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© An introduction to reinforcement learning

@ Markov decision processes

© Stochastic approximation

@ Q-learning

@ Multiscale Q-learning

@ Finding optimal sleep-wake schedules in sensor networks
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An Introduction to Reinforcement Learning
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Figure: Agent-Environment Interaction
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Markov Decision Processes

@ A Markov Decision Process (MDP) is a controlled random process
{st} that depends on a control-valued sequence {a; } with state

transitions governed according to controlled transition probabilities
at
St,St+1

@ Let S denote the state space and A the action space. Assume S
and A are finite sets

@ In general, when state is i € S, feasible action space is A(i). Here
A = UcsA(i)

o Letk(st,at,Sty1) be the cost incurred when state at time t is sy,
action chosen is a; and the next state is Sy
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Figure: State, Action and Single-Stage Cost
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The Infinite Horizon Discounted Cost Problem

@ The aimis to find {a;} of actions such that for any state i,

[ee]
ein B o . : _
v ('):Va;‘('):?;:?E > Ak(s),ay,841) | So =1
i=0

@ It is often more convenient to work with policies rather than
state-action sequences

@ An admissible policy 7 is a sequence of functions
m = {po, p1, ..., } such that each pn : S — Aand un(j) € A(),
Vj € S. Atinstant n, actions under 7 are selected according to p,

@ Let I be the set of all admissible policies
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The Objective

@ Objective: Find a 7* that minimizes over all = € I, the cost-to-go
or the value function

(e}
Va(i) =E | > AKX, (%) Xj41) [ Xo =i
j=0
o LetV*(i) = milr_|1Vﬂ(i) = V(i)
(S
@ A stationary deterministic policy (SDP) = is one for which yj = i
foralli =0,1,2,.... Many times we just call 4 an SDP
@ A stationary randomized policy ¢ is characterized by probability
distributions ¢(i) = (¢(i,a),a € A(i)), i € S
@ It can be shown that the optimal policy (i.e., the one that attains
the minimum) is an SDP and so also an SRP
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The Bellman Equation

@ The Bellman equation The optimal cost function V * satisfies

V*(i)—ag{g) Pi(k(i,a,j) +7V*(j)), i€S.
j

Further, V* is the unique solution of this equation within the class
of bounded functions

@ The Bellman Equation for a Given SDP For every stationary policy
u, the associated cost function V,, satisfies

ZP O, u(i),§) +WVu(Q)), i€S.

Further, V,, is the unique solution of this equation within the class
of bounded functions
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Limitations of Numerical Methods for Exact Schemes

@ For solving Bellman optimality equations (in various cases) using
numerical methods, one requires complete knowledge of
transition probabilities (or model information) P”a i,j €S,aeA()
and the single-stage cost function

@ The amount of computation required to solve Bellman equation
grows exponentially in the cardinality of the state and action
spaces (the curse of dimensionality)

@ Hence, one resorts to approaches that involve a combination of
“simulation” and “feature-based approximations”
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Stochastic Approximation

@ Objective: Let F : RY — RY. Solve the equation F (§) = 0 when
analytical form of F is not known, however, noisy measurements
F(6(n)) + Mp41 can be obtained, where 6(n), n > 0 are the input
parameters and M1, n > 0 are i.i.d and zero mean

. FO) @ F( )+

\f

14

Figure: Noisy System with E[{] =0

@ Mp11, n > 0 could be more general, not necessarily i.i.d.
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The Stochastic Approximation Algorithm? 2

@ Algorithm Start with an initial #(0) and perform the recursion
6(n+ 1) =6(n) +a(n)(F(O(n)) + Mnt1),
with a(n),n > 0 satisfying
a(n)>0vn, Y a(n)=o0, Y a*(n)<oo
n n

@ Let F be Lipschitz continuous

® Mp.1,n > 0is a martingale difference sequence w.r.t. the filtration
Fn=o(6(m),Mm,m < n), n> 1. Further,
E[ll 6(n) 17| Fn] < Ke(1+ || 8(n) ||?), for some K3 >0

Originally due to Robbins and Monro [1951]
2The setting considered here is same as in Borkar [2008]
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Analyzing the Stochastic Recursion

@ In addition to foregoing, either assume or prove

sup | 6(n) ||< oo,

i.e., the iterates are stable3
@ Consider the ODE
o(t) = F(6(1)),
with A as its set of asymptotically stable equilibria

@ One then shows that the algorithm’s ‘trajectory’ asymptotically
converges almost surely to A

3Borkar [2008], Kushner and Yin [1996]
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A More General Case

@ Consider the recursion
0(n+1) = 0(n) +a(n)(F(O(n), Yn) + Mny1),

where Y,,n > 0 is a parameterized Markov process (with
transition kernel pg(n) (Y, dy’)) assumed ergodic when 6(n) = 6
@ Let

G(6) = / F(0.y)v(dy).

where vy (dy) is the stationary distribution of {Y,}, given
@ Consider the ODE _
o(t) = G(0(1)),
with B as its set of asymptotically stable equilibria
@ It can be shown* that #(n) — B almost surely

“Borkar [2008], Benveniste, Metivier and Priouret [1991]
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The Q-Bellman Equation

@ Recall the Bellman equation:

A (|)_ar€r1A|a)ZP (k(i,a,j) +9V*({)), ieS

@ Let

(i,a) = ZP [k(i,a,j) +yV*()]
Then, one obtains the foIIowmg (Q-Bellman equation)

Q*(i,a) = > _Pflk(i,a,]) +yminQ*(j, b)]

i

@ Note: Q-Bellman is amenable to stochastic approximation
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Regular Q-learning

@ This algorithm aims to solve Q-Bellman equation using SA

@ Letnp(i,a), n > 0 be independent random variables (simulation
samples) having the common distribution P2

@ Letc(n), n > O satisfy
c(n)>0vn, > c(n) =00, ¥ c*(n) < oo

@ The QL-FS Algorithm: For every feasible state-action tuple (i, a),
iterate

Qn+1(i ) a) = Qn(l ) a) + C(n)(k(l » &, Tin (Iva))
+’yfTUI’] Qn(mn(i,a),v) — Qn(i,a)) 1)

Shalabh Bhatnagar (CSA, 11Sc) Multiscale Q-learning with FA September 08, 2014 14/ 34



Function Approximation

o LetQ(i,a) ~ 07 ¢; 5, where
o ¢ia=(diall),...,¢ia(d))" is ad-dimensional feature vector

corresponding to (i,a), with d << |S x A(S)| 2 M
@ 6 is a tunable d-dimensional parameter

@ Let ® = [[¢; 5]] be an M x d (feature) matrix
o Let d(k) = (¢ja(k),(i,a) € S x A(S))" be the kth column of ¢.
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Q-learning with Function Approximation

@ Q-learning with FA: Let {s,} denote a sample online trajectory of
states of the MDP with {a,} as the associated action sequence.
Then,

9n+1 B en —+ C(n)(bsn,an(k(sny ap, Sn+1)
+ I'T'\I/in e;ll' (/)an,V - QI ¢Snyan)

@ This algorithm has been widely used in applications even though it
does not empirically exhibit convergence in many cases

@ There are no valid proofs of convergence available
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Two-Timescale Q-learning - Key Idea °

@ Work with parameterized SRP rather than SDP

@ The exact minimization is then replaced with a gradient search in
the parameterized SRP space

@ The above operation is performed on a faster timescale

@ Given the parameter and hence the policy update, update Q-value
estimates along a slower timescale

5In Bhatnagar and Babu [2008], a similar idea has been used for the case of full
state-action representations
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Two-Timescale Q-learning

o Letmy = (mw(i),i €S)T represent a class of SRP parameterized
by w = (Wi,...,wy)T € Cc RN
@ Letd € D ¢ RY be the Q-value function parameter as before

@ Assumptions
@ The Markov process {X,} under any SRP m, is aperiodic and
irreducible
@ The probabilities 7y (i,a), i € S, a € A(i) are continuously
differentiable in the parameter w € C. Further, my,(i,a) > 0
V(i,a) € S x A(S),w eC
@ The basis functions ®(k),k = 1,...,d are linearly independent
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Fast and Slow Schedules

@ Example of parameterized SRP: Boltzmann policies

o exp(wT i)
mw(i,a) = > ben) EXP(WT dip)

@ Let{a(n)} and {b(n)} be two step-size sequences. The following
properties are satisfied:

> a(n)=> b(n) = oo,

> (a(n)® + b(n)?) < oo,
_b(n)
M am) ~ O

@ Note: b(n) — 0 faster than a(n). Thus, recursions governed by
b(n) are slower than those governed by a(n).
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The Algorithm

@ Foralln >0,

9n+1 = rl <9n + b(n)¢5n,an <g (Sn, an) + f)/HI ¢5n+17an+1 - HI d)sn,an)) )
2)

el-’lr d)sn,an -1
Wni1 =Tz | Wn —a(n) { === ) (An)7" ). 3)
@ In the above, I'1(+),2(+) are suitable projection operators. Further,

an are selected using the parameters 'p(wWp + dAp), with Ap
obtained using a Hadamard matrix based construction.
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Hadamard Matrices

@ Let Hy, k > 1 be matrices of order 2¥ x 2k that are recursively
obtained as:

_ 1 1 _ H2k—1 H2k—1
Hy = ( 1 1 ) and Hyc = ( Hye s —Hoes ), k> 1.

® Such matrices are called normalized Hadamard matrices®

6Bhatnagar, S., Fu, M.C., Marcus, S.I. and Wang, |.-J. [2003], Bhatnagar, S.,
Prasad, H.L. and Prashanth, L.A. [2013]
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Hadamard Matrix Based Perturbations

o LetP = 2[0%:d1 (Note that P > d.) Consider now the matrix Hp
(with P chosen as above). Let h(1),...,h(d), be any d columns of
Hp. Incase P =d, then h(1),...,h(d), will correspond to all d
columns of Hp.

@ Form a matrix H,, of order P x d that has h(1),...,h(d) as its
columns. Lete(p),p =1,...,P, be the P rows of H,. Now set
A(n)T =e(n mod P + 1), ¥n > 0. The perturbations are thus
generated by cycling through the rows of H}, with
A0)T =e(1),A1)" =e(2),...,A(P —1)T =e(P),

A(P)T = e(1), etc.
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Convergence Results for Faster Recursion

@ Let A
R(O,w) =

Z fW(i,a)GT d’i,a
i€S,acA(i)
denote the stationary average Q-value under the parameters ¢
and w, respectively.

@ Lemma The partial derivatives of R(#, w) with respect to any
0 € D and w € C exist and are continuous.

@ The following ODE is associated with (3):
W(t) = F2 (~VwR(0, w(1))). (4)

@ Let w(0) denote the set of asymptotically stable equilibria of (4)
and w(0)¢ its e-neighborhood

@ Theorem Given ¢ > 0, there exists g > 0 such that for all
0 € (0, 0], wn — wW(0)° as n — oo with probability one.
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Convergence Results for Slower Recursion

@ Proposition w(#) is a compact subset of RN for any 6.
@ One may now consider the following stochastic recursive inclusion
in place of (2):

Ont+1 =T1(6n +DB(N)(Yn + Yni1)), (5)
where
Y= fun(i,2)(9(,2) + 760" D Puy (i, 2:1,0) 10 — b bia) dia,
(i) (i-b)

with wp € w(6n)<, ¥n.

o Leth() £ {wa(i,a)(g(i,a)
(i.2)

0TS pulisa i, )b — 0T 6ra)dna | W e w(e)f}
(i,b)
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Convergence Results for Slower Recursion (Contd.)

@ Let

Fo(h(0)) £ N o ( U By +Y)|yeh@).Y e A(ﬂ)})

>0 |13—0]|<e

@ Proposition h(0) satisfies the following properties:

(i) To(h(8)) is a convex and compact set for any 6 € D.
(i) Forall g e D,
sup || B ll< K@+ 61])
Belo(n(9))
for some K > 0.
(iii) To(h (0)) is upper-semicontinuous, i.e., if , — ¢ and 3, — § with
Gn € g, (h(6n)) ¥, then 3 e [y(h(6)).
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Convergence Results for Slower Recursion (Contd.)

@ Consider now the following differential inclusion (DI):
0(t) € Fo(h(0(1)))- (6)

@ Let A(-) be defined according to §(t(n)) = 6,, n > 0, with linear
interpolation on each interval [t(n),t(n + 1)].
o LetG=({A(t+s):s >0}
t>0
@ Main Theorem 6,,n > 0 of the QW-FA algorithm converge to G
almost surely. Further, the set G is a closed connected internally
chain transitive invariant set of (6).
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Two-timescale Q-learning for the Average Cost

Problem

0n+1 = rl <0n + b(n)o'snyan(g(sn’ an) - jn+1 + 0:1- Ospi1,an41 0:1- Osp,an ))’
Jopa=dn+c(n) (g(sna an) — jn) )

;l;o'sn an

@ Here a(n),b(n) are as before. Also, c(n) = ka(n) for some k > 0
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Application to Optimal Sleep-Wake Control in

Sensors’

@
A A A VAN
@3
A R A A
“2)
A VAY AN
@1
A A A i
©.0) 1.0) @0 Go 40)

"Prashanth, Chatterjee and Bhatnagar [2014]
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Sleep-wake Control

@ In an intrusion detection application, the goal is to

@ minimize the energy consumption of the sensors, while
@ keeping tracking error to a minimum

@ Setting involves partially observed Markov decision processes
(POMDP) under the long-run average cost objective
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The Setting

@ Sensors can be either awake or sleep

@ sleeptime € {0,... A}

@ Object movement evolves as a Markov chain, with transition
probability matrix P = [Pj](n41)x(N+1)

@ 7 exterior of the network

@ Objective:

@ Make sensors sleep to save energy
o Keep minimum sensors awake to have good tracking accuracy
o Find “good trade-off” between the above two conflicting objectives
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Sleep—Wake Control POMDP

o State: s = (Ik, k)
@ | - intruder’s location at instant k
@ ry(i) denotes the remaining sleep time of the i" sensor, i =1,...,N
and evolves as
Ne+1(1) = (e (i) — 1) Zgr iy>03 + A (1)L (i)=03

@ Action: a, at instant k is the vector of chosen sleep times of the
sensors
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Sleep—Wake Control POMDRP - Il

@ Single-stage cost

a(sk,ak) = Zg, +1y Z €+ Ty ()>03
(i ()=0}

@ The states, actions and costs constitute an MDP. However, there
is a problem of observability.
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Sleep—Wake Control POMDRP - Il

@ Note: It is not always possible to track the object (Ix)

@ Hence use the sufficient statistic —
Pk = (Px(1),...,pk(N), pk (7)) - the distribution of the intruder’s
location - that evolves as

Pk+1 = s Lnesa(i1)=0} + PkPZgn 1 (1c:1)>0}

@ Our algorithms work with px and find a good enough sleeping
policy
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Results on a 2-d network

ors awake per time step

g T
(@) Number of detects per time step (b) Number of sensors awake per
time step

Figure: Tradeoff characteristics

@ TQSA-A requires significantly less number of sensors to be awake while giving nearly the
same accuracy as QSA-A

@ FCR and QMDP do not show good results
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