(\sqrt{\frac{\ln |\Pi|}{T}}\right)$

"Arg-Max Oracle" (AMO)

- to apply, just need "oracle" (algorithm/subroutine) for finding best $\pi \in \Pi$ on observed rewards
- input: $\left(x_{1}, \mathbf{r}_{1}\right), \ldots,\left(x_{T}, \mathbf{r}_{T}\right)$
$x_{t}=$ context
$\mathbf{r}_{t}=\left(r_{t}(1), \ldots, r_{t}(K)\right)=$ rewards for all actions
- output:

$$
\hat{\pi}=\arg \max _{\pi \in \Pi} \sum_{t=1}^{T} r_{t}\left(\pi\left(x_{t}\right)\right)
$$

"Arg-Max Oracle" (AMO)

- to apply, just need "oracle" (algorithm/subroutine) for finding best $\pi \in \Pi$ on observed rewards
- input: $\left(x_{1}, \mathbf{r}_{1}\right), \ldots,\left(x_{T}, \mathbf{r}_{T}\right)$

$$
\begin{aligned}
& x_{t}=\text { context } \\
& \mathbf{r}_{t}=\left(r_{t}(1), \ldots, r_{t}(K)\right)=\text { rewards for all actions }
\end{aligned}
$$

- output:

$$
\hat{\pi}=\arg \max _{\pi \in \Pi} \sum_{t=1}^{T} r_{t}\left(\pi\left(x_{t}\right)\right)
$$

- really just (cost-sensitive) classification:

$$
\begin{aligned}
\text { context } & \leftrightarrow \text { example } \\
\text { action } & \leftrightarrow \text { label/class } \\
\text { policy } & \leftrightarrow \text { classifier } \\
\text { reward } & \leftrightarrow \text { gain/(negative) cost }
\end{aligned}
$$

"Arg-Max Oracle" (AMO)

- to apply, just need "oracle" (algorithm/subroutine) for finding best $\pi \in \Pi$ on observed rewards
- input: $\left(x_{1}, \mathbf{r}_{1}\right), \ldots,\left(x_{T}, \mathbf{r}_{T}\right)$

$$
\begin{aligned}
& x_{t}=\text { context } \\
& \mathbf{r}_{t}=\left(r_{t}(1), \ldots, r_{t}(K)\right)=\text { rewards for all actions }
\end{aligned}
$$

- output:

$$
\hat{\pi}=\arg \max _{\pi \in \Pi} \sum_{t=1}^{T} r_{t}\left(\pi\left(x_{t}\right)\right)
$$

- really just (cost-sensitive) classification:

$$
\begin{aligned}
\text { context } & \leftrightarrow \text { example } \\
\text { action } & \leftrightarrow \text { label/class } \\
\text { policy } & \leftrightarrow \text { classifier } \\
\text { reward } & \leftrightarrow \text { gain/(negative) cost }
\end{aligned}
$$

- so: if have "good" classification algorithm for Π, can use to find good policy (in full-information setting)

But in the Bandit Setting...

- ...only see rewards for actions taken

But in the Bandit Setting...

- ...only see rewards for actions taken

	Actions		
Context	1	2	3
Male, 50, \ldots)	1.0	0.2	0.0
$($ Female, $18, \ldots)$	1.0	0.0	1.0
$($ Female, $48, \ldots)$	0.5	0.1	0.7
\vdots		\vdots	

$$
\square=\text { learner's action }
$$

But in the Bandit Setting...

- ...only see rewards for actions taken

	Actions		
Context	1	2	3
$($ Male $, 50, \ldots)$	1.0	0.2	0.0
$($ Female $, 18, \ldots)$	1.0	0.0	1.0
$($ Female $, 48, \ldots)$	0.5	0.1	0.7
\vdots		\vdots	

$$
\square=\text { learner's action }
$$

But in the Bandit Setting...

- ...only see rewards for actions taken

	Actions		
Context	1	2	3
$($ Male $, 50, \ldots)$	1.0	0.2	0.0
$($ Female $, 18, \ldots)$	1.0	0.0	1.0
$($ Female $, 48, \ldots)$	0.5	0.1	0.7
\vdots		\vdots	

$$
\square=\text { learner's action }
$$

learner's total reward $=0.2+1.0+0.1+\cdots$

But in the Bandit Setting...

- ...only see rewards for actions taken

$$
\begin{aligned}
& \square=\text { learner's action } \\
& =\pi \text { 's action }
\end{aligned}
$$

learner's total reward $=0.2+1.0+0.1+\cdots$

- for any policy π, only observe π 's rewards on subset of rounds

But in the Bandit Setting...

- ...only see rewards for actions taken

$$
\begin{aligned}
& \square=\text { learner's action } \\
& \bigcirc=\pi \text { 's action }
\end{aligned}
$$

learner's total reward $=0.2+1.0+0.1+\cdots$

$$
\pi \text { 's total reward }=? ?+1.0+? ?+\cdots
$$

- for any policy π, only observe π 's rewards on subset of rounds

But in the Bandit Setting...

- ...only see rewards for actions taken

	Actions		
Context	1	2	3
$($ Male $, 50, \ldots)$	1.0	0.2	\bigcirc
$($ Female $, 18, \ldots)$	1.0	0.0	1.0
$($ Female $, 48, \ldots)$	0	0.1	0.7
\vdots		\vdots	

$\square=$ learner's action
$\bigcirc=\pi$'s action
learner's total reward $=0.2+1.0+0.1+\cdots$
π 's total reward $=? ?+1.0+? ?+\cdots$

- for any policy π, only observe π 's rewards on subset of rounds
- might like to use AMO to find empirically good policy
- problems:
- only see some rewards
- observed rewards highly biased (due to skewed choice of actions)

Key Question

- still: AMO is a natural primitive
- key question: can we solve the contextual bandits problem given access to AMO?

Key Question

- still: AMO is a natural primitive
- key question: can we solve the contextual bandits problem given access to AMO?
- can we use an AMO on bandit data by somehow:
- filling in missing data
- overcoming bias

Key Question

- still: AMO is a natural primitive
- key question: can we solve the contextual bandits problem given access to AMO?
- can we use an AMO on bandit data by somehow:
- filling in missing data
- overcoming bias
- want:
- optimal regret
- time/space bounds poly $(\log |\Pi|)$

Key Question

- still: AMO is a natural primitive
- key question: can we solve the contextual bandits problem given access to AMO?
- can we use an AMO on bandit data by somehow:
- filling in missing data
- overcoming bias
- want:
- optimal regret
- time/space bounds poly $(\log |\Pi|)$
- AMO is theoretical idealization
- captures structure in policy space
- in practice, can use off-the-shelf classification algorithm

є-Greedy/Epoch-Greedy

[Langford \& Zhang]

- partially solved by the ϵ-greedy/epoch-greedy algorithm
- on each round, choose action:
- according to "best" policy so far (with probability $1-\epsilon$)
- uniformly at random
(with probability ϵ)

є-Greedy/Epoch-Greedy

[Langford \& Zhang]

- partially solved by the ϵ-greedy/epoch-greedy algorithm
- on each round, choose action:
- according to "best" policy so far (with probability $1-\epsilon$) [can find with AMO]
- uniformly at random (with probability ϵ)

є-Greedy/Epoch-Greedy

[Langford \& Zhang]

- partially solved by the ϵ-greedy/epoch-greedy algorithm
- on each round, choose action:
- according to "best" policy so far (with probability $1-\epsilon$) [can find with AMO]
- uniformly at random (with probability ϵ)
- regret $=O\left(\left(\frac{K \ln |\Pi|}{T}\right)^{1 / 3}\right)$
- fast and simple, but not optimal

"Monster" Algorithm

[Dudík, Hsu, Kale, Karampatziakis, Langford, Reyzin \& Zhang]

- RandomizedUCB (aka "Monster") algorithm gets optimal regret using AMO
- solves multiple optimization problems using ellipsoid algorithm
- very slow: calls AMO about $\tilde{O}\left(T^{4}\right)$ times on every round

Main Result

- new, simple algorithm for contextual bandits with AMO access
- (nearly) optimal regret: $\tilde{O}\left(\sqrt{\frac{K \ln |\Pi|}{T}}\right)$
- fast: calls AMO far less than once per round!
- on average, calls AMO

$$
\tilde{O}\left(\sqrt{\frac{K}{T \ln |\Pi|}}\right) \ll 1
$$

times per round

Main Result

- new, simple algorithm for contextual bandits with AMO access
- (nearly) optimal regret: $\tilde{O}\left(\sqrt{\frac{K \ln |\Pi|}{T}}\right)$
- fast: calls AMO far less than once per round!
- on average, calls AMO

$$
\tilde{O}\left(\sqrt{\frac{K}{T \ln |\Pi|}}\right) \ll 1
$$

times per round

- rest of talk: sketching main ideas of the algorithm

De-biasing Biased Estimates

- selection bias is major problem:
- only observe reward for single action
- exploring while exploiting leads to inherently biased estimates

De-biasing Biased Estimates

- selection bias is major problem:
- only observe reward for single action
- exploring while exploiting leads to inherently biased estimates
- nevertheless: can use simple trick to get unbiased estimates for all actions

De-biasing Biased Estimates (cont.)

- say $r(a)=($ unknown $)$ reward for action a $p(a)=($ known $)$ probability of choosing a

De-biasing Biased Estimates (cont.)

- say $r(a)=($ unknown) reward for action a $p(a)=($ known $)$ probability of choosing a
- define $\hat{r}(a)= \begin{cases}r(a) / p(a) & \text { if a chosen } \\ 0 & \text { else }\end{cases}$
- then $\mathrm{E}[\hat{r}(a)]=r(a)$

De-biasing Biased Estimates (cont.)

- say $r(a)=$ (unknown) reward for action a $p(a)=($ known $)$ probability of choosing a
- define $\hat{r}(a)= \begin{cases}r(a) / p(a) & \text { if a chosen } \\ 0 & \text { else }\end{cases}$
- then $\mathrm{E}[\hat{r}(a)]=r(a)$ - unbiased!
\therefore can estimate reward for all actions

De-biasing Biased Estimates (cont.)

- say $r(a)=($ unknown) reward for action a $p(a)=($ known $)$ probability of choosing a
- define $\hat{r}(a)= \begin{cases}r(a) / p(a) & \text { if a chosen } \\ 0 & \text { else }\end{cases}$
- then $\mathrm{E}[\hat{r}(a)]=r(a)$ - unbiased!
\therefore can estimate reward for all actions
\therefore can estimate expected reward for any policy π :

$$
\hat{R}(\pi)=\frac{1}{t-1} \sum_{\tau=1}^{t-1} \hat{r}_{\tau}\left(\pi\left(x_{\tau}\right)\right)=\hat{\mathrm{E}}[\hat{r}(\pi(x))]
$$

De-biasing Biased Estimates (cont.)

- say $r(a)=($ unknown) reward for action a $p(a)=($ known $)$ probability of choosing a
- define $\hat{r}(a)= \begin{cases}r(a) / p(a) & \text { if a chosen } \\ 0 & \text { else }\end{cases}$
- then $\mathrm{E}[\hat{r}(a)]=r(a)$ - unbiased!
\therefore can estimate reward for all actions
\therefore can estimate expected reward for any policy π :

$$
\hat{R}(\pi)=\frac{1}{t-1} \sum_{\tau=1}^{t-1} \hat{r}_{\tau}\left(\pi\left(x_{\tau}\right)\right)=\hat{\mathrm{E}}[\hat{r}(\pi(x))]
$$

\therefore can estimate regret of any policy π :

$$
\widehat{\operatorname{Regret}}(\pi)=\max _{\hat{\pi} \in \Pi} \hat{R}(\hat{\pi})-\hat{R}(\pi)
$$

- can find maximizing $\hat{\pi}$ using AMO

Variance Control

- estimates are unbiased - done?

Variance Control

- estimates are unbiased - done?
- no! - variance may be extremely large

Variance Control

- estimates are unbiased - done?
- no! - variance may be extremely large
- can show variance $(\hat{r}(a)) \leq \frac{1}{p(a)}$

Variance Control

- estimates are unbiased - done?
- no! - variance may be extremely large
- can show variance $(\hat{r}(a)) \leq \frac{1}{p(a)}$
\therefore to get good estimates, must ensure that $1 / p(a)$ not too large

Randomizing over Policies

- need to choose actions (semi-)randomly

Randomizing over Policies

- need to choose actions (semi-)randomly
- approach: on each round,
- compute distribution Q over policy space Π
- randomly pick $\pi \sim \mathbf{Q}$
- on current context x, choose action $\pi(x)$

Randomizing over Policies

- need to choose actions (semi-)randomly
- approach: on each round,
- compute distribution Q over policy space Π
- randomly pick $\pi \sim \mathbf{Q}$
- on current context x, choose action $\pi(x)$
- \mathbf{Q} induces distribution over actions (for any x):

$$
Q(a \mid x)=\operatorname{Pr}_{\pi \sim \mathbf{Q}}[\pi(x)=a]
$$

Randomizing over Policies

- need to choose actions (semi-)randomly
- approach: on each round,
- compute distribution \mathbf{Q} over policy space Π
- randomly pick $\pi \sim \mathbf{Q}$
- on current context x, choose action $\pi(x)$
- \mathbf{Q} induces distribution over actions (for any x):

$$
Q(a \mid x)=\operatorname{Pr}_{\pi \sim \mathbf{Q}}[\pi(x)=a]
$$

- seems will require time/space $O(|\Pi|)$ to compute \mathbf{Q} over space Π
- will see later how to avoid!

How to Pick Q

- on each round, want to pick \mathbf{Q} with:

1. low (estimated) regret
i.e., choose actions think will give high reward

How to Pick Q

- on each round, want to pick \mathbf{Q} with:

1. low (estimated) regret
i.e., choose actions think will give high reward
2. low (estimated) variance
i.e., ensure future estimates will be accurate

How to Pick Q

- on each round, want to pick \mathbf{Q} with:

1. low (estimated) regret
[exploit]
i.e., choose actions think will give high reward
2. low (estimated) variance
[explore]
i.e., ensure future estimates will be accurate

Low Regret

- $\widehat{\operatorname{Regret}}(\pi)=$ estimated regret of π

Low Regret

- $\widehat{\operatorname{Regret}}(\pi)=$ estimated regret of π
- so: estimated regret for random $\pi \sim \mathbf{Q}$ is

$$
\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi)=\mathrm{E}_{\pi \sim \mathbf{Q}}[\widehat{\operatorname{Regret}}(\pi)]
$$

Low Regret

- $\widehat{\operatorname{Regret}}(\pi)=$ estimated regret of π
- so: estimated regret for random $\pi \sim \mathbf{Q}$ is

$$
\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi)=\mathrm{E}_{\pi \sim \mathbf{Q}}[\widehat{\operatorname{Regret}}(\pi)]
$$

- want small:

$$
\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi) \leq[\text { small }]
$$

Low Variance

- $\frac{1}{Q(a \mid x)}=$ variance of estimate of reward for action a

Low Variance

- $\frac{1}{Q(a \mid x)}=$ variance of estimate of reward for action a
- so $\frac{1}{Q(\pi(x) \mid x)}=$ variance if action chosen by π

Low Variance

- $\frac{1}{Q(a \mid x)}=$ variance of estimate of reward for action a
- so $\frac{1}{Q(\pi(x) \mid x)}=$ variance if action chosen by π
- can estimate expected variance for actions chosen by π :

$$
\hat{V}^{Q}(\pi)=\hat{\mathrm{E}}\left[\frac{1}{Q(\pi(x) \mid x)}\right]=\frac{1}{t-1} \sum_{\tau=1}^{t-1} \frac{1}{Q\left(\pi\left(x_{\tau}\right) \mid x_{\tau}\right)}
$$

Low Variance

- $\frac{1}{Q(a \mid x)}=$ variance of estimate of reward for action a
- so $\frac{1}{Q(\pi(x) \mid x)}=$ variance if action chosen by π
- can estimate expected variance for actions chosen by π :

$$
\hat{V}^{Q}(\pi)=\hat{\mathrm{E}}\left[\frac{1}{Q(\pi(x) \mid x)}\right]=\frac{1}{t-1} \sum_{\tau=1}^{t-1} \frac{1}{Q\left(\pi\left(x_{\tau}\right) \mid x_{\tau}\right)}
$$

- want small:

$$
\hat{V}^{Q}(\pi) \leq[\text { small }] \quad \text { for all } \pi \in \Pi
$$

Low Variance

- $\frac{1}{Q(a \mid x)}=$ variance of estimate of reward for action a
- so $\frac{1}{Q(\pi(x) \mid x)}=$ variance if action chosen by π
- can estimate expected variance for actions chosen by π :

$$
\hat{V}^{Q}(\pi)=\hat{\mathrm{E}}\left[\frac{1}{Q(\pi(x) \mid x)}\right]=\frac{1}{t-1} \sum_{\tau=1}^{t-1} \frac{1}{Q\left(\pi\left(x_{\tau}\right) \mid x_{\tau}\right)}
$$

- want small:

$$
\hat{V}^{Q}(\pi) \leq[\text { small }] \quad \text { for all } \pi \in \Pi
$$

- detail: problematic if $Q(a \mid x)$ too close to zero

Low Variance

- $\frac{1}{Q^{\mu}(a \mid x)}=$ variance of estimate of reward for action a
- so $\frac{1}{Q^{\mu}(\pi(x) \mid x)}=$ variance if action chosen by π
- can estimate expected variance for actions chosen by π :

$$
\hat{V}^{Q}(\pi)=\hat{\mathrm{E}}\left[\frac{1}{Q^{\mu}(\pi(x) \mid x)}\right]=\frac{1}{t-1} \sum_{\tau=1}^{t-1} \frac{1}{Q^{\mu}\left(\pi\left(x_{\tau}\right) \mid x_{\tau}\right)}
$$

- want small:

$$
\hat{V}^{Q}(\pi) \leq[\text { small }] \quad \text { for all } \pi \in \Pi
$$

- detail: problematic if $Q(a \mid x)$ too close to zero
- to avoid, "smooth" probabilities by occassionally picking action uniformly at random:

$$
Q^{\mu}(a \mid x)=(1-K \mu) Q(a \mid x)+\mu
$$

Pulling Together

- want \mathbf{Q} such that:

$$
\begin{array}{ll}
\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi) \leq[\text { small }] & \\
\hat{V}^{Q}(\pi) \leq[\operatorname{small}] & \text { for all } \pi \in \Pi
\end{array}
$$

Pulling Together

- want \mathbf{Q} such that:

$$
\begin{aligned}
& \sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi) \leq[\text { small }] \\
& \hat{V}^{Q}(\pi) \leq[\text { small }] \\
& \sum_{\pi} Q(\pi)=1
\end{aligned}
$$

Pulling Together

- want \mathbf{Q} such that:

$$
\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi) \leq C_{0}
$$

$$
\begin{aligned}
& C_{1} \cdot \hat{V}^{Q}(\pi) \leq C_{0} \\
& \sum_{\pi} Q(\pi)=1
\end{aligned}
$$

- can fill in constants

Pulling Together

- want \mathbf{Q} such that:

$$
\begin{aligned}
& \sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi) \leq C_{0} \\
& C_{1} \cdot \hat{V}^{Q}(\pi) \leq C_{0}+\widehat{\operatorname{Regret}}(\pi) \quad \text { for all } \pi \in \Pi \\
& \sum_{\pi} Q(\pi)=1
\end{aligned}
$$

- can fill in constants
- make easier by:
- allowing higher variance for policies with higher regret (poor policies can be eliminated even with fairly poor performance estimates)

Pulling Together

- want \mathbf{Q} such that:

$$
\begin{aligned}
& \sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi) \leq C_{0} \\
& C_{1} \cdot \hat{V}^{Q}(\pi) \leq C_{0}+\widehat{\operatorname{Regret}}(\pi) \quad \text { for all } \pi \in \Pi \\
& \sum_{\pi} Q(\pi) \leq 1
\end{aligned}
$$

- can fill in constants
- make easier by:
- allowing higher variance for policies with higher regret (poor policies can be eliminated even with fairly poor performance estimates)
- only require \mathbf{Q} to be sub-distribution (can put all remaining mass on $\hat{\pi}$ with maximum estimated reward)

Optimization Problem "OP"

find \mathbf{Q} such that:
$\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi) \leq C_{0}$
$C_{1} \cdot \hat{V}^{Q}(\pi) \leq C_{0}+\widehat{\operatorname{Regret}}(\pi) \quad$ for all $\pi \in \Pi$
$\sum_{\pi} Q(\pi) \leq 1$

Optimization Problem "OP"

find \mathbf{Q} such that:
$\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi) \leq C_{0}$
[regret constraint]
$C_{1} \cdot \hat{V}^{Q}(\pi) \leq C_{0}+\widehat{\operatorname{Regret}}(\pi) \quad$ for all $\pi \in \Pi \quad$ [variance constraint]

$$
\sum_{\pi} Q(\pi) \leq 1
$$

[sub-distribution]

Optimization Problem "OP"

find \mathbf{Q} such that:
$\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi) \leq C_{0}$
[regret constraint]
$C_{1} \cdot \hat{V}^{Q}(\pi) \leq C_{0}+\widehat{\operatorname{Regret}}(\pi) \quad$ for all $\pi \in \Pi \quad$ [variance constraint]

$$
\sum_{\pi} Q(\pi) \leq 1
$$

[sub-distribution]

- similar to [Dudík et al.]

Optimization Problem "OP"

find \mathbf{Q} such that:
$\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi) \leq C_{0} \quad$ [regret constraint]
$C_{1} \cdot \hat{V}^{Q}(\pi) \leq C_{0}+\widehat{\operatorname{Regret}}(\pi) \quad$ for all $\pi \in \Pi \quad$ [variance constraint]

$$
\sum_{\pi} Q(\pi) \leq 1
$$

[sub-distribution]

- similar to [Dudík et al.]
- seems awful:
- | Π | variables
- | Π | constraints
- constraints involve nasty non-linear functions (recall $\hat{V}^{Q}(\pi)=\hat{\mathrm{E}}\left[\frac{1}{Q^{\mu}(\pi(x) \mid x)}\right]$)
- not even clear if feasible

If We Can Solve It...

- Theorem: if can solve OP on every round (for appropriate constants), then will get regret

$$
\tilde{O}\left(\sqrt{\frac{K \ln |\Pi|}{T}}\right)
$$

If We Can Solve It...

- Theorem: if can solve OP on every round (for appropriate constants), then will get regret

$$
\tilde{O}\left(\sqrt{\frac{K \ln |\Pi|}{T}}\right)
$$

- proof idea:
- regret constraint ensures low regret (if estimates are good enough)
- variance constraint ensures that they actually will be good enough
- essentially same approach as [Dudík et al.]

How to Solve?

- basic idea:
- find a violated constraint
- (attempt to) fix it
- repeat

How to Solve? (cont.)

- $\mathbf{Q} \leftarrow \mathbf{0}$
- repeat:

1. if \mathbf{Q} "too big" then rescale

- (i.e., multiply \mathbf{Q} by scalar <1)
- ensures sub-distribution and regret constraints are satisfied

How to Solve? (cont.)

- $\mathbf{Q} \leftarrow \mathbf{0}$
- repeat:

1. if \mathbf{Q} "too big" then rescale

- (i.e., multiply \mathbf{Q} by scalar <1)
- ensures sub-distribution and regret constraints are satisfied

2. find $\pi \in \Pi$ for which corresponding variance constraint is violated
a. if none exists, halt and output \mathbf{Q}
b. else $Q(\pi) \leftarrow Q(\pi)+\alpha$ where $\alpha=$ [some formula]

More Detail: Rescaling Step

1. [detailed version]
if $\sum_{\pi} Q(\pi)\left(C_{0}+\widehat{\operatorname{Regret}}(\pi)\right)>C_{0}$ then rescale \mathbf{Q} (multiply by scalar <1) so holds with equality

More Detail: Rescaling Step

1. [detailed version]
if $\sum_{\pi} Q(\pi)\left(C_{0}+\widehat{\operatorname{Regret}}(\pi)\right)>C_{0}$ then rescale \mathbf{Q} (multiply by scalar <1) so holds with equality

- after this step, have

$$
\sum_{\pi} Q(\pi)\left(C_{0}+\widehat{\operatorname{Regret}}(\pi)\right) \leq C_{0}
$$

More Detail: Rescaling Step

1. [detailed version]
if $\sum_{\pi} Q(\pi)\left(C_{0}+\widehat{\operatorname{Regret}}(\pi)\right)>C_{0}$ then rescale \mathbf{Q}
(multiply by scalar <1) so holds with equality

- after this step, have

$$
\sum_{\pi} Q(\pi)\left(C_{0}+\widehat{\operatorname{Regret}}(\pi)\right) \leq C_{0}
$$

which implies:

- $\sum_{\pi} Q(\pi) \leq 1$
- $\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi) \leq C_{0}$
[sub-distribution]
[regret constraint]

More Detail: Checking Variance Constraints

2. [detailed version]
find $\pi \in \Pi$ for which $C_{1} \cdot \hat{V}^{Q}(\pi)-\widehat{\operatorname{Regret}}(\pi)>C_{0}$
a. if none exists, halt and output \mathbf{Q}
b. else $Q(\pi) \leftarrow Q(\pi)+\alpha$ where $\alpha=$ [some formula]

More Detail: Checking Variance Constraints

2. [detailed version]
find $\pi \in \Pi$ for which $C_{1} \cdot \hat{V}^{Q}(\pi)-\widehat{\operatorname{Regret}}(\pi)>C_{0}$
a. if none exists, halt and output \mathbf{Q}
b. else $Q(\pi) \leftarrow Q(\pi)+\alpha$ where $\alpha=$ [some formula]

- if halts then $C_{1} \cdot \hat{V}^{Q}(\pi) \leq C_{0}+\widehat{\operatorname{Regret}}(\pi)$ for all $\pi \in \Pi$
[variance constraint]

More Detail: Checking Variance Constraints

2. [detailed version]
find $\pi \in \Pi$ for which $C_{1} \cdot \hat{V}^{Q}(\pi)-\widehat{\operatorname{Regret}}(\pi)>C_{0}$
a. if none exists, halt and output \mathbf{Q}
b. else $Q(\pi) \leftarrow Q(\pi)+\alpha$ where $\alpha=$ [some formula]

- if halts then $C_{1} \cdot \hat{V}^{Q}(\pi) \leq C_{0}+\widehat{\operatorname{Regret}}(\pi)$ for all $\pi \in \Pi$
[variance constraint]
- can execute step using AMO:
- can construct "pseudo-rewards" $\tilde{\mathbf{r}}_{\tau}$ for which $(\forall \pi)$:

$$
C_{1} \cdot \hat{V}^{Q}(\pi)-\widehat{\operatorname{Regret}}(\pi)=\sum_{\tau} \tilde{r}_{\tau}\left(\pi\left(x_{\tau}\right)\right)+[\text { constant }]
$$

More Detail: Checking Variance Constraints

2. [detailed version]
find $\pi \in \Pi$ for which $C_{1} \cdot \hat{V}^{Q}(\pi)-\widehat{\operatorname{Regret}}(\pi)>C_{0}$
a. if none exists, halt and output \mathbf{Q}
b. else $Q(\pi) \leftarrow Q(\pi)+\alpha$ where $\alpha=$ [some formula]

- if halts then $C_{1} \cdot \hat{V}^{Q}(\pi) \leq C_{0}+\widehat{\operatorname{Regret}}(\pi)$ for all $\pi \in \Pi$
[variance constraint]
- can execute step using AMO:
- can construct "pseudo-rewards" $\tilde{\mathbf{r}}_{\tau}$ for which $(\forall \pi)$:

$$
C_{1} \cdot \hat{V}^{Q}(\pi)-\widehat{\operatorname{Regret}}(\pi)=\sum_{\tau} \tilde{r}_{\tau}\left(\pi\left(x_{\tau}\right)\right)+[\text { constant }]
$$

- so: can maximize with AMO
- will find violating constraint (if one exists)

More Detail: Checking Variance Constraints

2. [detailed version]
find $\pi \in \Pi$ for which $C_{1} \cdot \hat{V}^{Q}(\pi)-\widehat{\operatorname{Regret}}(\pi)>C_{0}$
a. if none exists, halt and output \mathbf{Q}
b. else $Q(\pi) \leftarrow Q(\pi)+\alpha$ where $\alpha=$ [some formula]

- if halts then $C_{1} \cdot \hat{V}^{Q}(\pi) \leq C_{0}+\widehat{\operatorname{Regret}}(\pi)$ for all $\pi \in \Pi$
[variance constraint]
- can execute step using AMO:
- can construct "pseudo-rewards" $\tilde{\mathbf{r}}_{\tau}$ for which $(\forall \pi)$:

$$
C_{1} \cdot \hat{V}^{Q}(\pi)-\widehat{\operatorname{Regret}}(\pi)=\sum_{\tau} \tilde{r}_{\tau}\left(\pi\left(x_{\tau}\right)\right)+[\text { constant }]
$$

- so: can maximize with AMO
- will find violating constraint (if one exists)
\therefore one AMO call per iteration

Why Does It Work?

- so: if halts, then outputs solution to OP
- but how long will it take to halt (if ever)?
- to answer, analyze using a potential function

A Potential Function

- define potential function to quantify progress:

$$
\Phi(\mathbf{Q})=A \cdot \underbrace{\hat{\mathrm{E}}\left[\mathrm{RE}\left(\text { uniform } \| Q^{\mu}(\cdot \mid x)\right)\right]}_{\text {low variance }}+B \cdot \underbrace{\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}(}(\pi)}_{\text {low regret }}
$$

A Potential Function

- define potential function to quantify progress:

$$
\Phi(\mathbf{Q})=A \cdot \underbrace{\hat{E}\left[\operatorname{RE}\left(\text { uniform } \| Q^{\mu}(\cdot \mid x)\right)\right]}_{\text {low variance }}+B \cdot \underbrace{\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi)}_{\text {low regret }}
$$

- defined for all nonnegative vectors \mathbf{Q} over Π (not just sub-distributions)

A Potential Function

- define potential function to quantify progress:

$$
\Phi(\mathbf{Q})=A \cdot \underbrace{\hat{E}\left[\operatorname{RE}\left(\text { uniform } \| Q^{\mu}(\cdot \mid x)\right)\right]}_{\text {low variance }}+B \cdot \underbrace{\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi)}_{\text {low regret }}
$$

- defined for all nonnegative vectors \mathbf{Q} over Π (not just sub-distributions)
- properties:
- $\Phi(\mathbf{Q}) \geq 0$
- convex

A Potential Function

- define potential function to quantify progress:

$$
\Phi(\mathbf{Q})=A \cdot \underbrace{\hat{E}\left[\operatorname{RE}\left(\text { uniform } \| Q^{\mu}(\cdot \mid x)\right)\right]}_{\text {low variance }}+B \cdot \underbrace{\sum_{\pi} Q(\pi) \widehat{\operatorname{Regret}}(\pi)}_{\text {low regret }}
$$

- defined for all nonnegative vectors \mathbf{Q} over Π (not just sub-distributions)
- properties:
- $\Phi(\mathbf{Q}) \geq 0$
- convex
- if \mathbf{Q} minimizes Φ then \mathbf{Q} is a solution to $\mathbf{O P}$
- key proof step:
$\partial \Phi / \partial Q(\pi) \propto$ variance constraint for π
\therefore OP is feasible

Analysis

- algorithm turns out to be (roughly) coordinate descent on Φ
- each step adjusts \mathbf{Q} along one coordinate direction $Q(\pi)$

Analysis

- algorithm turns out to be (roughly) coordinate descent on Φ
- each step adjusts \mathbf{Q} along one coordinate direction $Q(\pi)$
- can lower-bound how much Φ decreases on each update
- can also show rescaling step never increases Φ

Analysis

- algorithm turns out to be (roughly) coordinate descent on Φ
- each step adjusts \mathbf{Q} along one coordinate direction $Q(\pi)$
- can lower-bound how much Φ decreases on each update
- can also show rescaling step never increases Φ
- since $\Phi \geq 0$, gives bound on number of iterations of the algorithm

Analysis

- algorithm turns out to be (roughly) coordinate descent on Φ
- each step adjusts \mathbf{Q} along one coordinate direction $Q(\pi)$
- can lower-bound how much Φ decreases on each update
- can also show rescaling step never increases Φ
- since $\Phi \geq 0$, gives bound on number of iterations of the algorithm
- Theorem: On round t, algorithm halts after at most

$$
\tilde{O}\left(\sqrt{\frac{K t}{\ln |\Pi|}}\right)
$$

iterations (and calls to AMO).

Analysis

- algorithm turns out to be (roughly) coordinate descent on Φ
- each step adjusts \mathbf{Q} along one coordinate direction $Q(\pi)$
- can lower-bound how much Φ decreases on each update
- can also show rescaling step never increases Φ
- since $\Phi \geq 0$, gives bound on number of iterations of the algorithm
- Theorem: On round t, algorithm halts after at most

$$
\tilde{O}\left(\sqrt{\frac{K t}{\ln |\Pi|}}\right)
$$

iterations (and calls to AMO).

- as corollary, also get bound on sparsity of \mathbf{Q}

Epochs and Warm Start

- so far, assumed solve OP from scratch on each round - naively, gives $\tilde{O}\left(T^{3 / 2}\right)$ calls to AMO in T rounds - can do much better!

Epochs and Warm Start

- so far, assumed solve OP from scratch on each round - naively, gives $\tilde{O}\left(T^{3 / 2}\right)$ calls to AMO in T rounds
- can do much better!
- first improvement: since data iid, can use same solution for many rounds, i.e., for long "epochs"
- gives same (near optimal) regret
- essentially no computation required on rounds where \mathbf{Q} not updated

Epochs and Warm Start

- so far, assumed solve OP from scratch on each round - naively, gives $\tilde{O}\left(T^{3 / 2}\right)$ calls to AMO in T rounds
- can do much better!
- first improvement: since data iid, can use same solution for many rounds, i.e., for long "epochs"
- gives same (near optimal) regret
- essentially no computation required on rounds where \mathbf{Q} not updated
- second improvement: can initialize algorithm with the previous solution (rather than starting fresh each time)
- works because each new example can only cause Φ to increase slightly

Epochs and Warm Start (cont.)

- putting together:
if only update \mathbf{Q} on rounds $1,4,9,16,25, \ldots$
- get same (near optimal) regret
- only need

$$
\tilde{O}\left(\sqrt{\frac{K T}{\ln |\Pi|}}\right)
$$

calls to AMO total for entire sequence of T rounds

Summary

- new algorithm for contextual bandits problem with AMO access
- (nearly) optimal regret
- simple and fast
- only requires an average of

$$
\tilde{O}\left(\sqrt{\frac{K}{T \ln |\Pi|}}\right) \ll 1
$$

AMO calls per round

Open Problems and Future Directions

- try out experimentally
- is there an algorithm that uses an online (rather than batch) oracle?
- is there a lower bound on number of AMO calls necessary to solve this problem?
- can we find a similar algorithm that handles adversarial data?

