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An Introduction to Reinforcement Learning
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Figure: Agent-Environment Interaction
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Markov Decision Processes

A Markov Decision Process (MDP) is a controlled random process
{st} that depends on a control-valued sequence {at} with state
transitions governed according to controlled transition probabilities
Pat

st ,st+1

Let S denote the state space and A the action space. Assume S
and A are finite sets
In general, when state is i ∈ S, feasible action space is A(i). Here
A = ∪i∈SA(i)
Let k(st , at , st+1) be the cost incurred when state at time t is st ,
action chosen is at and the next state is st+1

t t+1

s t s t+1at k(s
t , at ,st+1)

Figure: State, Action and Single-Stage Cost
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The Infinite Horizon Discounted Cost Problem

The aim is to find {a∗
t } of actions such that for any state i ,

V ∗(i)
△
= Va∗

t
(i) = min

{at}
E





∞
∑

j=0

γ jk(sj , aj , sj+1) | s0 = i





It is often more convenient to work with policies rather than
state-action sequences

An admissible policy π is a sequence of functions
π = {µ0, µ1, . . . , } such that each µn : S → A and µn(j) ∈ A(j),
∀j ∈ S. At instant n, actions under π are selected according to µn

Let Π be the set of all admissible policies
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The Objective

Objective: Find a π∗ that minimizes over all π ∈ Π, the cost-to-go
or the value function

Vπ(i) = E





∞
∑

j=0

γ jk(Xj , µj(Xj), Xj+1) | X0 = i





Let V ∗(i) = min
π∈Π

Vπ(i) = Vπ∗(i)

A stationary deterministic policy (SDP) π is one for which µi ≡ µ

for all i = 0, 1, 2, . . .. Many times we just call µ an SDP

A stationary randomized policy φ is characterized by probability
distributions φ(i) = (φ(i , a), a ∈ A(i)), i ∈ S

It can be shown that the optimal policy (i.e., the one that attains
the minimum) is an SDP and so also an SRP
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The Bellman Equation

The Bellman equation The optimal cost function V ∗ satisfies

V ∗(i) = min
a∈A(i)

∑

j

Pa
ij (k(i , a, j) + γV ∗(j)), i ∈ S.

Further, V ∗ is the unique solution of this equation within the class
of bounded functions

The Bellman Equation for a Given SDP For every stationary policy
µ, the associated cost function Vµ satisfies

Vµ(i) =
∑

j

Pµ(i)
ij (k(i , µ(i), j) + γVµ(j)), i ∈ S.

Further, Vµ is the unique solution of this equation within the class
of bounded functions
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Limitations of Numerical Methods for Exact Schemes

For solving Bellman optimality equations (in various cases) using
numerical methods, one requires complete knowledge of
transition probabilities (or model information) Pa

ij , i , j ∈ S, a ∈ A(i)
and the single-stage cost function

The amount of computation required to solve Bellman equation
grows exponentially in the cardinality of the state and action
spaces (the curse of dimensionality)

Hence, one resorts to approaches that involve a combination of
“simulation” and “feature-based approximations”
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Stochastic Approximation

Objective: Let F : Rd → Rd . Solve the equation F (θ) = 0 when
analytical form of F is not known, however, noisy measurements
F (θ(n)) + Mn+1 can be obtained, where θ(n), n ≥ 0 are the input
parameters and Mn+1, n ≥ 0 are i.i.d and zero mean

F(.)
θ

F(

ξ

θ)+ξ

Figure: Noisy System with E [ξ] = 0

Mn+1, n ≥ 0 could be more general, not necessarily i.i.d.
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The Stochastic Approximation Algorithm1 2

Algorithm Start with an initial θ(0) and perform the recursion

θ(n + 1) = θ(n) + a(n)(F (θ(n)) + Mn+1),

with a(n), n ≥ 0 satisfying

a(n) > 0 ∀n,
∑

n

a(n) = ∞,
∑

n

a2(n) < ∞

Let F be Lipschitz continuous

Mn+1, n ≥ 0 is a martingale difference sequence w.r.t. the filtration
Fn = σ(θ(m), Mm, m ≤ n), n ≥ 1. Further,
E [‖ θ(n) ‖2| Fn] ≤ K1(1+ ‖ θ(n) ‖2), for some K1 > 0

1Originally due to Robbins and Monro [1951]
2The setting considered here is same as in Borkar [2008]
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Analyzing the Stochastic Recursion

In addition to foregoing, either assume or prove

sup
n

‖ θ(n) ‖< ∞,

i.e., the iterates are stable3

Consider the ODE
θ̇(t) = F (θ(t)),

with A as its set of asymptotically stable equilibria

One then shows that the algorithm’s ‘trajectory’ asymptotically
converges almost surely to A

3Borkar [2008], Kushner and Yin [1996]
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A More General Case

Consider the recursion

θ(n + 1) = θ(n) + a(n)(F (θ(n), Yn) + Mn+1),

where Yn, n ≥ 0 is a parameterized Markov process (with
transition kernel pθ(n)(y , dy ′)) assumed ergodic when θ(n) ≡ θ

Let

G(θ) =

∫

F (θ, y)νθ(dy),

where νθ(dy) is the stationary distribution of {Yn}, given θ

Consider the ODE
θ̇(t) = G(θ(t)),

with B as its set of asymptotically stable equilibria

It can be shown4 that θ(n) → B almost surely
4Borkar [2008], Benveniste, Metivier and Priouret [1991]
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The Q-Bellman Equation

Recall the Bellman equation:

V ∗(i) = min
a∈A(i)

∑

j

Pa
ij (k(i , a, j) + γV ∗(j)), i ∈ S

Let
Q∗(i , a) =

∑

j

Pa
ij [k(i , a, j) + γV ∗(j)]

Then, one obtains the following (Q-Bellman equation)

Q∗(i , a) =
∑

j

Pa
ij [k(i , a, j) + γ min

b
Q∗(j , b)]

Note: Q-Bellman is amenable to stochastic approximation
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Regular Q-learning

This algorithm aims to solve Q-Bellman equation using SA

Let ηn(i , a), n ≥ 0 be independent random variables (simulation
samples) having the common distribution Pa

i ·

Let c(n), n ≥ 0 satisfy

c(n) > 0 ∀n,
∑

n

c(n) = ∞,
∑

n

c2(n) < ∞

The QL-FS Algorithm: For every feasible state-action tuple (i , a),
iterate

Qn+1(i , a) = Qn(i , a) + c(n)(k(i , a, ηn(i , a))

+γ min
v

Qn(ηn(i , a), v) − Qn(i , a)) (1)
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Function Approximation

Let Q(i , a) ≈ θT φi ,a, where
φi,a = (φi,a(1), . . . , φi,a(d))T is a d-dimensional feature vector

corresponding to (i, a), with d << |S × A(S)|
△
= M

θ is a tunable d-dimensional parameter

Let Φ = [[φi ,a]] be an M × d (feature) matrix

Let Φ(k) = (φi ,a(k), (i , a) ∈ S × A(S))T be the k th column of Φ.
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Q-learning with Function Approximation

Q-learning with FA: Let {sn} denote a sample online trajectory of
states of the MDP with {an} as the associated action sequence.
Then,

θn+1 = θn + c(n)φsn ,an(k(sn, an, sn+1)

+γ min
v

θT
n φsn+1,v − θT

n φsn,an)

This algorithm has been widely used in applications even though it
does not empirically exhibit convergence in many cases

There are no valid proofs of convergence available
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Two-Timescale Q-learning - Key Idea 5

Work with parameterized SRP rather than SDP

The exact minimization is then replaced with a gradient search in
the parameterized SRP space

The above operation is performed on a faster timescale

Given the parameter and hence the policy update, update Q-value
estimates along a slower timescale

5In Bhatnagar and Babu [2008], a similar idea has been used for the case of full
state-action representations
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Two-Timescale Q-learning

Let πw = (πw (i), i ∈ S)T represent a class of SRP parameterized

by w
△
= (w1, . . . , wN)T ∈ C ⊂ RN

Let θ ∈ D ⊂ Rd be the Q-value function parameter as before
Assumptions

1 The Markov process {Xn} under any SRP πw is aperiodic and
irreducible

2 The probabilities πw (i, a), i ∈ S, a ∈ A(i) are continuously
differentiable in the parameter w ∈ C. Further, πw (i, a) > 0
∀(i, a) ∈ S × A(S), w ∈ C

3 The basis functions Φ(k), k = 1, . . . , d are linearly independent
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Fast and Slow Schedules

Example of parameterized SRP: Boltzmann policies

πw(i , a) =
exp(wT φi ,a)

∑

b∈A(i) exp(wT φi ,b)

Let {a(n)} and {b(n)} be two step-size sequences. The following
properties are satisfied:

∑

n

a(n) =
∑

n

b(n) = ∞,

∑

n

(a(n)2 + b(n)2) < ∞,

lim
n→∞

b(n)

a(n)
= 0.

Note: b(n) → 0 faster than a(n). Thus, recursions governed by
b(n) are slower than those governed by a(n).

Shalabh Bhatnagar (CSA, IISc) Multiscale Q-learning with FA September 08, 2014 19 / 34



The Algorithm

For all n ≥ 0,

θn+1 = Γ1

(

θn + b(n)φsn,an

(

g(sn, an) + γθT
n φsn+1,an+1 − θT

n φsn,an

))

,

(2)

wn+1 = Γ2

(

wn − a(n)

(

θT
n φsn,an

δ

)

(∆n)
−1

)

. (3)

In the above, Γ1(·),Γ2(·) are suitable projection operators. Further,
an are selected using the parameters Γ2(wn + δ∆n), with ∆n

obtained using a Hadamard matrix based construction.
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Hadamard Matrices

Let H2k , k ≥ 1 be matrices of order 2k × 2k that are recursively
obtained as:

H2 =

(

1 1
1 −1

)

and H2k =

(

H2k−1 H2k−1

H2k−1 −H2k−1

)

, k > 1.

Such matrices are called normalized Hadamard matrices6

6Bhatnagar, S., Fu, M.C., Marcus, S.I. and Wang, I.-J. [2003], Bhatnagar, S.,
Prasad, H.L. and Prashanth, L.A. [2013]
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Hadamard Matrix Based Perturbations

Let P = 2⌈log2 d⌉. (Note that P ≥ d .) Consider now the matrix HP

(with P chosen as above). Let h(1), . . . , h(d), be any d columns of
HP . In case P = d , then h(1), . . . , h(d), will correspond to all d
columns of HP .

Form a matrix H ′
P of order P × d that has h(1), . . . , h(d) as its

columns. Let e(p), p = 1, . . . , P, be the P rows of H ′
P . Now set

∆(n)T = e(n mod P + 1), ∀n ≥ 0. The perturbations are thus
generated by cycling through the rows of H ′

P with
∆(0)T = e(1),∆(1)T = e(2), . . . ,∆(P − 1)T = e(P),
∆(P)T = e(1), etc.
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Convergence Results for Faster Recursion

Let
R(θ, w)

△
=

∑

i∈S,a∈A(i)

fw (i , a)θT φi ,a

denote the stationary average Q-value under the parameters θ

and w , respectively.

Lemma The partial derivatives of R(θ, w) with respect to any
θ ∈ D and w ∈ C exist and are continuous.

The following ODE is associated with (3):

ẇ(t) = Γ̂2 (−∇wR(θ, w(t))) . (4)

Let w(θ) denote the set of asymptotically stable equilibria of (4)
and w(θ)ǫ its ǫ-neighborhood

Theorem Given ǫ > 0, there exists δ0 > 0 such that for all
δ ∈ (0, δ0], wn → w(θ)ǫ as n → ∞ with probability one.
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Convergence Results for Slower Recursion

Proposition w(θ) is a compact subset of RN for any θ.
One may now consider the following stochastic recursive inclusion
in place of (2):

θn+1 = Γ1(θn + b(n)(yn + Yn+1)), (5)

where

yn =
∑

(i ,a)

fwn(i , a)
(

g(i , a) + γθn
T

∑

(j ,b)

pwn(i , a; j , b)φj ,b − θn
T φi ,a

)

φi ,a,

with wn ∈ w(θn)
ǫ, ∀n.

Let h(θ)
△
=

{

∑

(i ,a)

fw (i , a)(g(i , a)

+γθT
∑

(j ,b)

pw(i , a; j , b)φj ,b − θT φi ,a)φi ,a | w ∈ w(θ)ǫ
}
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Convergence Results for Slower Recursion (Contd.)

Let

Γ̂θ(h(θ))
△
=

⋂

ǫ>0

c̄o





⋃

‖β−θ‖<ǫ

{γ1(β; y + Y ) | y ∈ h(β), Y ∈ A(β)}





Proposition h(θ) satisfies the following properties:
(i) Γ̂θ(h(θ)) is a convex and compact set for any θ ∈ D.
(ii) For all θ ∈ D,

sup
β∈Γ̂θ(h(θ))

‖ β ‖< K (1+ ‖ θ ‖)

for some K > 0.
(iii) Γ̂θ(h(θ)) is upper-semicontinuous, i.e., if θn → θ and βn → β with

βn ∈ Γ̂θn(h(θn)) ∀n, then β ∈ Γ̂θ(h(θ)).
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Convergence Results for Slower Recursion (Contd.)

Consider now the following differential inclusion (DI):

θ̇(t) ∈ Γ̂θ(h(θ(t))). (6)

Let θ̄(·) be defined according to θ̄(t(n)) = θn, n ≥ 0, with linear
interpolation on each interval [t(n), t(n + 1)].

Let G =
⋂

t≥0

{θ̄(t + s) : s ≥ 0}.

Main Theorem θn, n ≥ 0 of the QW-FA algorithm converge to G
almost surely. Further, the set G is a closed connected internally
chain transitive invariant set of (6).
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Two-timescale Q-learning for the Average Cost
Problem

θn+1 = Γ1

(

θn + b(n)σsn ,an(g(sn, an) − Ĵn+1 + θT
n σsn+1,an+1 − θT

n σsn,an)

)

,

Ĵn+1 = Ĵn + c(n)
(

g(sn, an) − Ĵn

)

,

wn+1 = Γ2

(

wn − a(n)
θT

n σsn,an

δ
∆−1

n

)

Here a(n), b(n) are as before. Also, c(n) = ka(n) for some k > 0
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Application to Optimal Sleep-Wake Control in
Sensors7

7Prashanth, Chatterjee and Bhatnagar [2014]
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Sleep-wake Control

In an intrusion detection application, the goal is to
minimize the energy consumption of the sensors, while
keeping tracking error to a minimum

Setting involves partially observed Markov decision processes
(POMDP) under the long-run average cost objective
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The Setting

Sensors can be either awake or sleep

sleep time ∈ {0, . . . ,Λ}

Object movement evolves as a Markov chain, with transition
probability matrix P = [Pij ](N+1)×(N+1)

T : exterior of the network

Objective:
Make sensors sleep to save energy
Keep minimum sensors awake to have good tracking accuracy
Find “good trade-off” between the above two conflicting objectives
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Sleep–Wake Control POMDP

State: sk = (lk , rk )

lk - intruder’s location at instant k
rk(i) denotes the remaining sleep time of the i th sensor, i = 1, . . . , N
and evolves as

rk+1(i) = (rk (i) − 1)I{rk (i)>0} + ak (i)I{rk (i)=0}

Action: ak at instant k is the vector of chosen sleep times of the
sensors
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Sleep–Wake Control POMDP - II

Single-stage cost

g(sk , ak) = I{lk 6=T }





∑

{i :rk(i)=0}

c + I{rk (lk )>0}K





The states, actions and costs constitute an MDP. However, there
is a problem of observability.
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Sleep–Wake Control POMDP - III

Note: It is not always possible to track the object (lk )

Hence use the sufficient statistic –
pk = (pk (1), ..., pk (N), pk (T )) - the distribution of the intruder’s
location - that evolves as

pk+1 = elk+1
I{rk+1(lk+1)=0} + pkPI{rk+1(lk+1)>0}

Our algorithms work with pk and find a good enough sleeping
policy
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Results on a 2-d network
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Figure: Tradeoff characteristics

TQSA-A requires significantly less number of sensors to be awake while giving nearly the
same accuracy as QSA-A

FCR and QMDP do not show good results

Shalabh Bhatnagar (CSA, IISc) Multiscale Q-learning with FA September 08, 2014 34 / 34


