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Example: Ad/Content PlacementExample: Ad/Content PlacementExample: Ad/Content PlacementExample: Ad/Content PlacementExample: Ad/Content Placement

• repeat:
1. website visited by user (with profile, browsing history,

etc.)
2. website chooses ad/content to present to user
3. user responds (clicks, leaves page, etc.)

• goal: make choices that elicit desired user behavior



Example: Medical TreatmentExample: Medical TreatmentExample: Medical TreatmentExample: Medical TreatmentExample: Medical Treatment

• repeat:
1. doctor visited by patient (with symptoms, test results,

etc.)
2. doctor chooses treatment
3. patient responds (recovers, gets worse, etc.)

• goal: make choices that maximize favorable outcomes
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• repeat:
1. learner presented with context
2. learner chooses an action
3. learner observes reward (but only for chosen action)

• goal: learn to choose actions to maximize rewards

• general and fundamental problem: how to learn to make
intelligent decisions through experience
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IssuesIssuesIssuesIssuesIssues

• classic dilemma:
• exploit what has already been learned
• explore to learn which behaviors give best results

• in addition, must use context effectively
• many choices of behavior possible
• may never see same context twice

• selection bias: if explore while exploiting, will tend to get
highly skewed data

• efficiency
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This TalkThis TalkThis TalkThis TalkThis Talk

• new and general algorithm for contextual bandits

• optimal statistical performance

• far faster and simpler than predecessors



Formal ModelFormal ModelFormal ModelFormal ModelFormal Model

• repeat

1a. learner observes context xt

1b. reward vector rt ∈ [0, 1]K chosen (but not observed)

2. learner selects action at ∈ {1, . . . ,K}
3. learner receives observed reward rt(at)

• goal: maximize total reward:

T∑
t=1

rt(at)

• assume pairs (xt , rt) chosen at random i.i.d.
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ExampleExampleExampleExampleExample

Actions
Context 1 2 3

(Male, 50, . . .)

(Female, 18, . . .)

(Female, 48, . . .)
...

...

total reward = 0.2 + 1.0 + 0.1 + · · ·
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Special Case: Multi-armed Bandit ProblemSpecial Case: Multi-armed Bandit ProblemSpecial Case: Multi-armed Bandit ProblemSpecial Case: Multi-armed Bandit ProblemSpecial Case: Multi-armed Bandit Problem

• no context

• try to do as well as best single action

• tacitly assuming there is one action that gives high
rewards

• e.g.: single treatment/ad/content that is right for entire
population
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PoliciesPoliciesPoliciesPoliciesPolicies

• in contextual bandits setting, can use context to choose
actions

• may exist good policy (decision rule) for choosing actions
based on context

• e.g.:

If (sex = male) choose action 2
Else if (age > 45) choose action 1

else choose action 3

• policy π : (context x) 7→ (action a)

• learner generally working with some rich policy space Π
• e.g.: all decision trees (“if-then-else” rules)
• assume Π finite, but typically extremely large
• tacit assumption:
∃ (unknown) policy π ∈ Π that gives high rewards
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Learning with Context and PoliciesLearning with Context and PoliciesLearning with Context and PoliciesLearning with Context and PoliciesLearning with Context and Policies

• goal: learn through experimentation to do (almost) as well as
best π ∈ Π

• policies may be very complex and expressive
⇒ powerful approach

• challenges:

• Π extremely large
• need to be learning about all policies simultaneously

while also performing as well as the best
• when action selected, only observe reward for policies

that would have chosen same action
• exploration versus exploitation on a gigantic scale!
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Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)

• repeat

1a. learner observes context xt
1b. reward vector rt ∈ [0, 1]K chosen (but not observed)

2. learner selects action at ∈ {1, . . . ,K}
3. learner receives observed reward rt(at)

• goal: want high total (or average) reward
relative to best policy π ∈ Π

• i.e., want small regret:

max
π∈Π

1

T

T∑
t=1

rt(π(xt))︸ ︷︷ ︸
best policy’s average reward

− 1

T

T∑
t=1

rt(at)︸ ︷︷ ︸
learner’s average reward
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An Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this Problem
[Auer, Cesa-Bianchi, Freund, Schapire]

• Exp4 solves this problem
• maintains weights over all policies in Π

• regret is essentially optimal:

O

(√
K ln |Π|

T

)

• even works for adversarial (i.e., non-random, non-iid) data

• but: time/space are linear in |Π|
• too slow if |Π| gigantic

• seems hopeless to do better for fully general policy spaces

• this talk: aim for time/space only poly(log |Π|)
when Π is “well structured”
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• say see rewards for all actions

Actions
Context 1 2 3

(Male, 50, . . .)

(Female, 18, . . .)
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...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0 + 1.0 + 0.5 + · · ·

• for any π, can compute rewards would have received

• average is good estimate of π’s expected reward

• choose empirically best π ∈ Π

• regret = O

(√
ln |Π|
T

)
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“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)
• to apply, just need “oracle” (algorithm/subroutine) for finding

best π ∈ Π on observed rewards
• input: (x1, r1), . . . , (xT , rT )

xt = context
rt = (rt(1), . . . , rt(K )) = rewards for all actions

• output:

π̂ = arg max
π∈Π

T∑
t=1

rt(π(xt))

• really just (cost-sensitive) classification:

context ↔ example

action ↔ label/class

policy ↔ classifier

reward ↔ gain/(negative) cost

• so: if have “good” classification algorithm for Π, can use to
find good policy (in full-information setting)
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But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...
• ...only see rewards for actions taken

Actions
Context 1 2 3

(Male, 50, . . .)

(Female, 18, . . .)
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• still: AMO is a natural primitive

• key question: can we solve the contextual bandits problem
given access to AMO?

• can we use an AMO on bandit data by somehow:
• filling in missing data
• overcoming bias

• want:
• optimal regret
• time/space bounds poly(log |Π|)

• AMO is theoretical idealization

• captures structure in policy space

• in practice, can use off-the-shelf classification algorithm
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[Langford & Zhang]

• partially solved by the ε-greedy/epoch-greedy algorithm

• on each round, choose action:
• according to “best” policy so far (with probability 1− ε)

[can find with AMO]

• uniformly at random (with probability ε)

• regret = O

((
K ln |Π|

T

)1/3
)

• fast and simple, but not optimal
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“Monster” Algorithm“Monster” Algorithm“Monster” Algorithm“Monster” Algorithm“Monster” Algorithm
[Dud́ık, Hsu, Kale, Karampatziakis, Langford, Reyzin & Zhang]

• RandomizedUCB (aka “Monster”) algorithm gets optimal
regret using AMO

• solves multiple optimization problems using ellipsoid algorithm

• very slow: calls AMO about Õ
(
T 4
)

times on every round



Main ResultMain ResultMain ResultMain ResultMain Result

• new, simple algorithm for contextual bandits with AMO access

• (nearly) optimal regret: Õ

(√
K ln |Π|

T

)
• fast: calls AMO far less than once per round!

• on average, calls AMO

Õ

(√
K

T ln |Π|

)
� 1

times per round

• rest of talk: sketching main ideas of the algorithm
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• selection bias is major problem:
• only observe reward for single action
• exploring while exploiting leads to inherently biased

estimates

• nevertheless: can use simple trick to get unbiased estimates
for all actions



De-biasing Biased EstimatesDe-biasing Biased EstimatesDe-biasing Biased EstimatesDe-biasing Biased EstimatesDe-biasing Biased Estimates

• selection bias is major problem:
• only observe reward for single action
• exploring while exploiting leads to inherently biased

estimates

• nevertheless: can use simple trick to get unbiased estimates
for all actions



De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)

• say r(a) = (unknown) reward for action a
p(a) = (known) probability of choosing a

• define r̂(a) =

{
r(a)/p(a) if a chosen
0 else

• then E [r̂(a)] = r(a) — unbiased!

∴ can estimate reward for all actions

∴ can estimate expected reward for any policy π:

R̂(π) =
1

t − 1

t−1∑
τ=1

r̂τ (π(xτ )) = Ê [r̂(π(x))]

∴ can estimate regret of any policy π:

R̂egret(π) = max
π̂∈Π

R̂(π̂)− R̂(π)

• can find maximizing π̂ using AMO
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• no! — variance may be extremely large
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p(a)

∴ to get good estimates, must ensure that 1/p(a) not too large
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Randomizing over PoliciesRandomizing over PoliciesRandomizing over PoliciesRandomizing over PoliciesRandomizing over Policies

• need to choose actions (semi-)randomly

• approach: on each round,
• compute distribution Q over policy space Π
• randomly pick π ∼ Q
• on current context x , choose action π(x)

• Q induces distribution over actions (for any x):

Q(a|x) = Pr
π∼Q

[π(x) = a]

• seems will require time/space O(|Π|) to compute Q over
space Π

• will see later how to avoid!
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How to Pick QHow to Pick QHow to Pick QHow to Pick QHow to Pick Q

• on each round, want to pick Q with:
1. low (estimated) regret

[exploit]

i.e., choose actions think will give high reward

2. low (estimated) variance

[explore]

i.e., ensure future estimates will be accurate
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• R̂egret(π) = estimated regret of π

• so: estimated regret for random π ∼ Q is∑
π

Q(π) R̂egret(π) = Eπ∼Q

[
R̂egret(π)

]

• want small: ∑
π

Q(π) R̂egret(π) ≤ [small]



Low RegretLow RegretLow RegretLow RegretLow Regret

• R̂egret(π) = estimated regret of π

• so: estimated regret for random π ∼ Q is∑
π

Q(π) R̂egret(π) = Eπ∼Q

[
R̂egret(π)

]

• want small: ∑
π

Q(π) R̂egret(π) ≤ [small]



Low RegretLow RegretLow RegretLow RegretLow Regret

• R̂egret(π) = estimated regret of π

• so: estimated regret for random π ∼ Q is∑
π

Q(π) R̂egret(π) = Eπ∼Q

[
R̂egret(π)

]

• want small: ∑
π

Q(π) R̂egret(π) ≤ [small]



Low VarianceLow VarianceLow VarianceLow VarianceLow Variance

•
1

Q(a|x)
= variance of estimate of reward for action a

• so
1

Q(π(x)|x)
= variance if action chosen by π

• can estimate expected variance for actions chosen by π:

V̂Q(π) = Ê

[
1

Q(π(x)|x)

]
=

1

t − 1

t−1∑
τ=1

1

Q(π(xτ )|xτ )

• want small:

V̂Q(π) ≤ [small] for all π ∈ Π

• detail: problematic if Q(a|x) too close to zero

• to avoid, “smooth” probabilities by occassionally picking
action uniformly at random:

Qµ(a|x) = (1− Kµ)Q(a|x) + µ
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[
1

Q(π(x)|x)

]
=

1

t − 1

t−1∑
τ=1

1

Q(π(xτ )|xτ )

• want small:

V̂Q(π) ≤ [small] for all π ∈ Π

• detail: problematic if Q(a|x) too close to zero

• to avoid, “smooth” probabilities by occassionally picking
action uniformly at random:

Qµ(a|x) = (1− Kµ)Q(a|x) + µ



Low VarianceLow VarianceLow VarianceLow VarianceLow Variance

•
1

Q(a|x)
= variance of estimate of reward for action a

• so
1

Q(π(x)|x)
= variance if action chosen by π

• can estimate expected variance for actions chosen by π:

V̂Q(π) = Ê
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Pulling TogetherPulling TogetherPulling TogetherPulling TogetherPulling Together

• want Q such that:∑
π

Q(π) R̂egret(π) ≤ [small]

C1·

V̂Q(π) ≤ [small]

C0+R̂egret(π)

for all π ∈ Π

∑
π

Q(π) = 1

• can fill in constants

• make easier by:
• allowing higher variance for policies with higher regret

(poor policies can be eliminated even with fairly poor
performance estimates)

• only require Q to be sub-distribution
(can put all remaining mass on π̂ with maximum
estimated reward)
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Q(π) = 1
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Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”

find Q such that:∑
π

Q(π) R̂egret(π) ≤ C0

[regret constraint]

C1·V̂Q(π) ≤ C0+R̂egret(π) for all π ∈ Π

[variance constraint]

∑
π

Q(π) ≤ 1

[sub-distribution]

• similar to [Dud́ık et al.]

• seems awful:
• |Π| variables
• |Π| constraints
• constraints involve nasty non-linear functions

(recall V̂Q(π) = Ê
[

1
Qµ(π(x)|x)

]
)

• not even clear if feasible
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If We Can Solve It...If We Can Solve It...If We Can Solve It...If We Can Solve It...If We Can Solve It...

• Theorem: if can solve OP on every round (for appropriate
constants), then will get regret

Õ

(√
K ln |Π|

T

)
.

• proof idea:
• regret constraint ensures low regret

(if estimates are good enough)
• variance constraint ensures that they actually will be

good enough

• essentially same approach as [Dud́ık et al.]
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How to Solve?How to Solve?How to Solve?How to Solve?How to Solve?

• basic idea:
• find a violated constraint
• (attempt to) fix it
• repeat



How to Solve? (cont.)How to Solve? (cont.)How to Solve? (cont.)How to Solve? (cont.)How to Solve? (cont.)

• Q← 0

• repeat:
1. if Q “too big” then rescale

• (i.e., multiply Q by scalar < 1)
• ensures sub-distribution and regret constraints are

satisfied

2. find π ∈ Π for which corresponding variance constraint is
violated

a. if none exists, halt and output Q
b. else Q(π)← Q(π) + α where α = [some formula]
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More Detail: Rescaling StepMore Detail: Rescaling StepMore Detail: Rescaling StepMore Detail: Rescaling StepMore Detail: Rescaling Step

1. [detailed version]

if
∑

π Q(π)(C0 + R̂egret(π)) > C0 then rescale Q
(multiply by scalar < 1) so holds with equality

• after this step, have∑
π

Q(π)(C0 + R̂egret(π)) ≤ C0

which implies:
•
∑

π Q(π) ≤ 1 [sub-distribution]

•
∑

π Q(π) R̂egret(π) ≤ C0 [regret constraint]
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More Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance Constraints

2. [detailed version]

find π ∈ Π for which C1 · V̂Q(π)− R̂egret(π) > C0

a. if none exists, halt and output Q
b. else Q(π)← Q(π) + α where α = [some formula]

• if halts then C1 · V̂Q(π) ≤ C0 + R̂egret(π) for all π ∈ Π
[variance constraint]

• can execute step using AMO:
• can construct “pseudo-rewards” r̃τ for which (∀π):

C1 · V̂Q(π)− R̂egret(π) =
∑
τ

r̃τ (π(xτ )) + [constant]

• so: can maximize with AMO
• will find violating constraint (if one exists)

∴ one AMO call per iteration
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Why Does It Work?Why Does It Work?Why Does It Work?Why Does It Work?Why Does It Work?

• so: if halts, then outputs solution to OP

• but how long will it take to halt (if ever)?

• to answer, analyze using a potential function



A Potential FunctionA Potential FunctionA Potential FunctionA Potential FunctionA Potential Function

• define potential function to quantify progress:

Φ(Q) = A·Ê [RE (uniform ‖ Qµ(·|x))]︸ ︷︷ ︸
low variance

+B·
∑
π

Q(π) R̂egret(π)︸ ︷︷ ︸
low regret

• defined for all nonnegative vectors Q over Π
(not just sub-distributions)

• properties:
• Φ(Q) ≥ 0
• convex
• if Q minimizes Φ then Q is a solution to OP

• key proof step:
∂Φ/∂Q(π) ∝ variance constraint for π

∴ OP is feasible
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AnalysisAnalysisAnalysisAnalysisAnalysis

• algorithm turns out to be (roughly) coordinate descent on Φ
• each step adjusts Q along one coordinate direction Q(π)

• can lower-bound how much Φ decreases on each update

• can also show rescaling step never increases Φ

• since Φ ≥ 0, gives bound on number of iterations of the
algorithm

• Theorem: On round t, algorithm halts after at most

Õ

(√
Kt

ln |Π|

)

iterations (and calls to AMO).

• as corollary, also get bound on sparsity of Q
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Õ

(√
Kt

ln |Π|

)

iterations (and calls to AMO).

• as corollary, also get bound on sparsity of Q



AnalysisAnalysisAnalysisAnalysisAnalysis

• algorithm turns out to be (roughly) coordinate descent on Φ
• each step adjusts Q along one coordinate direction Q(π)

• can lower-bound how much Φ decreases on each update

• can also show rescaling step never increases Φ

• since Φ ≥ 0, gives bound on number of iterations of the
algorithm

• Theorem: On round t, algorithm halts after at most

Õ
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Epochs and Warm StartEpochs and Warm StartEpochs and Warm StartEpochs and Warm StartEpochs and Warm Start

• so far, assumed solve OP from scratch on each round
• naively, gives Õ

(
T 3/2

)
calls to AMO in T rounds

• can do much better!

• first improvement: since data iid, can use same solution for
many rounds, i.e., for long “epochs”

• gives same (near optimal) regret
• essentially no computation required on rounds where Q

not updated

• second improvement: can initialize algorithm with the
previous solution (rather than starting fresh each time)

• works because each new example can only cause Φ to
increase slightly
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Epochs and Warm Start (cont.)Epochs and Warm Start (cont.)Epochs and Warm Start (cont.)Epochs and Warm Start (cont.)Epochs and Warm Start (cont.)

• putting together:
if only update Q on rounds 1, 4, 9, 16, 25, . . .

• get same (near optimal) regret
• only need

Õ

(√
KT

ln |Π|

)
calls to AMO total for entire sequence of T rounds



SummarySummarySummarySummarySummary

• new algorithm for contextual bandits problem with AMO
access

• (nearly) optimal regret

• simple and fast

• only requires an average of

Õ

(√
K

T ln |Π|

)
� 1

AMO calls per round



Open Problems and Future DirectionsOpen Problems and Future DirectionsOpen Problems and Future DirectionsOpen Problems and Future DirectionsOpen Problems and Future Directions

• try out experimentally

• is there an algorithm that uses an online (rather than batch)
oracle?

• is there a lower bound on number of AMO calls necessary to
solve this problem?

• can we find a similar algorithm that handles adversarial data?


