
The Contextual Bandits ProblemThe Contextual Bandits ProblemThe Contextual Bandits ProblemThe Contextual Bandits ProblemThe Contextual Bandits Problem
A New, Fast, and Simple AlgorithmA New, Fast, and Simple AlgorithmA New, Fast, and Simple AlgorithmA New, Fast, and Simple AlgorithmA New, Fast, and Simple Algorithm

Alekh Agarwal (MSR)

Daniel Hsu (Columbia)

Satyen Kale (Yahoo)

John Langford (MSR)

Lihong Li (MSR)

Rob SchapireRob SchapireRob SchapireRob SchapireRob Schapire (MSR/Princeton)

Example: Ad/Content PlacementExample: Ad/Content PlacementExample: Ad/Content PlacementExample: Ad/Content PlacementExample: Ad/Content Placement

• repeat:
1. website visited by user (with profile, browsing history,

etc.)
2. website chooses ad/content to present to user
3. user responds (clicks, leaves page, etc.)

• goal: make choices that elicit desired user behavior

Example: Medical TreatmentExample: Medical TreatmentExample: Medical TreatmentExample: Medical TreatmentExample: Medical Treatment

• repeat:
1. doctor visited by patient (with symptoms, test results,

etc.)
2. doctor chooses treatment
3. patient responds (recovers, gets worse, etc.)

• goal: make choices that maximize favorable outcomes

The Contextual Bandits ProblemThe Contextual Bandits ProblemThe Contextual Bandits ProblemThe Contextual Bandits ProblemThe Contextual Bandits Problem

• repeat:
1. learner presented with context
2. learner chooses an action
3. learner observes reward (but only for chosen action)

• goal: learn to choose actions to maximize rewards

• general and fundamental problem: how to learn to make
intelligent decisions through experience

The Contextual Bandits ProblemThe Contextual Bandits ProblemThe Contextual Bandits ProblemThe Contextual Bandits ProblemThe Contextual Bandits Problem

• repeat:
1. learner presented with context
2. learner chooses an action
3. learner observes reward (but only for chosen action)

• goal: learn to choose actions to maximize rewards

• general and fundamental problem: how to learn to make
intelligent decisions through experience

IssuesIssuesIssuesIssuesIssues

• classic dilemma:
• exploit what has already been learned
• explore to learn which behaviors give best results

• in addition, must use context effectively
• many choices of behavior possible
• may never see same context twice

• selection bias: if explore while exploiting, will tend to get
highly skewed data

• efficiency

IssuesIssuesIssuesIssuesIssues

• classic dilemma:
• exploit what has already been learned
• explore to learn which behaviors give best results

• in addition, must use context effectively
• many choices of behavior possible
• may never see same context twice

• selection bias: if explore while exploiting, will tend to get
highly skewed data

• efficiency

IssuesIssuesIssuesIssuesIssues

• classic dilemma:
• exploit what has already been learned
• explore to learn which behaviors give best results

• in addition, must use context effectively
• many choices of behavior possible
• may never see same context twice

• selection bias: if explore while exploiting, will tend to get
highly skewed data

• efficiency

IssuesIssuesIssuesIssuesIssues

• classic dilemma:
• exploit what has already been learned
• explore to learn which behaviors give best results

• in addition, must use context effectively
• many choices of behavior possible
• may never see same context twice

• selection bias: if explore while exploiting, will tend to get
highly skewed data

• efficiency

This TalkThis TalkThis TalkThis TalkThis Talk

• new and general algorithm for contextual bandits

• optimal statistical performance

• far faster and simpler than predecessors

Formal ModelFormal ModelFormal ModelFormal ModelFormal Model

• repeat

1a. learner observes context xt

1b. reward vector rt ∈ [0, 1]K chosen (but not observed)

2. learner selects action at ∈ {1, . . . ,K}
3. learner receives observed reward rt(at)

• goal: maximize total reward:

T∑
t=1

rt(at)

• assume pairs (xt , rt) chosen at random i.i.d.

Formal ModelFormal ModelFormal ModelFormal ModelFormal Model

• repeat

1a. learner observes context xt
1b. reward vector rt ∈ [0, 1]K chosen (but not observed)

2. learner selects action at ∈ {1, . . . ,K}
3. learner receives observed reward rt(at)

• goal: maximize total reward:

T∑
t=1

rt(at)

• assume pairs (xt , rt) chosen at random i.i.d.

Formal ModelFormal ModelFormal ModelFormal ModelFormal Model

• repeat

1a. learner observes context xt
1b. reward vector rt ∈ [0, 1]K chosen (but not observed)

2. learner selects action at ∈ {1, . . . ,K}
3. learner receives observed reward rt(at)

• goal: maximize total reward:

T∑
t=1

rt(at)

• assume pairs (xt , rt) chosen at random i.i.d.

Formal ModelFormal ModelFormal ModelFormal ModelFormal Model

• repeat

1a. learner observes context xt
1b. reward vector rt ∈ [0, 1]K chosen (but not observed)

2. learner selects action at ∈ {1, . . . ,K}
3. learner receives observed reward rt(at)

• goal: maximize total reward:

T∑
t=1

rt(at)

• assume pairs (xt , rt) chosen at random i.i.d.

ExampleExampleExampleExampleExample

Actions
Context 1 2 3

(Male, 50, . . .)

(Female, 18, . . .)

(Female, 48, . . .)
...

...

total reward = 0.2 + 1.0 + 0.1 + · · ·

ExampleExampleExampleExampleExample

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .)

(Female, 48, . . .)
...

...

total reward = 0.2 + 1.0 + 0.1 + · · ·

ExampleExampleExampleExampleExample

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .)

(Female, 48, . . .)
...

...

total reward = 0.2 + 1.0 + 0.1 + · · ·

ExampleExampleExampleExampleExample

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .)

(Female, 48, . . .)
...

...

total reward = 0.2 +

1.0 + 0.1 + · · ·

ExampleExampleExampleExampleExample

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .)

(Female, 48, . . .)
...

...

total reward = 0.2 +

1.0 + 0.1 + · · ·

ExampleExampleExampleExampleExample

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .) 1.0 0.0 1.0

(Female, 48, . . .)
...

...

total reward = 0.2 +

1.0 + 0.1 + · · ·

ExampleExampleExampleExampleExample

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .) 1.0 0.0 1.0

(Female, 48, . . .)
...

...

total reward = 0.2 + 1.0 +

0.1 + · · ·

ExampleExampleExampleExampleExample

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .) 1.0 0.0 1.0

(Female, 48, . . .)

...
...

total reward = 0.2 + 1.0 +

0.1 + · · ·

ExampleExampleExampleExampleExample

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .) 1.0 0.0 1.0

(Female, 48, . . .) 0.5 0.1 0.7

...
...

total reward = 0.2 + 1.0 +

0.1 + · · ·

ExampleExampleExampleExampleExample

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .) 1.0 0.0 1.0

(Female, 48, . . .) 0.5 0.1 0.7
...

...

total reward = 0.2 + 1.0 + 0.1 + · · ·

Special Case: Multi-armed Bandit ProblemSpecial Case: Multi-armed Bandit ProblemSpecial Case: Multi-armed Bandit ProblemSpecial Case: Multi-armed Bandit ProblemSpecial Case: Multi-armed Bandit Problem

• no context

• try to do as well as best single action

• tacitly assuming there is one action that gives high
rewards

• e.g.: single treatment/ad/content that is right for entire
population

Special Case: Multi-armed Bandit ProblemSpecial Case: Multi-armed Bandit ProblemSpecial Case: Multi-armed Bandit ProblemSpecial Case: Multi-armed Bandit ProblemSpecial Case: Multi-armed Bandit Problem

• no context

• try to do as well as best single action
• tacitly assuming there is one action that gives high

rewards
• e.g.: single treatment/ad/content that is right for entire

population

PoliciesPoliciesPoliciesPoliciesPolicies

• in contextual bandits setting, can use context to choose
actions

• may exist good policy (decision rule) for choosing actions
based on context

• e.g.:

If (sex = male) choose action 2
Else if (age > 45) choose action 1

else choose action 3

• policy π : (context x) 7→ (action a)

• learner generally working with some rich policy space Π
• e.g.: all decision trees (“if-then-else” rules)
• assume Π finite, but typically extremely large
• tacit assumption:
∃ (unknown) policy π ∈ Π that gives high rewards

PoliciesPoliciesPoliciesPoliciesPolicies

• in contextual bandits setting, can use context to choose
actions

• may exist good policy (decision rule) for choosing actions
based on context

• e.g.:

If (sex = male) choose action 2
Else if (age > 45) choose action 1

else choose action 3

• policy π : (context x) 7→ (action a)

• learner generally working with some rich policy space Π
• e.g.: all decision trees (“if-then-else” rules)
• assume Π finite, but typically extremely large
• tacit assumption:
∃ (unknown) policy π ∈ Π that gives high rewards

PoliciesPoliciesPoliciesPoliciesPolicies

• in contextual bandits setting, can use context to choose
actions

• may exist good policy (decision rule) for choosing actions
based on context

• e.g.:

If (sex = male) choose action 2
Else if (age > 45) choose action 1

else choose action 3

• policy π : (context x) 7→ (action a)

• learner generally working with some rich policy space Π
• e.g.: all decision trees (“if-then-else” rules)
• assume Π finite, but typically extremely large
• tacit assumption:
∃ (unknown) policy π ∈ Π that gives high rewards

PoliciesPoliciesPoliciesPoliciesPolicies

• in contextual bandits setting, can use context to choose
actions

• may exist good policy (decision rule) for choosing actions
based on context

• e.g.:

If (sex = male) choose action 2
Else if (age > 45) choose action 1

else choose action 3

• policy π : (context x) 7→ (action a)

• learner generally working with some rich policy space Π
• e.g.: all decision trees (“if-then-else” rules)

• assume Π finite, but typically extremely large
• tacit assumption:
∃ (unknown) policy π ∈ Π that gives high rewards

PoliciesPoliciesPoliciesPoliciesPolicies

• in contextual bandits setting, can use context to choose
actions

• may exist good policy (decision rule) for choosing actions
based on context

• e.g.:

If (sex = male) choose action 2
Else if (age > 45) choose action 1

else choose action 3

• policy π : (context x) 7→ (action a)

• learner generally working with some rich policy space Π
• e.g.: all decision trees (“if-then-else” rules)
• assume Π finite, but typically extremely large
• tacit assumption:
∃ (unknown) policy π ∈ Π that gives high rewards

Learning with Context and PoliciesLearning with Context and PoliciesLearning with Context and PoliciesLearning with Context and PoliciesLearning with Context and Policies

• goal: learn through experimentation to do (almost) as well as
best π ∈ Π

• policies may be very complex and expressive
⇒ powerful approach

• challenges:

• Π extremely large
• need to be learning about all policies simultaneously

while also performing as well as the best
• when action selected, only observe reward for policies

that would have chosen same action
• exploration versus exploitation on a gigantic scale!

Learning with Context and PoliciesLearning with Context and PoliciesLearning with Context and PoliciesLearning with Context and PoliciesLearning with Context and Policies

• goal: learn through experimentation to do (almost) as well as
best π ∈ Π

• policies may be very complex and expressive
⇒ powerful approach

• challenges:

• Π extremely large
• need to be learning about all policies simultaneously

while also performing as well as the best
• when action selected, only observe reward for policies

that would have chosen same action
• exploration versus exploitation on a gigantic scale!

Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)

• repeat

1a. learner observes context xt
1b. reward vector rt ∈ [0, 1]K chosen (but not observed)

2. learner selects action at ∈ {1, . . . ,K}
3. learner receives observed reward rt(at)

• goal: want high total (or average) reward
relative to best policy π ∈ Π

• i.e., want small regret:

max
π∈Π

1

T

T∑
t=1

rt(π(xt))︸ ︷︷ ︸
best policy’s average reward

− 1

T

T∑
t=1

rt(at)︸ ︷︷ ︸
learner’s average reward

Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)

• repeat

1a. learner observes context xt
1b. reward vector rt ∈ [0, 1]K chosen (but not observed)

2. learner selects action at ∈ {1, . . . ,K}
3. learner receives observed reward rt(at)

• goal: want high total (or average) reward
relative to best policy π ∈ Π

• i.e., want small regret:

max
π∈Π

1

T

T∑
t=1

rt(π(xt))︸ ︷︷ ︸
best policy’s average reward

−

1

T

T∑
t=1

rt(at)︸ ︷︷ ︸
learner’s average reward

Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)

• repeat

1a. learner observes context xt
1b. reward vector rt ∈ [0, 1]K chosen (but not observed)

2. learner selects action at ∈ {1, . . . ,K}
3. learner receives observed reward rt(at)

• goal: want high total (or average) reward
relative to best policy π ∈ Π

• i.e., want small regret:

max
π∈Π

1

T

T∑
t=1

rt(π(xt))︸ ︷︷ ︸
best policy’s average reward

− 1

T

T∑
t=1

rt(at)︸ ︷︷ ︸
learner’s average reward

An Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this Problem
[Auer, Cesa-Bianchi, Freund, Schapire]

• Exp4 solves this problem
• maintains weights over all policies in Π

• regret is essentially optimal:

O

(√
K ln |Π|

T

)

• even works for adversarial (i.e., non-random, non-iid) data

• but: time/space are linear in |Π|
• too slow if |Π| gigantic

• seems hopeless to do better for fully general policy spaces

• this talk: aim for time/space only poly(log |Π|)
when Π is “well structured”

An Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this Problem
[Auer, Cesa-Bianchi, Freund, Schapire]

• Exp4 solves this problem
• maintains weights over all policies in Π

• regret is essentially optimal:

O

(√
K ln |Π|

T

)

• even works for adversarial (i.e., non-random, non-iid) data

• but: time/space are linear in |Π|
• too slow if |Π| gigantic

• seems hopeless to do better for fully general policy spaces

• this talk: aim for time/space only poly(log |Π|)
when Π is “well structured”

An Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this Problem
[Auer, Cesa-Bianchi, Freund, Schapire]

• Exp4 solves this problem
• maintains weights over all policies in Π

• regret is essentially optimal:

O

(√
K ln |Π|

T

)

• even works for adversarial (i.e., non-random, non-iid) data

• but: time/space are linear in |Π|
• too slow if |Π| gigantic

• seems hopeless to do better for fully general policy spaces

• this talk: aim for time/space only poly(log |Π|)
when Π is “well structured”

An Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this ProblemAn Algorithm that Solves this Problem
[Auer, Cesa-Bianchi, Freund, Schapire]

• Exp4 solves this problem
• maintains weights over all policies in Π

• regret is essentially optimal:

O

(√
K ln |Π|

T

)

• even works for adversarial (i.e., non-random, non-iid) data

• but: time/space are linear in |Π|
• too slow if |Π| gigantic

• seems hopeless to do better for fully general policy spaces

• this talk: aim for time/space only poly(log |Π|)
when Π is “well structured”

The (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information Setting

• say see rewards for all actions

Actions
Context 1 2 3

(Male, 50, . . .)

(Female, 18, . . .)

(Female, 48, . . .)
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0 + 1.0 + 0.5 + · · ·

• for any π, can compute rewards would have received

• average is good estimate of π’s expected reward

• choose empirically best π ∈ Π

• regret = O

(√
ln |Π|
T

)

The (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information Setting

• say see rewards for all actions

Actions
Context 1 2 3

(Male, 50, . . .)

(Female, 18, . . .)

(Female, 48, . . .)
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0 + 1.0 + 0.5 + · · ·

• for any π, can compute rewards would have received

• average is good estimate of π’s expected reward

• choose empirically best π ∈ Π

• regret = O

(√
ln |Π|
T

)

The (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information Setting

• say see rewards for all actions

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .)

(Female, 48, . . .)
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0 + 1.0 + 0.5 + · · ·

• for any π, can compute rewards would have received

• average is good estimate of π’s expected reward

• choose empirically best π ∈ Π

• regret = O

(√
ln |Π|
T

)

The (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information Setting

• say see rewards for all actions

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .)

(Female, 48, . . .)
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 +

1.0 + 0.1 + · · ·
π’s total reward = 0.0 + 1.0 + 0.5 + · · ·

• for any π, can compute rewards would have received

• average is good estimate of π’s expected reward

• choose empirically best π ∈ Π

• regret = O

(√
ln |Π|
T

)

The (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information Setting

• say see rewards for all actions

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .) 1.0 0.0 1.0

(Female, 48, . . .) 0.5 0.1 0.7
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·

π’s total reward = 0.0 + 1.0 + 0.5 + · · ·
• for any π, can compute rewards would have received

• average is good estimate of π’s expected reward

• choose empirically best π ∈ Π

• regret = O

(√
ln |Π|
T

)

The (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information Setting

• say see rewards for all actions

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .) 1.0 0.0 1.0

(Female, 48, . . .) 0.5 0.1 0.7
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·

π’s total reward = 0.0 + 1.0 + 0.5 + · · ·

• for any π, can compute rewards would have received

• average is good estimate of π’s expected reward

• choose empirically best π ∈ Π

• regret = O

(√
ln |Π|
T

)

The (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information Setting

• say see rewards for all actions

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 ©0.0

(Female, 18, . . .) 1.0 0.0 ©1.0

(Female, 48, . . .) ©0.5 0.1 0.7
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0 + 1.0 + 0.5 + · · ·

• for any π, can compute rewards would have received

• average is good estimate of π’s expected reward

• choose empirically best π ∈ Π

• regret = O

(√
ln |Π|
T

)

The (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information Setting

• say see rewards for all actions

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 ©0.0

(Female, 18, . . .) 1.0 0.0 ©1.0

(Female, 48, . . .) ©0.5 0.1 0.7
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0 + 1.0 + 0.5 + · · ·

• for any π, can compute rewards would have received
• average is good estimate of π’s expected reward

• choose empirically best π ∈ Π

• regret = O

(√
ln |Π|
T

)

The (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information SettingThe (Fantasy) Full-Information Setting

• say see rewards for all actions

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 ©0.0

(Female, 18, . . .) 1.0 0.0 ©1.0

(Female, 48, . . .) ©0.5 0.1 0.7
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0 + 1.0 + 0.5 + · · ·

• for any π, can compute rewards would have received
• average is good estimate of π’s expected reward

• choose empirically best π ∈ Π

• regret = O

(√
ln |Π|
T

)

“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)
• to apply, just need “oracle” (algorithm/subroutine) for finding

best π ∈ Π on observed rewards
• input: (x1, r1), . . . , (xT , rT)

xt = context
rt = (rt(1), . . . , rt(K)) = rewards for all actions

• output:

π̂ = arg max
π∈Π

T∑
t=1

rt(π(xt))

• really just (cost-sensitive) classification:

context ↔ example

action ↔ label/class

policy ↔ classifier

reward ↔ gain/(negative) cost

• so: if have “good” classification algorithm for Π, can use to
find good policy (in full-information setting)

“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)
• to apply, just need “oracle” (algorithm/subroutine) for finding

best π ∈ Π on observed rewards
• input: (x1, r1), . . . , (xT , rT)

xt = context
rt = (rt(1), . . . , rt(K)) = rewards for all actions

• output:

π̂ = arg max
π∈Π

T∑
t=1

rt(π(xt))

• really just (cost-sensitive) classification:

context ↔ example

action ↔ label/class

policy ↔ classifier

reward ↔ gain/(negative) cost

• so: if have “good” classification algorithm for Π, can use to
find good policy (in full-information setting)

“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)“Arg-Max Oracle” (AMO)
• to apply, just need “oracle” (algorithm/subroutine) for finding

best π ∈ Π on observed rewards
• input: (x1, r1), . . . , (xT , rT)

xt = context
rt = (rt(1), . . . , rt(K)) = rewards for all actions

• output:

π̂ = arg max
π∈Π

T∑
t=1

rt(π(xt))

• really just (cost-sensitive) classification:

context ↔ example

action ↔ label/class

policy ↔ classifier

reward ↔ gain/(negative) cost

• so: if have “good” classification algorithm for Π, can use to
find good policy (in full-information setting)

But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...
• ...only see rewards for actions taken

Actions
Context 1 2 3

(Male, 50, . . .)

(Female, 18, . . .)

(Female, 48, . . .)
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0?? + 1.0 + 0.5?? + · · ·

• for any policy π, only observe π’s rewards on subset of rounds
• might like to use AMO to find empirically good policy
• problems:

• only see some rewards
• observed rewards highly biased

(due to skewed choice of actions)

But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...
• ...only see rewards for actions taken

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .) 1.0 0.0 1.0

(Female, 48, . . .) 0.5 0.1 0.7
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0?? + 1.0 + 0.5?? + · · ·

• for any policy π, only observe π’s rewards on subset of rounds
• might like to use AMO to find empirically good policy
• problems:

• only see some rewards
• observed rewards highly biased

(due to skewed choice of actions)

But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...
• ...only see rewards for actions taken

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .) 1.0 0.0 1.0

(Female, 48, . . .) 0.5 0.1 0.7
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0?? + 1.0 + 0.5?? + · · ·

• for any policy π, only observe π’s rewards on subset of rounds
• might like to use AMO to find empirically good policy
• problems:

• only see some rewards
• observed rewards highly biased

(due to skewed choice of actions)

But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...
• ...only see rewards for actions taken

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .) 1.0 0.0 1.0

(Female, 48, . . .) 0.5 0.1 0.7
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·

π’s total reward = 0.0?? + 1.0 + 0.5?? + · · ·
• for any policy π, only observe π’s rewards on subset of rounds
• might like to use AMO to find empirically good policy
• problems:

• only see some rewards
• observed rewards highly biased

(due to skewed choice of actions)

But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...
• ...only see rewards for actions taken

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 ©0.0

(Female, 18, . . .) 1.0 0.0 ©1.0

(Female, 48, . . .) ©0.5 0.1 0.7
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·

π’s total reward = 0.0?? + 1.0 + 0.5?? + · · ·

• for any policy π, only observe π’s rewards on subset of rounds

• might like to use AMO to find empirically good policy
• problems:

• only see some rewards
• observed rewards highly biased

(due to skewed choice of actions)

But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...
• ...only see rewards for actions taken

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 ©0.0

(Female, 18, . . .) 1.0 0.0 ©1.0

(Female, 48, . . .) ©0.5 0.1 0.7
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0?? + 1.0 + 0.5?? + · · ·

• for any policy π, only observe π’s rewards on subset of rounds

• might like to use AMO to find empirically good policy
• problems:

• only see some rewards
• observed rewards highly biased

(due to skewed choice of actions)

But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...But in the Bandit Setting...
• ...only see rewards for actions taken

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 ©0.0

(Female, 18, . . .) 1.0 0.0 ©1.0

(Female, 48, . . .) ©0.5 0.1 0.7
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0?? + 1.0 + 0.5?? + · · ·

• for any policy π, only observe π’s rewards on subset of rounds
• might like to use AMO to find empirically good policy
• problems:

• only see some rewards
• observed rewards highly biased

(due to skewed choice of actions)

Key QuestionKey QuestionKey QuestionKey QuestionKey Question

• still: AMO is a natural primitive

• key question: can we solve the contextual bandits problem
given access to AMO?

• can we use an AMO on bandit data by somehow:
• filling in missing data
• overcoming bias

• want:
• optimal regret
• time/space bounds poly(log |Π|)

• AMO is theoretical idealization

• captures structure in policy space

• in practice, can use off-the-shelf classification algorithm

Key QuestionKey QuestionKey QuestionKey QuestionKey Question

• still: AMO is a natural primitive

• key question: can we solve the contextual bandits problem
given access to AMO?

• can we use an AMO on bandit data by somehow:
• filling in missing data
• overcoming bias

• want:
• optimal regret
• time/space bounds poly(log |Π|)

• AMO is theoretical idealization

• captures structure in policy space

• in practice, can use off-the-shelf classification algorithm

Key QuestionKey QuestionKey QuestionKey QuestionKey Question

• still: AMO is a natural primitive

• key question: can we solve the contextual bandits problem
given access to AMO?

• can we use an AMO on bandit data by somehow:
• filling in missing data
• overcoming bias

• want:
• optimal regret
• time/space bounds poly(log |Π|)

• AMO is theoretical idealization

• captures structure in policy space

• in practice, can use off-the-shelf classification algorithm

Key QuestionKey QuestionKey QuestionKey QuestionKey Question

• still: AMO is a natural primitive

• key question: can we solve the contextual bandits problem
given access to AMO?

• can we use an AMO on bandit data by somehow:
• filling in missing data
• overcoming bias

• want:
• optimal regret
• time/space bounds poly(log |Π|)

• AMO is theoretical idealization

• captures structure in policy space

• in practice, can use off-the-shelf classification algorithm

ε-Greedy/Epoch-Greedyε-Greedy/Epoch-Greedyε-Greedy/Epoch-Greedyε-Greedy/Epoch-Greedyε-Greedy/Epoch-Greedy
[Langford & Zhang]

• partially solved by the ε-greedy/epoch-greedy algorithm

• on each round, choose action:
• according to “best” policy so far (with probability 1− ε)

[can find with AMO]

• uniformly at random (with probability ε)

• regret = O

((
K ln |Π|

T

)1/3
)

• fast and simple, but not optimal

ε-Greedy/Epoch-Greedyε-Greedy/Epoch-Greedyε-Greedy/Epoch-Greedyε-Greedy/Epoch-Greedyε-Greedy/Epoch-Greedy
[Langford & Zhang]

• partially solved by the ε-greedy/epoch-greedy algorithm

• on each round, choose action:
• according to “best” policy so far (with probability 1− ε)

[can find with AMO]
• uniformly at random (with probability ε)

• regret = O

((
K ln |Π|

T

)1/3
)

• fast and simple, but not optimal

ε-Greedy/Epoch-Greedyε-Greedy/Epoch-Greedyε-Greedy/Epoch-Greedyε-Greedy/Epoch-Greedyε-Greedy/Epoch-Greedy
[Langford & Zhang]

• partially solved by the ε-greedy/epoch-greedy algorithm

• on each round, choose action:
• according to “best” policy so far (with probability 1− ε)

[can find with AMO]
• uniformly at random (with probability ε)

• regret = O

((
K ln |Π|

T

)1/3
)

• fast and simple, but not optimal

“Monster” Algorithm“Monster” Algorithm“Monster” Algorithm“Monster” Algorithm“Monster” Algorithm
[Dud́ık, Hsu, Kale, Karampatziakis, Langford, Reyzin & Zhang]

• RandomizedUCB (aka “Monster”) algorithm gets optimal
regret using AMO

• solves multiple optimization problems using ellipsoid algorithm

• very slow: calls AMO about Õ
(
T 4
)

times on every round

Main ResultMain ResultMain ResultMain ResultMain Result

• new, simple algorithm for contextual bandits with AMO access

• (nearly) optimal regret: Õ

(√
K ln |Π|

T

)
• fast: calls AMO far less than once per round!

• on average, calls AMO

Õ

(√
K

T ln |Π|

)
� 1

times per round

• rest of talk: sketching main ideas of the algorithm

Main ResultMain ResultMain ResultMain ResultMain Result

• new, simple algorithm for contextual bandits with AMO access

• (nearly) optimal regret: Õ

(√
K ln |Π|

T

)
• fast: calls AMO far less than once per round!

• on average, calls AMO

Õ

(√
K

T ln |Π|

)
� 1

times per round

• rest of talk: sketching main ideas of the algorithm

De-biasing Biased EstimatesDe-biasing Biased EstimatesDe-biasing Biased EstimatesDe-biasing Biased EstimatesDe-biasing Biased Estimates

• selection bias is major problem:
• only observe reward for single action
• exploring while exploiting leads to inherently biased

estimates

• nevertheless: can use simple trick to get unbiased estimates
for all actions

De-biasing Biased EstimatesDe-biasing Biased EstimatesDe-biasing Biased EstimatesDe-biasing Biased EstimatesDe-biasing Biased Estimates

• selection bias is major problem:
• only observe reward for single action
• exploring while exploiting leads to inherently biased

estimates

• nevertheless: can use simple trick to get unbiased estimates
for all actions

De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)

• say r(a) = (unknown) reward for action a
p(a) = (known) probability of choosing a

• define r̂(a) =

{
r(a)/p(a) if a chosen
0 else

• then E [r̂(a)] = r(a) — unbiased!

∴ can estimate reward for all actions

∴ can estimate expected reward for any policy π:

R̂(π) =
1

t − 1

t−1∑
τ=1

r̂τ (π(xτ)) = Ê [r̂(π(x))]

∴ can estimate regret of any policy π:

R̂egret(π) = max
π̂∈Π

R̂(π̂)− R̂(π)

• can find maximizing π̂ using AMO

De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)

• say r(a) = (unknown) reward for action a
p(a) = (known) probability of choosing a

• define r̂(a) =

{
r(a)/p(a) if a chosen
0 else

• then E [r̂(a)] = r(a)

— unbiased!

∴ can estimate reward for all actions

∴ can estimate expected reward for any policy π:

R̂(π) =
1

t − 1

t−1∑
τ=1

r̂τ (π(xτ)) = Ê [r̂(π(x))]

∴ can estimate regret of any policy π:

R̂egret(π) = max
π̂∈Π

R̂(π̂)− R̂(π)

• can find maximizing π̂ using AMO

De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)

• say r(a) = (unknown) reward for action a
p(a) = (known) probability of choosing a

• define r̂(a) =

{
r(a)/p(a) if a chosen
0 else

• then E [r̂(a)] = r(a) — unbiased!

∴ can estimate reward for all actions

∴ can estimate expected reward for any policy π:

R̂(π) =
1

t − 1

t−1∑
τ=1

r̂τ (π(xτ)) = Ê [r̂(π(x))]

∴ can estimate regret of any policy π:

R̂egret(π) = max
π̂∈Π

R̂(π̂)− R̂(π)

• can find maximizing π̂ using AMO

De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)

• say r(a) = (unknown) reward for action a
p(a) = (known) probability of choosing a

• define r̂(a) =

{
r(a)/p(a) if a chosen
0 else

• then E [r̂(a)] = r(a) — unbiased!

∴ can estimate reward for all actions

∴ can estimate expected reward for any policy π:

R̂(π) =
1

t − 1

t−1∑
τ=1

r̂τ (π(xτ)) = Ê [r̂(π(x))]

∴ can estimate regret of any policy π:

R̂egret(π) = max
π̂∈Π

R̂(π̂)− R̂(π)

• can find maximizing π̂ using AMO

De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)De-biasing Biased Estimates (cont.)

• say r(a) = (unknown) reward for action a
p(a) = (known) probability of choosing a

• define r̂(a) =

{
r(a)/p(a) if a chosen
0 else

• then E [r̂(a)] = r(a) — unbiased!

∴ can estimate reward for all actions

∴ can estimate expected reward for any policy π:

R̂(π) =
1

t − 1

t−1∑
τ=1

r̂τ (π(xτ)) = Ê [r̂(π(x))]

∴ can estimate regret of any policy π:

R̂egret(π) = max
π̂∈Π

R̂(π̂)− R̂(π)

• can find maximizing π̂ using AMO

Variance ControlVariance ControlVariance ControlVariance ControlVariance Control

• estimates are unbiased — done?

• no! — variance may be extremely large

• can show variance(r̂(a)) ≤ 1

p(a)

∴ to get good estimates, must ensure that 1/p(a) not too large

Variance ControlVariance ControlVariance ControlVariance ControlVariance Control

• estimates are unbiased — done?

• no! — variance may be extremely large

• can show variance(r̂(a)) ≤ 1

p(a)

∴ to get good estimates, must ensure that 1/p(a) not too large

Variance ControlVariance ControlVariance ControlVariance ControlVariance Control

• estimates are unbiased — done?

• no! — variance may be extremely large

• can show variance(r̂(a)) ≤ 1

p(a)

∴ to get good estimates, must ensure that 1/p(a) not too large

Variance ControlVariance ControlVariance ControlVariance ControlVariance Control

• estimates are unbiased — done?

• no! — variance may be extremely large

• can show variance(r̂(a)) ≤ 1

p(a)

∴ to get good estimates, must ensure that 1/p(a) not too large

Randomizing over PoliciesRandomizing over PoliciesRandomizing over PoliciesRandomizing over PoliciesRandomizing over Policies

• need to choose actions (semi-)randomly

• approach: on each round,
• compute distribution Q over policy space Π
• randomly pick π ∼ Q
• on current context x , choose action π(x)

• Q induces distribution over actions (for any x):

Q(a|x) = Pr
π∼Q

[π(x) = a]

• seems will require time/space O(|Π|) to compute Q over
space Π

• will see later how to avoid!

Randomizing over PoliciesRandomizing over PoliciesRandomizing over PoliciesRandomizing over PoliciesRandomizing over Policies

• need to choose actions (semi-)randomly

• approach: on each round,
• compute distribution Q over policy space Π
• randomly pick π ∼ Q
• on current context x , choose action π(x)

• Q induces distribution over actions (for any x):

Q(a|x) = Pr
π∼Q

[π(x) = a]

• seems will require time/space O(|Π|) to compute Q over
space Π

• will see later how to avoid!

Randomizing over PoliciesRandomizing over PoliciesRandomizing over PoliciesRandomizing over PoliciesRandomizing over Policies

• need to choose actions (semi-)randomly

• approach: on each round,
• compute distribution Q over policy space Π
• randomly pick π ∼ Q
• on current context x , choose action π(x)

• Q induces distribution over actions (for any x):

Q(a|x) = Pr
π∼Q

[π(x) = a]

• seems will require time/space O(|Π|) to compute Q over
space Π

• will see later how to avoid!

Randomizing over PoliciesRandomizing over PoliciesRandomizing over PoliciesRandomizing over PoliciesRandomizing over Policies

• need to choose actions (semi-)randomly

• approach: on each round,
• compute distribution Q over policy space Π
• randomly pick π ∼ Q
• on current context x , choose action π(x)

• Q induces distribution over actions (for any x):

Q(a|x) = Pr
π∼Q

[π(x) = a]

• seems will require time/space O(|Π|) to compute Q over
space Π

• will see later how to avoid!

How to Pick QHow to Pick QHow to Pick QHow to Pick QHow to Pick Q

• on each round, want to pick Q with:
1. low (estimated) regret

[exploit]

i.e., choose actions think will give high reward

2. low (estimated) variance

[explore]

i.e., ensure future estimates will be accurate

How to Pick QHow to Pick QHow to Pick QHow to Pick QHow to Pick Q

• on each round, want to pick Q with:
1. low (estimated) regret

[exploit]

i.e., choose actions think will give high reward
2. low (estimated) variance

[explore]

i.e., ensure future estimates will be accurate

How to Pick QHow to Pick QHow to Pick QHow to Pick QHow to Pick Q

• on each round, want to pick Q with:
1. low (estimated) regret [exploit]

i.e., choose actions think will give high reward
2. low (estimated) variance [explore]

i.e., ensure future estimates will be accurate

Low RegretLow RegretLow RegretLow RegretLow Regret

• R̂egret(π) = estimated regret of π

• so: estimated regret for random π ∼ Q is∑
π

Q(π) R̂egret(π) = Eπ∼Q

[
R̂egret(π)

]

• want small: ∑
π

Q(π) R̂egret(π) ≤ [small]

Low RegretLow RegretLow RegretLow RegretLow Regret

• R̂egret(π) = estimated regret of π

• so: estimated regret for random π ∼ Q is∑
π

Q(π) R̂egret(π) = Eπ∼Q

[
R̂egret(π)

]

• want small: ∑
π

Q(π) R̂egret(π) ≤ [small]

Low RegretLow RegretLow RegretLow RegretLow Regret

• R̂egret(π) = estimated regret of π

• so: estimated regret for random π ∼ Q is∑
π

Q(π) R̂egret(π) = Eπ∼Q

[
R̂egret(π)

]

• want small: ∑
π

Q(π) R̂egret(π) ≤ [small]

Low VarianceLow VarianceLow VarianceLow VarianceLow Variance

•
1

Q(a|x)
= variance of estimate of reward for action a

• so
1

Q(π(x)|x)
= variance if action chosen by π

• can estimate expected variance for actions chosen by π:

V̂Q(π) = Ê

[
1

Q(π(x)|x)

]
=

1

t − 1

t−1∑
τ=1

1

Q(π(xτ)|xτ)

• want small:

V̂Q(π) ≤ [small] for all π ∈ Π

• detail: problematic if Q(a|x) too close to zero

• to avoid, “smooth” probabilities by occassionally picking
action uniformly at random:

Qµ(a|x) = (1− Kµ)Q(a|x) + µ

Low VarianceLow VarianceLow VarianceLow VarianceLow Variance

•
1

Q(a|x)
= variance of estimate of reward for action a

• so
1

Q(π(x)|x)
= variance if action chosen by π

• can estimate expected variance for actions chosen by π:

V̂Q(π) = Ê

[
1

Q(π(x)|x)

]
=

1

t − 1

t−1∑
τ=1

1

Q(π(xτ)|xτ)

• want small:

V̂Q(π) ≤ [small] for all π ∈ Π

• detail: problematic if Q(a|x) too close to zero

• to avoid, “smooth” probabilities by occassionally picking
action uniformly at random:

Qµ(a|x) = (1− Kµ)Q(a|x) + µ

Low VarianceLow VarianceLow VarianceLow VarianceLow Variance

•
1

Q(a|x)
= variance of estimate of reward for action a

• so
1

Q(π(x)|x)
= variance if action chosen by π

• can estimate expected variance for actions chosen by π:

V̂Q(π) = Ê

[
1

Q(π(x)|x)

]
=

1

t − 1

t−1∑
τ=1

1

Q(π(xτ)|xτ)

• want small:

V̂Q(π) ≤ [small] for all π ∈ Π

• detail: problematic if Q(a|x) too close to zero

• to avoid, “smooth” probabilities by occassionally picking
action uniformly at random:

Qµ(a|x) = (1− Kµ)Q(a|x) + µ

Low VarianceLow VarianceLow VarianceLow VarianceLow Variance

•
1

Q(a|x)
= variance of estimate of reward for action a

• so
1

Q(π(x)|x)
= variance if action chosen by π

• can estimate expected variance for actions chosen by π:

V̂Q(π) = Ê

[
1

Q(π(x)|x)

]
=

1

t − 1

t−1∑
τ=1

1

Q(π(xτ)|xτ)

• want small:

V̂Q(π) ≤ [small] for all π ∈ Π

• detail: problematic if Q(a|x) too close to zero

• to avoid, “smooth” probabilities by occassionally picking
action uniformly at random:

Qµ(a|x) = (1− Kµ)Q(a|x) + µ

Low VarianceLow VarianceLow VarianceLow VarianceLow Variance

•
1

Q(a|x)
= variance of estimate of reward for action a

• so
1

Q(π(x)|x)
= variance if action chosen by π

• can estimate expected variance for actions chosen by π:

V̂Q(π) = Ê

[
1

Q(π(x)|x)

]
=

1

t − 1

t−1∑
τ=1

1

Q(π(xτ)|xτ)

• want small:

V̂Q(π) ≤ [small] for all π ∈ Π

• detail: problematic if Q(a|x) too close to zero

• to avoid, “smooth” probabilities by occassionally picking
action uniformly at random:

Qµ(a|x) = (1− Kµ)Q(a|x) + µ

Low VarianceLow VarianceLow VarianceLow VarianceLow Variance

•
1

Qµ(a|x)
= variance of estimate of reward for action a

• so
1

Qµ(π(x)|x)
= variance if action chosen by π

• can estimate expected variance for actions chosen by π:

V̂Q(π) = Ê

[
1

Qµ(π(x)|x)

]
=

1

t − 1

t−1∑
τ=1

1

Qµ(π(xτ)|xτ)

• want small:

V̂Q(π) ≤ [small] for all π ∈ Π

• detail: problematic if Q(a|x) too close to zero
• to avoid, “smooth” probabilities by occassionally picking

action uniformly at random:

Qµ(a|x) = (1− Kµ)Q(a|x) + µ

Pulling TogetherPulling TogetherPulling TogetherPulling TogetherPulling Together

• want Q such that:∑
π

Q(π) R̂egret(π) ≤ [small]

C1·

V̂Q(π) ≤ [small]

C0+R̂egret(π)

for all π ∈ Π

∑
π

Q(π) = 1

• can fill in constants

• make easier by:
• allowing higher variance for policies with higher regret

(poor policies can be eliminated even with fairly poor
performance estimates)

• only require Q to be sub-distribution
(can put all remaining mass on π̂ with maximum
estimated reward)

Pulling TogetherPulling TogetherPulling TogetherPulling TogetherPulling Together

• want Q such that:∑
π

Q(π) R̂egret(π) ≤ [small]

C1·

V̂Q(π) ≤ [small]

C0+R̂egret(π)

for all π ∈ Π∑
π

Q(π) = 1

• can fill in constants

• make easier by:
• allowing higher variance for policies with higher regret

(poor policies can be eliminated even with fairly poor
performance estimates)

• only require Q to be sub-distribution
(can put all remaining mass on π̂ with maximum
estimated reward)

Pulling TogetherPulling TogetherPulling TogetherPulling TogetherPulling Together

• want Q such that:∑
π

Q(π) R̂egret(π) ≤ C0

C1·V̂Q(π) ≤ C0

C0+R̂egret(π)

for all π ∈ Π∑
π

Q(π) = 1

• can fill in constants

• make easier by:
• allowing higher variance for policies with higher regret

(poor policies can be eliminated even with fairly poor
performance estimates)

• only require Q to be sub-distribution
(can put all remaining mass on π̂ with maximum
estimated reward)

Pulling TogetherPulling TogetherPulling TogetherPulling TogetherPulling Together

• want Q such that:∑
π

Q(π) R̂egret(π) ≤ C0

C1·V̂Q(π) ≤ C0+R̂egret(π) for all π ∈ Π∑
π

Q(π) = 1

• can fill in constants

• make easier by:
• allowing higher variance for policies with higher regret

(poor policies can be eliminated even with fairly poor
performance estimates)

• only require Q to be sub-distribution
(can put all remaining mass on π̂ with maximum
estimated reward)

Pulling TogetherPulling TogetherPulling TogetherPulling TogetherPulling Together

• want Q such that:∑
π

Q(π) R̂egret(π) ≤ C0

C1·V̂Q(π) ≤ C0+R̂egret(π) for all π ∈ Π∑
π

Q(π) ≤ 1

• can fill in constants

• make easier by:
• allowing higher variance for policies with higher regret

(poor policies can be eliminated even with fairly poor
performance estimates)

• only require Q to be sub-distribution
(can put all remaining mass on π̂ with maximum
estimated reward)

Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”

find Q such that:∑
π

Q(π) R̂egret(π) ≤ C0

[regret constraint]

C1·V̂Q(π) ≤ C0+R̂egret(π) for all π ∈ Π

[variance constraint]

∑
π

Q(π) ≤ 1

[sub-distribution]

• similar to [Dud́ık et al.]

• seems awful:
• |Π| variables
• |Π| constraints
• constraints involve nasty non-linear functions

(recall V̂Q(π) = Ê
[

1
Qµ(π(x)|x)

]
)

• not even clear if feasible

Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”

find Q such that:∑
π

Q(π) R̂egret(π) ≤ C0 [regret constraint]

C1·V̂Q(π) ≤ C0+R̂egret(π) for all π ∈ Π [variance constraint]∑
π

Q(π) ≤ 1 [sub-distribution]

• similar to [Dud́ık et al.]

• seems awful:
• |Π| variables
• |Π| constraints
• constraints involve nasty non-linear functions

(recall V̂Q(π) = Ê
[

1
Qµ(π(x)|x)

]
)

• not even clear if feasible

Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”

find Q such that:∑
π

Q(π) R̂egret(π) ≤ C0 [regret constraint]

C1·V̂Q(π) ≤ C0+R̂egret(π) for all π ∈ Π [variance constraint]∑
π

Q(π) ≤ 1 [sub-distribution]

• similar to [Dud́ık et al.]

• seems awful:
• |Π| variables
• |Π| constraints
• constraints involve nasty non-linear functions

(recall V̂Q(π) = Ê
[

1
Qµ(π(x)|x)

]
)

• not even clear if feasible

Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”Optimization Problem “OP”

find Q such that:∑
π

Q(π) R̂egret(π) ≤ C0 [regret constraint]

C1·V̂Q(π) ≤ C0+R̂egret(π) for all π ∈ Π [variance constraint]∑
π

Q(π) ≤ 1 [sub-distribution]

• similar to [Dud́ık et al.]

• seems awful:
• |Π| variables
• |Π| constraints
• constraints involve nasty non-linear functions

(recall V̂Q(π) = Ê
[

1
Qµ(π(x)|x)

]
)

• not even clear if feasible

If We Can Solve It...If We Can Solve It...If We Can Solve It...If We Can Solve It...If We Can Solve It...

• Theorem: if can solve OP on every round (for appropriate
constants), then will get regret

Õ

(√
K ln |Π|

T

)
.

• proof idea:
• regret constraint ensures low regret

(if estimates are good enough)
• variance constraint ensures that they actually will be

good enough

• essentially same approach as [Dud́ık et al.]

If We Can Solve It...If We Can Solve It...If We Can Solve It...If We Can Solve It...If We Can Solve It...

• Theorem: if can solve OP on every round (for appropriate
constants), then will get regret

Õ

(√
K ln |Π|

T

)
.

• proof idea:
• regret constraint ensures low regret

(if estimates are good enough)
• variance constraint ensures that they actually will be

good enough

• essentially same approach as [Dud́ık et al.]

How to Solve?How to Solve?How to Solve?How to Solve?How to Solve?

• basic idea:
• find a violated constraint
• (attempt to) fix it
• repeat

How to Solve? (cont.)How to Solve? (cont.)How to Solve? (cont.)How to Solve? (cont.)How to Solve? (cont.)

• Q← 0

• repeat:
1. if Q “too big” then rescale

• (i.e., multiply Q by scalar < 1)
• ensures sub-distribution and regret constraints are

satisfied

2. find π ∈ Π for which corresponding variance constraint is
violated

a. if none exists, halt and output Q
b. else Q(π)← Q(π) + α where α = [some formula]

How to Solve? (cont.)How to Solve? (cont.)How to Solve? (cont.)How to Solve? (cont.)How to Solve? (cont.)

• Q← 0

• repeat:
1. if Q “too big” then rescale

• (i.e., multiply Q by scalar < 1)
• ensures sub-distribution and regret constraints are

satisfied

2. find π ∈ Π for which corresponding variance constraint is
violated

a. if none exists, halt and output Q
b. else Q(π)← Q(π) + α where α = [some formula]

More Detail: Rescaling StepMore Detail: Rescaling StepMore Detail: Rescaling StepMore Detail: Rescaling StepMore Detail: Rescaling Step

1. [detailed version]

if
∑

π Q(π)(C0 + R̂egret(π)) > C0 then rescale Q
(multiply by scalar < 1) so holds with equality

• after this step, have∑
π

Q(π)(C0 + R̂egret(π)) ≤ C0

which implies:
•
∑

π Q(π) ≤ 1 [sub-distribution]

•
∑

π Q(π) R̂egret(π) ≤ C0 [regret constraint]

More Detail: Rescaling StepMore Detail: Rescaling StepMore Detail: Rescaling StepMore Detail: Rescaling StepMore Detail: Rescaling Step

1. [detailed version]

if
∑

π Q(π)(C0 + R̂egret(π)) > C0 then rescale Q
(multiply by scalar < 1) so holds with equality

• after this step, have∑
π

Q(π)(C0 + R̂egret(π)) ≤ C0

which implies:
•
∑

π Q(π) ≤ 1 [sub-distribution]

•
∑

π Q(π) R̂egret(π) ≤ C0 [regret constraint]

More Detail: Rescaling StepMore Detail: Rescaling StepMore Detail: Rescaling StepMore Detail: Rescaling StepMore Detail: Rescaling Step

1. [detailed version]

if
∑

π Q(π)(C0 + R̂egret(π)) > C0 then rescale Q
(multiply by scalar < 1) so holds with equality

• after this step, have∑
π

Q(π)(C0 + R̂egret(π)) ≤ C0

which implies:
•
∑

π Q(π) ≤ 1 [sub-distribution]

•
∑

π Q(π) R̂egret(π) ≤ C0 [regret constraint]

More Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance Constraints

2. [detailed version]

find π ∈ Π for which C1 · V̂Q(π)− R̂egret(π) > C0

a. if none exists, halt and output Q
b. else Q(π)← Q(π) + α where α = [some formula]

• if halts then C1 · V̂Q(π) ≤ C0 + R̂egret(π) for all π ∈ Π
[variance constraint]

• can execute step using AMO:
• can construct “pseudo-rewards” r̃τ for which (∀π):

C1 · V̂Q(π)− R̂egret(π) =
∑
τ

r̃τ (π(xτ)) + [constant]

• so: can maximize with AMO
• will find violating constraint (if one exists)

∴ one AMO call per iteration

More Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance Constraints

2. [detailed version]

find π ∈ Π for which C1 · V̂Q(π)− R̂egret(π) > C0

a. if none exists, halt and output Q
b. else Q(π)← Q(π) + α where α = [some formula]

• if halts then C1 · V̂Q(π) ≤ C0 + R̂egret(π) for all π ∈ Π
[variance constraint]

• can execute step using AMO:
• can construct “pseudo-rewards” r̃τ for which (∀π):

C1 · V̂Q(π)− R̂egret(π) =
∑
τ

r̃τ (π(xτ)) + [constant]

• so: can maximize with AMO
• will find violating constraint (if one exists)

∴ one AMO call per iteration

More Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance Constraints

2. [detailed version]

find π ∈ Π for which C1 · V̂Q(π)− R̂egret(π) > C0

a. if none exists, halt and output Q
b. else Q(π)← Q(π) + α where α = [some formula]

• if halts then C1 · V̂Q(π) ≤ C0 + R̂egret(π) for all π ∈ Π
[variance constraint]

• can execute step using AMO:
• can construct “pseudo-rewards” r̃τ for which (∀π):

C1 · V̂Q(π)− R̂egret(π) =
∑
τ

r̃τ (π(xτ)) + [constant]

• so: can maximize with AMO
• will find violating constraint (if one exists)

∴ one AMO call per iteration

More Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance Constraints

2. [detailed version]

find π ∈ Π for which C1 · V̂Q(π)− R̂egret(π) > C0

a. if none exists, halt and output Q
b. else Q(π)← Q(π) + α where α = [some formula]

• if halts then C1 · V̂Q(π) ≤ C0 + R̂egret(π) for all π ∈ Π
[variance constraint]

• can execute step using AMO:
• can construct “pseudo-rewards” r̃τ for which (∀π):

C1 · V̂Q(π)− R̂egret(π) =
∑
τ

r̃τ (π(xτ)) + [constant]

• so: can maximize with AMO
• will find violating constraint (if one exists)

∴ one AMO call per iteration

More Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance ConstraintsMore Detail: Checking Variance Constraints

2. [detailed version]

find π ∈ Π for which C1 · V̂Q(π)− R̂egret(π) > C0

a. if none exists, halt and output Q
b. else Q(π)← Q(π) + α where α = [some formula]

• if halts then C1 · V̂Q(π) ≤ C0 + R̂egret(π) for all π ∈ Π
[variance constraint]

• can execute step using AMO:
• can construct “pseudo-rewards” r̃τ for which (∀π):

C1 · V̂Q(π)− R̂egret(π) =
∑
τ

r̃τ (π(xτ)) + [constant]

• so: can maximize with AMO
• will find violating constraint (if one exists)

∴ one AMO call per iteration

Why Does It Work?Why Does It Work?Why Does It Work?Why Does It Work?Why Does It Work?

• so: if halts, then outputs solution to OP

• but how long will it take to halt (if ever)?

• to answer, analyze using a potential function

A Potential FunctionA Potential FunctionA Potential FunctionA Potential FunctionA Potential Function

• define potential function to quantify progress:

Φ(Q) = A·Ê [RE (uniform ‖ Qµ(·|x))]︸ ︷︷ ︸
low variance

+B·
∑
π

Q(π) R̂egret(π)︸ ︷︷ ︸
low regret

• defined for all nonnegative vectors Q over Π
(not just sub-distributions)

• properties:
• Φ(Q) ≥ 0
• convex
• if Q minimizes Φ then Q is a solution to OP

• key proof step:
∂Φ/∂Q(π) ∝ variance constraint for π

∴ OP is feasible

A Potential FunctionA Potential FunctionA Potential FunctionA Potential FunctionA Potential Function

• define potential function to quantify progress:

Φ(Q) = A·Ê [RE (uniform ‖ Qµ(·|x))]︸ ︷︷ ︸
low variance

+B·
∑
π

Q(π) R̂egret(π)︸ ︷︷ ︸
low regret

• defined for all nonnegative vectors Q over Π
(not just sub-distributions)

• properties:
• Φ(Q) ≥ 0
• convex
• if Q minimizes Φ then Q is a solution to OP

• key proof step:
∂Φ/∂Q(π) ∝ variance constraint for π

∴ OP is feasible

A Potential FunctionA Potential FunctionA Potential FunctionA Potential FunctionA Potential Function

• define potential function to quantify progress:

Φ(Q) = A·Ê [RE (uniform ‖ Qµ(·|x))]︸ ︷︷ ︸
low variance

+B·
∑
π

Q(π) R̂egret(π)︸ ︷︷ ︸
low regret

• defined for all nonnegative vectors Q over Π
(not just sub-distributions)

• properties:
• Φ(Q) ≥ 0
• convex

• if Q minimizes Φ then Q is a solution to OP

• key proof step:
∂Φ/∂Q(π) ∝ variance constraint for π

∴ OP is feasible

A Potential FunctionA Potential FunctionA Potential FunctionA Potential FunctionA Potential Function

• define potential function to quantify progress:

Φ(Q) = A·Ê [RE (uniform ‖ Qµ(·|x))]︸ ︷︷ ︸
low variance

+B·
∑
π

Q(π) R̂egret(π)︸ ︷︷ ︸
low regret

• defined for all nonnegative vectors Q over Π
(not just sub-distributions)

• properties:
• Φ(Q) ≥ 0
• convex
• if Q minimizes Φ then Q is a solution to OP

• key proof step:
∂Φ/∂Q(π) ∝ variance constraint for π

∴ OP is feasible

AnalysisAnalysisAnalysisAnalysisAnalysis

• algorithm turns out to be (roughly) coordinate descent on Φ
• each step adjusts Q along one coordinate direction Q(π)

• can lower-bound how much Φ decreases on each update

• can also show rescaling step never increases Φ

• since Φ ≥ 0, gives bound on number of iterations of the
algorithm

• Theorem: On round t, algorithm halts after at most

Õ

(√
Kt

ln |Π|

)

iterations (and calls to AMO).

• as corollary, also get bound on sparsity of Q

AnalysisAnalysisAnalysisAnalysisAnalysis

• algorithm turns out to be (roughly) coordinate descent on Φ
• each step adjusts Q along one coordinate direction Q(π)

• can lower-bound how much Φ decreases on each update

• can also show rescaling step never increases Φ

• since Φ ≥ 0, gives bound on number of iterations of the
algorithm

• Theorem: On round t, algorithm halts after at most

Õ

(√
Kt

ln |Π|

)

iterations (and calls to AMO).

• as corollary, also get bound on sparsity of Q

AnalysisAnalysisAnalysisAnalysisAnalysis

• algorithm turns out to be (roughly) coordinate descent on Φ
• each step adjusts Q along one coordinate direction Q(π)

• can lower-bound how much Φ decreases on each update

• can also show rescaling step never increases Φ

• since Φ ≥ 0, gives bound on number of iterations of the
algorithm

• Theorem: On round t, algorithm halts after at most

Õ

(√
Kt

ln |Π|

)

iterations (and calls to AMO).

• as corollary, also get bound on sparsity of Q

AnalysisAnalysisAnalysisAnalysisAnalysis

• algorithm turns out to be (roughly) coordinate descent on Φ
• each step adjusts Q along one coordinate direction Q(π)

• can lower-bound how much Φ decreases on each update

• can also show rescaling step never increases Φ

• since Φ ≥ 0, gives bound on number of iterations of the
algorithm

• Theorem: On round t, algorithm halts after at most

Õ

(√
Kt

ln |Π|

)

iterations (and calls to AMO).

• as corollary, also get bound on sparsity of Q

AnalysisAnalysisAnalysisAnalysisAnalysis

• algorithm turns out to be (roughly) coordinate descent on Φ
• each step adjusts Q along one coordinate direction Q(π)

• can lower-bound how much Φ decreases on each update

• can also show rescaling step never increases Φ

• since Φ ≥ 0, gives bound on number of iterations of the
algorithm

• Theorem: On round t, algorithm halts after at most

Õ

(√
Kt

ln |Π|

)

iterations (and calls to AMO).

• as corollary, also get bound on sparsity of Q

Epochs and Warm StartEpochs and Warm StartEpochs and Warm StartEpochs and Warm StartEpochs and Warm Start

• so far, assumed solve OP from scratch on each round
• naively, gives Õ

(
T 3/2

)
calls to AMO in T rounds

• can do much better!

• first improvement: since data iid, can use same solution for
many rounds, i.e., for long “epochs”

• gives same (near optimal) regret
• essentially no computation required on rounds where Q

not updated

• second improvement: can initialize algorithm with the
previous solution (rather than starting fresh each time)

• works because each new example can only cause Φ to
increase slightly

Epochs and Warm StartEpochs and Warm StartEpochs and Warm StartEpochs and Warm StartEpochs and Warm Start

• so far, assumed solve OP from scratch on each round
• naively, gives Õ

(
T 3/2

)
calls to AMO in T rounds

• can do much better!

• first improvement: since data iid, can use same solution for
many rounds, i.e., for long “epochs”

• gives same (near optimal) regret
• essentially no computation required on rounds where Q

not updated

• second improvement: can initialize algorithm with the
previous solution (rather than starting fresh each time)

• works because each new example can only cause Φ to
increase slightly

Epochs and Warm StartEpochs and Warm StartEpochs and Warm StartEpochs and Warm StartEpochs and Warm Start

• so far, assumed solve OP from scratch on each round
• naively, gives Õ

(
T 3/2

)
calls to AMO in T rounds

• can do much better!

• first improvement: since data iid, can use same solution for
many rounds, i.e., for long “epochs”

• gives same (near optimal) regret
• essentially no computation required on rounds where Q

not updated

• second improvement: can initialize algorithm with the
previous solution (rather than starting fresh each time)

• works because each new example can only cause Φ to
increase slightly

Epochs and Warm Start (cont.)Epochs and Warm Start (cont.)Epochs and Warm Start (cont.)Epochs and Warm Start (cont.)Epochs and Warm Start (cont.)

• putting together:
if only update Q on rounds 1, 4, 9, 16, 25, . . .

• get same (near optimal) regret
• only need

Õ

(√
KT

ln |Π|

)
calls to AMO total for entire sequence of T rounds

SummarySummarySummarySummarySummary

• new algorithm for contextual bandits problem with AMO
access

• (nearly) optimal regret

• simple and fast

• only requires an average of

Õ

(√
K

T ln |Π|

)
� 1

AMO calls per round

Open Problems and Future DirectionsOpen Problems and Future DirectionsOpen Problems and Future DirectionsOpen Problems and Future DirectionsOpen Problems and Future Directions

• try out experimentally

• is there an algorithm that uses an online (rather than batch)
oracle?

• is there a lower bound on number of AMO calls necessary to
solve this problem?

• can we find a similar algorithm that handles adversarial data?

