Multiscale Q-learning with Function Approximation and an Application in Wireless Sensor Networks

Shalabh Bhatnagar

Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. shalabh@csa.iisc.ernet.in

September 08, 2014

< 同 > < 三 > < 三 >

An introduction to reinforcement learning

- 2 Markov decision processes
- Stochastic approximation
- Q-learning
- Multiscale Q-learning
- Finding optimal sleep-wake schedules in sensor networks

< 🗇 🕨

An Introduction to Reinforcement Learning

Environment

Figure: Agent-Environment Interaction

Shalabh Bhatnagar (CSA, IISc)

Multiscale Q-learning with FA

Markov Decision Processes

- A Markov Decision Process (MDP) is a controlled random process {*s_t*} that depends on a control-valued sequence {*a_t*} with state transitions governed according to controlled transition probabilities *P^{a_t}_{s_t,s_{t+1}*}
- Let S denote the state space and A the action space. Assume S and A are finite sets
- In general, when state is $i \in S$, feasible action space is A(i). Here $A = \bigcup_{i \in S} A(i)$
- Let k(s_t, a_t, s_{t+1}) be the cost incurred when state at time t is s_t, action chosen is a_t and the next state is s_{t+1}

$$\underset{t+1}{\overset{s_t a_t}{\vdash}} \underset{t+1}{\overset{s_{t+1} k(s_t, a_t, s_{t+1})}}$$

Figure: State, Action and Single-Stage Cost

A (10) A (10)

The Infinite Horizon Discounted Cost Problem

• The aim is to find $\{a_t^*\}$ of actions such that for any state *i*,

$$V^*(i) \stackrel{\triangle}{=} V_{a_t^*}(i) = \min_{\{a_t\}} E\left[\sum_{j=0}^{\infty} \gamma^j k(s_j, a_j, s_{j+1}) \mid s_0 = i\right]$$

- It is often more convenient to work with policies rather than state-action sequences
- An admissible policy π is a sequence of functions $\pi = \{\mu_0, \mu_1, \dots, \}$ such that each $\mu_n : S \to A$ and $\mu_n(j) \in A(j)$, $\forall j \in S$. At instant *n*, actions under π are selected according to μ_n
- Let Π be the set of all admissible policies

A (10) A (10)

The Objective

 Objective: Find a π^{*} that minimizes over all π ∈ Π, the cost-to-go or the value function

$$V_{\pi}(i) = E\left[\sum_{j=0}^{\infty} \gamma^{j} k(X_{j}, \mu_{j}(X_{j}), X_{j+1}) \mid X_{0} = i\right]$$

• Let
$$V^*(i) = \min_{\pi \in \Pi} V_{\pi}(i) = V_{\pi^*}(i)$$

- A stationary deterministic policy (SDP) π is one for which μ_i ≡ μ for all i = 0, 1, 2, Many times we just call μ an SDP
- A stationary randomized policy φ is characterized by probability distributions φ(i) = (φ(i, a), a ∈ A(i)), i ∈ S
- It can be shown that the optimal policy (i.e., the one that attains the minimum) is an SDP and so also an SRP

• The Bellman equation The optimal cost function V* satisfies

$$V^*(i) = \min_{a \in A(i)} \sum_j P^a_{ij}(k(i, a, j) + \gamma V^*(j)), \quad i \in S.$$

Further, V^* is the unique solution of this equation within the class of bounded functions

 The Bellman Equation for a Given SDP For every stationary policy μ, the associated cost function V_μ satisfies

$$V_{\mu}(i) = \sum_{j} P_{ij}^{\mu(i)}(k(i,\mu(i),j) + \gamma V_{\mu}(j)), \quad i \in \mathcal{S}.$$

Further, V_{μ} is the unique solution of this equation within the class of bounded functions

Shalabh Bhatnagar (CSA, IISc)

(日)

- For solving Bellman optimality equations (in various cases) using numerical methods, one requires complete knowledge of transition probabilities (or *model information*) P^a_{ij}, *i*, *j* ∈ S, *a* ∈ A(*i*) and the single-stage cost function
- The amount of computation required to solve Bellman equation grows exponentially in the cardinality of the state and action spaces (*the curse of dimensionality*)
- Hence, one resorts to approaches that involve a combination of "simulation" and "feature-based approximations"

A (1) A (1) A (1) A (1)

Stochastic Approximation

Objective: Let *F* : *R^d* → *R^d*. Solve the equation *F*(*θ*) = 0 when analytical form of *F* is not known, however, noisy measurements *F*(*θ*(*n*)) + *M*_{n+1} can be obtained, where *θ*(*n*), *n* ≥ 0 are the input parameters and *M*_{n+1}, *n* ≥ 0 are i.i.d and zero mean

Figure: Noisy System with $E[\xi] = 0$

• M_{n+1} , $n \ge 0$ could be more general, not necessarily i.i.d.

The Stochastic Approximation Algorithm^{1 2}

• Algorithm Start with an initial $\theta(0)$ and perform the recursion

$$\theta(n+1) = \theta(n) + a(n)(F(\theta(n)) + M_{n+1}),$$

with $a(n), n \ge 0$ satisfying

$$a(n) > 0 \ \forall n, \ \sum_n a(n) = \infty, \ \sum_n a^2(n) < \infty$$

- Let F be Lipschitz continuous
- $M_{n+1}, n \ge 0$ is a martingale difference sequence w.r.t. the filtration $\mathcal{F}_n = \sigma(\theta(m), M_m, m \le n), n \ge 1$. Further, $E[\parallel \theta(n) \parallel^2 \mid \mathcal{F}_n] \le K_1(1 + \parallel \theta(n) \parallel^2)$, for some $K_1 > 0$

¹Originally due to Robbins and Monro [1951] ²The setting considered here is same as in Borkar [2008]

Shalabh Bhatnagar (CSA, IISc)

Multiscale Q-learning with FA

In addition to foregoing, either assume or prove

$$\sup_n \parallel \theta(n) \parallel < \infty,$$

i.e., the iterates are stable³

Consider the ODE

$$\dot{\theta}(t) = F(\theta(t)),$$

with A as its set of asymptotically stable equilibria

• One then shows that the algorithm's 'trajectory' asymptotically converges almost surely to *A*

Shalabh Bhatnagar (CSA, IISc)

³Borkar [2008], Kushner and Yin [1996]

Consider the recursion

$$\theta(n+1) = \theta(n) + a(n)(F(\theta(n), Y_n) + M_{n+1}),$$

where $Y_n, n \ge 0$ is a parameterized Markov process (with transition kernel $p_{\theta(n)}(y, dy')$) assumed ergodic when $\theta(n) \equiv \theta$

Let

$$G(heta) = \int F(heta, y)
u_{ heta}(dy),$$

where $\nu_{\theta}(dy)$ is the stationary distribution of $\{Y_n\}$, given θ

Consider the ODE

$$\dot{\theta}(t) = G(\theta(t)),$$

with B as its set of asymptotically stable equilibria

• It can be shown⁴ that $\theta(n) \rightarrow B$ almost surely

⁴Borkar [2008], Benveniste, Metivier and Priouret [1991] Shalabh Bhatnagar (CSA, IISc) Multiscale Q-learning with FA

The Q-Bellman Equation

Recall the Bellman equation:

$$V^*(i) = \min_{a \in A(i)} \sum_j P^a_{ij}(k(i, a, j) + \gamma V^*(j)), \quad i \in S$$

Let

$$\mathsf{Q}^*(i, \mathbf{a}) = \sum_j \mathsf{P}^{\mathbf{a}}_{ij}[\mathbf{k}(i, \mathbf{a}, j) + \gamma \, \mathsf{V}^*(j)]$$

Then, one obtains the following (Q-Bellman equation)

$$Q^*(i, a) = \sum_{j} P^a_{ij}[k(i, a, j) + \gamma \min_{b} Q^*(j, b)]$$

Note: Q-Bellman is amenable to stochastic approximation

Shalabh Bhatnagar (CSA, IISc)

- This algorithm aims to solve Q-Bellman equation using SA
- Let η_n(i, a), n ≥ 0 be independent random variables (simulation samples) having the common distribution P^a_i.
- Let c(n), $n \ge 0$ satisfy

$$c(n) > 0 \ \forall n, \ \sum_{n} c(n) = \infty, \ \sum_{n} c^{2}(n) < \infty$$

• The QL-FS Algorithm: For every feasible state-action tuple (*i*, *a*), iterate

$$Q_{n+1}(i, a) = Q_n(i, a) + c(n)(k(i, a, \eta_n(i, a)))$$

+ $\gamma \min_{v} Q_n(\eta_n(i, a), v) - Q_n(i, a))$ (1)

- Let $Q(i, a) \approx \theta^T \phi_{i, a}$, where
 - φ_{i,a} = (φ_{i,a}(1),...,φ_{i,a}(d))^T is a d-dimensional feature vector corresponding to (i, a), with d << |S × A(S)| ≜ M
 - θ is a tunable d-dimensional parameter
- Let $\Phi = [[\phi_{i,a}]]$ be an $M \times d$ (feature) matrix
- Let $\Phi(k) = (\phi_{i,a}(k), (i, a) \in S \times A(S))^T$ be the *k*th column of Φ .

Q-learning with FA: Let {s_n} denote a sample online trajectory of states of the MDP with {a_n} as the associated action sequence. Then,

$$egin{aligned} & heta_{n+1} = heta_n + c(n)\phi_{s_n,a_n}(k(s_n,a_n,s_{n+1})) \ & +\gamma\min_{v} heta_n^{T}\phi_{s_{n+1},v} - heta_n^{T}\phi_{s_n,a_n}) \end{aligned}$$

- This algorithm has been widely used in applications even though it does not empirically exhibit convergence in many cases
- There are no valid proofs of convergence available

- Work with parameterized SRP rather than SDP
- The exact minimization is then replaced with a gradient search in the parameterized SRP space
- The above operation is performed on a faster timescale
- Given the parameter and hence the policy update, update Q-value estimates along a slower timescale

Shalabh Bhatnagar (CSA, IISc)

⁵In Bhatnagar and Babu [2008], a similar idea has been used for the case of full state-action representations

- Let π_w = (π_w(i), i ∈ S)^T represent a class of SRP parameterized by w [△]= (w₁,..., w_N)^T ∈ C ⊂ R^N
- Let $\theta \in D \subset \mathcal{R}^d$ be the Q-value function parameter as before
- Assumptions
 - The Markov process {X_n} under any SRP π_w is aperiodic and irreducible
 - 2 The probabilities π_w(*i*, *a*), *i* ∈ S, *a* ∈ A(*i*) are continuously differentiable in the parameter *w* ∈ C. Further, π_w(*i*, *a*) > 0 ∀(*i*, *a*) ∈ S × A(S), *w* ∈ C
 - Solution The basis functions $\Phi(k), k = 1, ..., d$ are linearly independent

< □ > < 同 > < 回 > < 回 > .

Fast and Slow Schedules

• Example of parameterized SRP: Boltzmann policies

$$\pi_{w}(i, a) = \frac{\exp(w^{T}\phi_{i,a})}{\sum_{b \in \mathcal{A}(i)} \exp(w^{T}\phi_{i,b})}$$

Let {a(n)} and {b(n)} be two step-size sequences. The following properties are satisfied:

$$\sum_{n} a(n) = \sum_{n} b(n) = \infty,$$
$$\sum_{n} (a(n)^{2} + b(n)^{2}) < \infty,$$
$$\lim_{n \to \infty} \frac{b(n)}{a(n)} = 0.$$

Note: b(n) → 0 faster than a(n). Thus, recursions governed by b(n) are slower than those governed by a(n).

Shalabh Bhatnagar (CSA, IISc)

● For all *n* ≥ 0,

$$\theta_{n+1} = \Gamma_1 \left(\theta_n + b(n) \phi_{s_n, a_n} \left(g(s_n, a_n) + \gamma \theta_n^T \phi_{s_{n+1}, a_{n+1}} - \theta_n^T \phi_{s_n, a_n} \right) \right),$$
(2)

$$w_{n+1} = \Gamma_2 \left(w_n - a(n) \left(\frac{\theta_n^T \phi_{s_n, a_n}}{\delta} \right) (\Delta_n)^{-1} \right).$$
 (3)

 In the above, Γ₁(·), Γ₂(·) are suitable projection operators. Further, *a_n* are selected using the parameters Γ₂(*w_n* + δΔ_n), with Δ_n obtained using a Hadamard matrix based construction.

< 同 > < 三 > < 三 >

Let H_{2^k}, k ≥ 1 be matrices of order 2^k × 2^k that are recursively obtained as:

$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 and $H_{2^k} = \begin{pmatrix} H_{2^{k-1}} & H_{2^{k-1}} \\ H_{2^{k-1}} & -H_{2^{k-1}} \end{pmatrix}$, $k > 1$.

Such matrices are called normalized Hadamard matrices⁶

⁶Bhatnagar, S., Fu, M.C., Marcus, S.I. and Wang, I.-J. [2003], Bhatnagar, S., Prasad, H.L. and Prashanth, L.A. [2013]

Shalabh Bhatnagar (CSA, IISc)

Multiscale Q-learning with FA

- Let P = 2^{⌈log₂ d⌉}. (Note that P ≥ d.) Consider now the matrix H_P (with P chosen as above). Let h(1),..., h(d), be any d columns of H_P. In case P = d, then h(1),..., h(d), will correspond to all d columns of H_P.
- Form a matrix H'_P of order P × d that has h(1),..., h(d) as its columns. Let e(p), p = 1,..., P, be the P rows of H'_P. Now set Δ(n)^T = e(n mod P + 1), ∀n ≥ 0. The perturbations are thus generated by cycling through the rows of H'_P with Δ(0)^T = e(1), Δ(1)^T = e(2),..., Δ(P 1)^T = e(P), Δ(P)^T = e(1), etc.

22/34

(D) (A) (A) (A) (A) (A)

Convergence Results for Faster Recursion

Let

$$R(\theta, w) \stackrel{\triangle}{=} \sum_{i \in S, a \in A(i)} f_w(i, a) \theta^T \phi_{i, a}$$

denote the stationary average Q-value under the parameters θ and w, respectively.

- Lemma The partial derivatives of $R(\theta, w)$ with respect to any $\theta \in D$ and $w \in C$ exist and are continuous.
- The following ODE is associated with (3):

$$\dot{w}(t) = \hat{\Gamma}_2 \left(-\nabla_w R(\theta, w(t)) \right). \tag{4}$$

 Let w(θ) denote the set of asymptotically stable equilibria of (4) and w(θ)^ε its ε-neighborhood

• Theorem Given $\epsilon > 0$, there exists $\delta_0 > 0$ such that for all $\delta \in (0, \delta_0]$, $w_n \to w(\theta)^{\epsilon}$ as $n \to \infty$ with probability one.

23/34

Convergence Results for Slower Recursion

- Proposition $w(\theta)$ is a compact subset of \mathcal{R}^N for any θ .
- One may now consider the following stochastic recursive inclusion in place of (2):

$$\theta_{n+1} = \Gamma_1(\theta_n + b(n)(y_n + Y_{n+1})),$$
 (5)

where

$$\mathbf{y}_{n} = \sum_{(i,\mathbf{a})} f_{\mathbf{w}_{n}}(i,\mathbf{a}) \big(\mathbf{g}(i,\mathbf{a}) + \gamma \theta_{n}^{T} \sum_{(j,b)} p_{\mathbf{w}_{n}}(i,\mathbf{a};j,b) \phi_{j,b} - \theta_{n}^{T} \phi_{i,a} \big) \phi_{i,a},$$

with
$$w_n \in w(\theta_n)^{\epsilon}$$
, $\forall n$.
• Let $h(\theta) \stackrel{\triangle}{=} \left\{ \sum_{(i,a)} f_w(i,a) (g(i,a)) \right\}$

$$+\gamma\theta^{T}\sum_{(j,b)}\boldsymbol{p}_{\boldsymbol{w}}(\boldsymbol{i},\boldsymbol{a};\boldsymbol{j},\boldsymbol{b})\phi_{\boldsymbol{j},\boldsymbol{b}}-\theta^{T}\phi_{\boldsymbol{i},\boldsymbol{a}})\phi_{\boldsymbol{i},\boldsymbol{a}}\mid\boldsymbol{w}\in\boldsymbol{w}(\theta)^{\epsilon}\bigg\}$$

Convergence Results for Slower Recursion (Contd.)

Let

$$\hat{\Gamma}_{\theta}(h(\theta)) \stackrel{\triangle}{=} \bigcap_{\epsilon > 0} \bar{co} \left(\bigcup_{\|\beta - \theta\| < \epsilon} \{ \gamma_1(\beta; y + Y) \mid y \in h(\beta), Y \in A(\beta) \} \right)$$

• Proposition $h(\theta)$ satisfies the following properties:

(i) Γ̂_θ(*h*(θ)) is a convex and compact set for any θ ∈ D.
(ii) For all θ ∈ D,

 $\sup_{\beta \in \hat{\Gamma}_{\theta}(h(\theta))} \parallel \beta \parallel < K(1 + \parallel \theta \parallel)$

for some K > 0. (iii) $\hat{\Gamma}_{\theta}(h(\theta))$ is upper-semicontinuous, i.e., if $\theta_n \to \theta$ and $\beta_n \to \beta$ with $\beta_n \in \hat{\Gamma}_{\theta_n}(h(\theta_n)) \ \forall n$, then $\beta \in \hat{\Gamma}_{\theta}(h(\theta))$.

4 **A** N A **B** N A **B** N

• Consider now the following differential inclusion (DI):

$$\dot{\theta}(t) \in \hat{\Gamma}_{\theta}(h(\theta(t))).$$
 (6)

Let θ
 (·) be defined according to θ
 (t(n)) = θ_n, n ≥ 0, with linear interpolation on each interval [t(n), t(n + 1)].

• Let
$$G = \bigcap_{t \ge 0} \overline{\{\overline{\theta}(t+s) : s \ge 0\}}.$$

• Main Theorem θ_n , $n \ge 0$ of the QW-FA algorithm converge to *G* almost surely. Further, the set *G* is a closed connected internally chain transitive invariant set of (6).

Two-timescale Q-learning for the Average Cost Problem

$$\begin{split} \theta_{n+1} &= \Gamma_1 \bigg(\theta_n + b(n) \sigma_{s_n, a_n} (g(s_n, a_n) - \hat{J}_{n+1} + \theta_n^T \sigma_{s_{n+1}, a_{n+1}} - \theta_n^T \sigma_{s_n, a_n}) \bigg), \\ \hat{J}_{n+1} &= \hat{J}_n + c(n) \left(g(s_n, a_n) - \hat{J}_n \right), \\ w_{n+1} &= \Gamma_2 \left(w_n - a(n) \frac{\theta_n^T \sigma_{s_n, a_n}}{\delta} \Delta_n^{-1} \right) \end{split}$$

• Here a(n), b(n) are as before. Also, c(n) = ka(n) for some k > 0

Shalabh Bhatnagar (CSA, IISc)

27/34

(日)

Application to Optimal Sleep-Wake Control in Sensors⁷

⁷Prashanth, Chatterjee and Bhatnagar [2014]

Shalabh Bhatnagar (CSA, IISc)

Multiscale Q-learning with FA

September 08, 2014 28 / 34

- In an intrusion detection application, the goal is to
 - minimize the energy consumption of the sensors, while
 - keeping tracking error to a minimum
- Setting involves partially observed Markov decision processes (POMDP) under the long-run average cost objective

A B A A B A

- Sensors can be either awake or sleep
- sleep time $\in \{0, \dots, \Lambda\}$
- Object movement evolves as a Markov chain, with transition probability matrix $\mathbf{P} = [P_{ij}]_{(N+1)\times(N+1)}$
- T: exterior of the network
- Objective:
 - Make sensors sleep to save energy
 - Keep minimum sensors awake to have good tracking accuracy
 - Find "good trade-off" between the above two conflicting objectives

A (10) A (10) A (10) A

- State: $s_k = (I_k, r_k)$
 - I_k intruder's location at instant k
 - *r_k(i)* denotes the remaining sleep time of the *ith* sensor, *i* = 1,..., *N* and evolves as

$$r_{k+1}(i) = (r_k(i) - 1)\mathcal{I}_{\{r_k(i) > 0\}} + a_k(i)\mathcal{I}_{\{r_k(i) = 0\}}$$

 Action: a_k at instant k is the vector of chosen sleep times of the sensors

(日)

Single-stage cost

$$g(\boldsymbol{s}_k, \boldsymbol{a}_k) = \mathcal{I}_{\{l_k \neq \mathcal{T}\}} \left(\sum_{\{i: r_k(i) = 0\}} \boldsymbol{c} + \mathcal{I}_{\{r_k(l_k) > 0\}} \mathcal{K} \right)$$

 The states, actions and costs constitute an MDP. However, there is a problem of observability.

- Note: It is not always possible to track the object (I_k)
- Hence use the sufficient statistic –
 p_k = (p_k(1), ..., p_k(N), p_k(T)) the distribution of the intruder's location that evolves as

$$p_{k+1} = e_{l_{k+1}} \mathcal{I}_{\{r_{k+1}(l_{k+1})=0\}} + p_k P \mathcal{I}_{\{r_{k+1}(l_{k+1})>0\}}$$

Our algorithms work with *p_k* and find a good enough sleeping policy

Results on a 2-d network

Figure: Tradeoff characteristics

- TQSA-A requires significantly less number of sensors to be awake while giving nearly the same accuracy as QSA-A
- FCR and QMDP do not show good results

Shalabh Bhatnagar (CSA, IISc)