
Ordinal Optimization and Multi Armed Bandit
Techniques

Sandeep Juneja
.

with Peter Glynn

September 10, 2014

The ordinal optimization problem

I Determining the ‘best’ of d alternative designs for a system,
on the basis of Monte Carlo simulation of each of the designs.

I More precisely, the d different designs are compared on the
basis of an associated (random) performance measure
X (i), i ≤ d , and the goal is to identify

i∗ = arg min
1≤j≤d

µ(j),

where µ(j) , EX (j), 1 ≤ j ≤ d . Goal is only to identify the
best design and not to actually estimate the performance.

I We have the ability to generate iid realizations of each of the
d random variables.

I We focus primarily on d = 2, so given independent samples of
X we want to find if the mean is positive or negative.

The ordinal optimization problem

I Determining the ‘best’ of d alternative designs for a system,
on the basis of Monte Carlo simulation of each of the designs.

I More precisely, the d different designs are compared on the
basis of an associated (random) performance measure
X (i), i ≤ d , and the goal is to identify

i∗ = arg min
1≤j≤d

µ(j),

where µ(j) , EX (j), 1 ≤ j ≤ d . Goal is only to identify the
best design and not to actually estimate the performance.

I We have the ability to generate iid realizations of each of the
d random variables.

I We focus primarily on d = 2, so given independent samples of
X we want to find if the mean is positive or negative.

The ordinal optimization problem

I Determining the ‘best’ of d alternative designs for a system,
on the basis of Monte Carlo simulation of each of the designs.

I More precisely, the d different designs are compared on the
basis of an associated (random) performance measure
X (i), i ≤ d , and the goal is to identify

i∗ = arg min
1≤j≤d

µ(j),

where µ(j) , EX (j), 1 ≤ j ≤ d . Goal is only to identify the
best design and not to actually estimate the performance.

I We have the ability to generate iid realizations of each of the
d random variables.

I We focus primarily on d = 2, so given independent samples of
X we want to find if the mean is positive or negative.

The ordinal optimization problem

I Determining the ‘best’ of d alternative designs for a system,
on the basis of Monte Carlo simulation of each of the designs.

I More precisely, the d different designs are compared on the
basis of an associated (random) performance measure
X (i), i ≤ d , and the goal is to identify

i∗ = arg min
1≤j≤d

µ(j),

where µ(j) , EX (j), 1 ≤ j ≤ d . Goal is only to identify the
best design and not to actually estimate the performance.

I We have the ability to generate iid realizations of each of the
d random variables.

I We focus primarily on d = 2, so given independent samples of
X we want to find if the mean is positive or negative.

Talk Overview

I Estimating difference of mean values relies on central limit
theorem with an associated slow convergence rate.

I Ho and others observed (1990) that identifying the best
system typically has a faster convergence rate.

I Dai (1996) showed in a fairly general framework using large
deviation methods that the probability of false selection decays
at an exponential rate under mild light tailed assumptions.

Talk Overview

I Estimating difference of mean values relies on central limit
theorem with an associated slow convergence rate.

I Ho and others observed (1990) that identifying the best
system typically has a faster convergence rate.

I Dai (1996) showed in a fairly general framework using large
deviation methods that the probability of false selection decays
at an exponential rate under mild light tailed assumptions.

Talk Overview

I Estimating difference of mean values relies on central limit
theorem with an associated slow convergence rate.

I Ho and others observed (1990) that identifying the best
system typically has a faster convergence rate.

I Dai (1996) showed in a fairly general framework using large
deviation methods that the probability of false selection decays
at an exponential rate under mild light tailed assumptions.

Talk Overview

I Glynn and J (2004) optimized the large deviations function
associated with this probability to determine optimal
computational budget allocation to each design to minimise
the false selection probability. Significant literature since then
relying on large deviations analysis.

I Expectation was that one can get algorithms that can
guarantee that the probability of error is upper bounded by δ
using O(log(1/δ)) computational effort.

I However these large deviations-based methods need to
estimate the underlying large deviations rate functions from
the samples generated.

Talk Overview

I Glynn and J (2004) optimized the large deviations function
associated with this probability to determine optimal
computational budget allocation to each design to minimise
the false selection probability. Significant literature since then
relying on large deviations analysis.

I Expectation was that one can get algorithms that can
guarantee that the probability of error is upper bounded by δ
using O(log(1/δ)) computational effort.

I However these large deviations-based methods need to
estimate the underlying large deviations rate functions from
the samples generated.

Talk Overview

I Glynn and J (2004) optimized the large deviations function
associated with this probability to determine optimal
computational budget allocation to each design to minimise
the false selection probability. Significant literature since then
relying on large deviations analysis.

I Expectation was that one can get algorithms that can
guarantee that the probability of error is upper bounded by δ
using O(log(1/δ)) computational effort.

I However these large deviations-based methods need to
estimate the underlying large deviations rate functions from
the samples generated.

I We argue through two reasonable settings that these rate
functions are difficult to estimate accurately (NOT due to the
heavy tails of estimated MGFs), the probability of
mis-estimation will generally dominate the underlying large
deviations probability, making it difficult to build algorithms
with log(1/δ) convergence rate.

I Further we show that given any (ε, δ) algorithm - one that
correctly separates designs with mean difference at least ε
with probability at least 1− δ, given any constant K one can
always find designs (in a large class) that require larger than
K log(1/δ) effort.

I Under explicitly available moment upper bounds, we develop
truncation based O(log(1/δ)) computation time (ε, δ)
algorithms.

I We also adapt the recently proposed sequential algorithms in
multi-armed bandit regret setting to this pure exploration
setting.

I We argue through two reasonable settings that these rate
functions are difficult to estimate accurately (NOT due to the
heavy tails of estimated MGFs), the probability of
mis-estimation will generally dominate the underlying large
deviations probability, making it difficult to build algorithms
with log(1/δ) convergence rate.

I Further we show that given any (ε, δ) algorithm - one that
correctly separates designs with mean difference at least ε
with probability at least 1− δ, given any constant K one can
always find designs (in a large class) that require larger than
K log(1/δ) effort.

I Under explicitly available moment upper bounds, we develop
truncation based O(log(1/δ)) computation time (ε, δ)
algorithms.

I We also adapt the recently proposed sequential algorithms in
multi-armed bandit regret setting to this pure exploration
setting.

I We argue through two reasonable settings that these rate
functions are difficult to estimate accurately (NOT due to the
heavy tails of estimated MGFs), the probability of
mis-estimation will generally dominate the underlying large
deviations probability, making it difficult to build algorithms
with log(1/δ) convergence rate.

I Further we show that given any (ε, δ) algorithm - one that
correctly separates designs with mean difference at least ε
with probability at least 1− δ, given any constant K one can
always find designs (in a large class) that require larger than
K log(1/δ) effort.

I Under explicitly available moment upper bounds, we develop
truncation based O(log(1/δ)) computation time (ε, δ)
algorithms.

I We also adapt the recently proposed sequential algorithms in
multi-armed bandit regret setting to this pure exploration
setting.

I We argue through two reasonable settings that these rate
functions are difficult to estimate accurately (NOT due to the
heavy tails of estimated MGFs), the probability of
mis-estimation will generally dominate the underlying large
deviations probability, making it difficult to build algorithms
with log(1/δ) convergence rate.

I Further we show that given any (ε, δ) algorithm - one that
correctly separates designs with mean difference at least ε
with probability at least 1− δ, given any constant K one can
always find designs (in a large class) that require larger than
K log(1/δ) effort.

I Under explicitly available moment upper bounds, we develop
truncation based O(log(1/δ)) computation time (ε, δ)
algorithms.

I We also adapt the recently proposed sequential algorithms in
multi-armed bandit regret setting to this pure exploration
setting.

A two phase implementation

I Consider a single rv X with unknown mean EX . Need to decide
whether EX > 0 or EX ≤ 0 with error probability ≤ δ (as δ → 0).

If

we knew the large deviations rate function
I (x) = supθ∈< (θx − Λ(θ)) (here Λ(θ) = log EeθX)

I Then if EX < 0, we may take

exp(−n inf
x≥0

I (x))

as a proxy for the probability of false selection.
I Recall that

EX x

I(x)

A two phase implementation

I Consider a single rv X with unknown mean EX . Need to decide
whether EX > 0 or EX ≤ 0 with error probability ≤ δ (as δ → 0). If

we knew the large deviations rate function
I (x) = supθ∈< (θx − Λ(θ)) (here Λ(θ) = log EeθX)

I Then if EX < 0, we may take

exp(−n inf
x≥0

I (x))

as a proxy for the probability of false selection.
I Recall that

EX x

I(x)

A two phase implementation

I Consider a single rv X with unknown mean EX . Need to decide
whether EX > 0 or EX ≤ 0 with error probability ≤ δ (as δ → 0). If

we knew the large deviations rate function
I (x) = supθ∈< (θx − Λ(θ)) (here Λ(θ) = log EeθX)

I Then if EX < 0, we may take

exp(−n inf
x≥0

I (x))

as a proxy for the probability of false selection.

I Recall that

EX x

I(x)

A two phase implementation

I Consider a single rv X with unknown mean EX . Need to decide
whether EX > 0 or EX ≤ 0 with error probability ≤ δ (as δ → 0). If

we knew the large deviations rate function
I (x) = supθ∈< (θx − Λ(θ)) (here Λ(θ) = log EeθX)

I Then if EX < 0, we may take

exp(−n inf
x≥0

I (x))

as a proxy for the probability of false selection.
I Recall that

EX x

I(x)

A two phase implementation ...

I Hence, proxy exp(−nI (0)) for false probability

I This proxy holds even if EX > 0.

I Thus, log(1/δ)
I (0) samples ensure that P(FS) ≤ δ.

A two phase implementation ...

I Hence, proxy exp(−nI (0)) for false probability

I This proxy holds even if EX > 0.

I Thus, log(1/δ)
I (0) samples ensure that P(FS) ≤ δ.

A two phase implementation ...

I Hence, proxy exp(−nI (0)) for false probability

I This proxy holds even if EX > 0.

I Thus, log(1/δ)
I (0) samples ensure that P(FS) ≤ δ.

I Hence, one reasonable estimation procedure is

I Generate m = log(1/δ) samples in the first phase to estimate
I (0) by Îm(0).

I Generate log(1/δ)/Îm(0) = m/Îm(0) samples of X in the
second phase and decide the sign of EX based on whether the
sample average X̄m > 0 or X̄m ≤ 0.

I We now discuss some pitfalls of this methodology.

I Hence, one reasonable estimation procedure is

I Generate m = log(1/δ) samples in the first phase to estimate
I (0) by Îm(0).

I Generate log(1/δ)/Îm(0) = m/Îm(0) samples of X in the
second phase and decide the sign of EX based on whether the
sample average X̄m > 0 or X̄m ≤ 0.

I We now discuss some pitfalls of this methodology.

I Hence, one reasonable estimation procedure is

I Generate m = log(1/δ) samples in the first phase to estimate
I (0) by Îm(0).

I Generate log(1/δ)/Îm(0) = m/Îm(0) samples of X in the
second phase and decide the sign of EX based on whether the
sample average X̄m > 0 or X̄m ≤ 0.

I We now discuss some pitfalls of this methodology.

I Hence, one reasonable estimation procedure is

I Generate m = log(1/δ) samples in the first phase to estimate
I (0) by Îm(0).

I Generate log(1/δ)/Îm(0) = m/Îm(0) samples of X in the
second phase and decide the sign of EX based on whether the
sample average X̄m > 0 or X̄m ≤ 0.

I We now discuss some pitfalls of this methodology.

Graphic view of I(0)

I The log-moment generating function of X

Λ(θ) = log E exp(θX)

is convex with Λ(0) = 0 and Λ′(0) = EX .

I Then, I (0) = − infθ Λ(θ).

EX	

 	

Λ
(θ
)

θ

I(0)	

Graphic view of I(0)

I The log-moment generating function of X

Λ(θ) = log E exp(θX)

is convex with Λ(0) = 0 and Λ′(0) = EX .

I Then, I (0) = − infθ Λ(θ).

EX	

 	

Λ
(θ
)

θ

I(0)	

Graphic view of I(0)

I The log-moment generating function of X

Λ(θ) = log E exp(θX)

is convex with Λ(0) = 0 and Λ′(0) = EX .

I Then, I (0) = − infθ Λ(θ).

EX	

 	

Λ
(θ
)

θ

I(0)	

Estimating I (0)

I We generate samples X1, . . . ,Xm and first estimate the
function

Λ̂m(θ) = log

(
1

m

m∑
i=1

exp(θXi)

)
.

and set Îm(0) = − infθ Λ̂m(θ).

I Then we generate log(1/δ)/Îm(0) = m/Îm(0) samples of X in
the second phase.

I Note that large values of exp(θXi) raise the curve, do not
lower it.

I The undersampling in the second phase happens due to
conspiratorial large deviations behaviour of all the terms.

Estimating I (0)

I We generate samples X1, . . . ,Xm and first estimate the
function

Λ̂m(θ) = log

(
1

m

m∑
i=1

exp(θXi)

)
.

and set Îm(0) = − infθ Λ̂m(θ).

I Then we generate log(1/δ)/Îm(0) = m/Îm(0) samples of X in
the second phase.

I Note that large values of exp(θXi) raise the curve, do not
lower it.

I The undersampling in the second phase happens due to
conspiratorial large deviations behaviour of all the terms.

Estimating I (0)

I We generate samples X1, . . . ,Xm and first estimate the
function

Λ̂m(θ) = log

(
1

m

m∑
i=1

exp(θXi)

)
.

and set Îm(0) = − infθ Λ̂m(θ).

I Then we generate log(1/δ)/Îm(0) = m/Îm(0) samples of X in
the second phase.

I Note that large values of exp(θXi) raise the curve, do not
lower it.

I The undersampling in the second phase happens due to
conspiratorial large deviations behaviour of all the terms.

Estimating I (0)

I We generate samples X1, . . . ,Xm and first estimate the
function

Λ̂m(θ) = log

(
1

m

m∑
i=1

exp(θXi)

)
.

and set Îm(0) = − infθ Λ̂m(θ).

I Then we generate log(1/δ)/Îm(0) = m/Îm(0) samples of X in
the second phase.

I Note that large values of exp(θXi) raise the curve, do not
lower it.

I The undersampling in the second phase happens due to
conspiratorial large deviations behaviour of all the terms.

Graphic view of estimated log moment generating function

 	

Λ
(θ
)

θ

Im(0)	

Lower Bounding P(FS)

I For expository convenience, take

P(FS) ≈ E exp(− m

Îm(0)
I (0))

where m = log(1/δ).

I Then,

1

m
logP(FS) ≥ sup

θ

1

m
log E exp(

m

Λ̂m(θ)
I (0))

≥ sup
θ

1

m
log exp(− m

a− ε
I (0))×

P(Λ̂m(θ) ∈ (−a− ε,−a− ε)),

for a > 0.

Lower Bounding P(FS)

I For expository convenience, take

P(FS) ≈ E exp(− m

Îm(0)
I (0))

where m = log(1/δ).

I Then,

1

m
logP(FS) ≥ sup

θ

1

m
log E exp(

m

Λ̂m(θ)
I (0))

≥ sup
θ

1

m
log exp(− m

a− ε
I (0))×

P(Λ̂m(θ) ∈ (−a− ε,−a− ε)),

for a > 0.

I Then

lim inf
m

1

m
logP(FS) ≥ sup

a>0
sup
θ

(
− I (0)

a
− Iθ(e−a)

)
where

Iθ(ν) = sup
α

(αν − log E exp(αeθX)).

I Further, Iθ∗(e−I (0)) = 0 for θ∗ so that infθ Λ(θ) = Λ(θ∗).

lim inf
m

1

m
logP(FS) ≥ −1.

I Then

lim inf
m

1

m
logP(FS) ≥ sup

a>0
sup
θ

(
− I (0)

a
− Iθ(e−a)

)
where

Iθ(ν) = sup
α

(αν − log E exp(αeθX)).

I Further, Iθ∗(e−I (0)) = 0 for θ∗ so that infθ Λ(θ) = Λ(θ∗).

lim inf
m

1

m
logP(FS) ≥ −1.

Another common estimation method

I Generate m = c log(1/δ) samples in the first phase to
estimate I (0) by Îm(0).

I If exp(−mÎm(0)) ≤ δ, stop.

I Else, provide another c log(1/δ) of computational budget and
so on.

We now identify distributions for which this would not be accurate.

Another common estimation method

I Generate m = c log(1/δ) samples in the first phase to
estimate I (0) by Îm(0).

I If exp(−mÎm(0)) ≤ δ, stop.

I Else, provide another c log(1/δ) of computational budget and
so on.

We now identify distributions for which this would not be accurate.

Another common estimation method

I Generate m = c log(1/δ) samples in the first phase to
estimate I (0) by Îm(0).

I If exp(−mÎm(0)) ≤ δ, stop.

I Else, provide another c log(1/δ) of computational budget and
so on.

We now identify distributions for which this would not be accurate.

Another common estimation method

I Generate m = c log(1/δ) samples in the first phase to
estimate I (0) by Îm(0).

I If exp(−mÎm(0)) ≤ δ, stop.

I Else, provide another c log(1/δ) of computational budget and
so on.

We now identify distributions for which this would not be accurate.

I Need to find X with EX < 0 so that

X̄m ≥ 0 and exp(−mÎm(0)) ≤ δ

with probability higher than δ. (Recall m = c log(1/δ)).

I Choose X so that

exp(−c log(1/δ)I (0)) >> δ

so that
I (0) < 1/c

or
0 > inf

θ
Λ(θ) > −1/c .

I Need to find X with EX < 0 so that

X̄m ≥ 0 and exp(−mÎm(0)) ≤ δ

with probability higher than δ. (Recall m = c log(1/δ)).

I Choose X so that

exp(−c log(1/δ)I (0)) >> δ

so that
I (0) < 1/c

or
0 > inf

θ
Λ(θ) > −1/c .

title

I Furthermore,

P(X̄m ≥ 0 and exp(−mÎm(0)) ≤ δ) ≥ δ

I Suffices to find θ < 0 such that

P(Λ̂(θ) ≤ −1/c) ≥ δ

I Roughly then,
exp(−mIθ(e−1/c)) > δ.

Or
Iθ(e−1/c) < 1/c .

I Theorem - Stay Tuned

title

I Furthermore,

P(X̄m ≥ 0 and exp(−mÎm(0)) ≤ δ) ≥ δ

I Suffices to find θ < 0 such that

P(Λ̂(θ) ≤ −1/c) ≥ δ

I Roughly then,
exp(−mIθ(e−1/c)) > δ.

Or
Iθ(e−1/c) < 1/c .

I Theorem - Stay Tuned

title

I Furthermore,

P(X̄m ≥ 0 and exp(−mÎm(0)) ≤ δ) ≥ δ

I Suffices to find θ < 0 such that

P(Λ̂(θ) ≤ −1/c) ≥ δ

I Roughly then,
exp(−mIθ(e−1/c)) > δ.

Or
Iθ(e−1/c) < 1/c .

I Theorem - Stay Tuned

title

I Furthermore,

P(X̄m ≥ 0 and exp(−mÎm(0)) ≤ δ) ≥ δ

I Suffices to find θ < 0 such that

P(Λ̂(θ) ≤ −1/c) ≥ δ

I Roughly then,
exp(−mIθ(e−1/c)) > δ.

Or
Iθ(e−1/c) < 1/c .

I Theorem - Stay Tuned

Graphic view

 	

Λ
(θ
)

θ

-1/c	

Stronger negative result (adapted from Lai and Robbins 1985, Manor and Tsitsiklis 2004)

I Let D contain pdfs such that

I If f , g ∈ D then I (g , f) ,
∫

log
(

g(x)
f (x)

)
g(x)dx <∞.

I Each g ∈ D has a finite moment generating function in the
neighbourhood of zero.

I Suppose there exists an (ε, δ) policy, i.e., given two arms
separated by a mean of at least ε ≥ 0, it finds the arm with
the largest mean with probability at least 1− δ. Let Tg (ε, δ)
be the time it spends on arm g .

I Then,

lim inf
δ→0

ETg (ε, δ)

log(1/δ)
≥ Const.

I (g , f) + O(ε)

for g , f ∈ D, µg < µf − ε.

Stronger negative result (adapted from Lai and Robbins 1985, Manor and Tsitsiklis 2004)

I Let D contain pdfs such that

I If f , g ∈ D then I (g , f) ,
∫

log
(

g(x)
f (x)

)
g(x)dx <∞.

I Each g ∈ D has a finite moment generating function in the
neighbourhood of zero.

I Suppose there exists an (ε, δ) policy, i.e., given two arms
separated by a mean of at least ε ≥ 0, it finds the arm with
the largest mean with probability at least 1− δ. Let Tg (ε, δ)
be the time it spends on arm g .

I Then,

lim inf
δ→0

ETg (ε, δ)

log(1/δ)
≥ Const.

I (g , f) + O(ε)

for g , f ∈ D, µg < µf − ε.

Stronger negative result (adapted from Lai and Robbins 1985, Manor and Tsitsiklis 2004)

I Let D contain pdfs such that

I If f , g ∈ D then I (g , f) ,
∫

log
(

g(x)
f (x)

)
g(x)dx <∞.

I Each g ∈ D has a finite moment generating function in the
neighbourhood of zero.

I Suppose there exists an (ε, δ) policy, i.e., given two arms
separated by a mean of at least ε ≥ 0, it finds the arm with
the largest mean with probability at least 1− δ. Let Tg (ε, δ)
be the time it spends on arm g .

I Then,

lim inf
δ→0

ETg (ε, δ)

log(1/δ)
≥ Const.

I (g , f) + O(ε)

for g , f ∈ D, µg < µf − ε.

Stronger negative result (adapted from Lai and Robbins 1985, Manor and Tsitsiklis 2004)

I Let D contain pdfs such that

I If f , g ∈ D then I (g , f) ,
∫

log
(

g(x)
f (x)

)
g(x)dx <∞.

I Each g ∈ D has a finite moment generating function in the
neighbourhood of zero.

I Suppose there exists an (ε, δ) policy, i.e., given two arms
separated by a mean of at least ε ≥ 0, it finds the arm with
the largest mean with probability at least 1− δ. Let Tg (ε, δ)
be the time it spends on arm g .

I Then,

lim inf
δ→0

ETg (ε, δ)

log(1/δ)
≥ Const.

I (g , f) + O(ε)

for g , f ∈ D, µg < µf − ε.

Same output different measures

I Let
fθε(x) = exp(θεx − Λf (θε))f (x)

such that Λ′f (θε) = µf + ε

PB f✓✏ f	

Y1

Y2

YT2

XT1

X1

X2

PA g	 f	

Note that
PA(algorithm announces f) ≥ 1− δ

PB(f) ≤ δ

PB(f) = EPA
(

Tg∏
i=1

fθε(Yi)

g(Yi)
I (f))

= EPA
(e
−

∑Tg
i=1

g(Yi)

f (Yi)
+θε

∑Tg
i=1 Yi−TgΛf (θε)

I (f))

= EPA
(e−ETg I (g ,f)+ETg (θεµg−Λf (θε))+smallI (set high prob)).

And the result is easily deduced.

Note that
PA(algorithm announces f) ≥ 1− δ

PB(f) ≤ δ

PB(f) = EPA
(

Tg∏
i=1

fθε(Yi)

g(Yi)
I (f))

= EPA
(e
−

∑Tg
i=1

g(Yi)

f (Yi)
+θε

∑Tg
i=1 Yi−TgΛf (θε)

I (f))

= EPA
(e−ETg I (g ,f)+ETg (θεµg−Λf (θε))+smallI (set high prob)).

And the result is easily deduced.

Note that
PA(algorithm announces f) ≥ 1− δ

PB(f) ≤ δ

PB(f) = EPA
(

Tg∏
i=1

fθε(Yi)

g(Yi)
I (f))

= EPA
(e
−

∑Tg
i=1

g(Yi)

f (Yi)
+θε

∑Tg
i=1 Yi−TgΛf (θε)

I (f))

= EPA
(e−ETg I (g ,f)+ETg (θεµg−Λf (θε))+smallI (set high prob)).

And the result is easily deduced.

Way forward

I Additional information needed to attain log(1/δ) convergence
rates.

I Great deal of structure is typically known about models used
in simulation. Often upper bounds on moments may be
available

I Easy to develop such bounds once suitable Lyapunov
functions can be identified (not to be discussed here)

I Assuming that such bounds are available, one may use them
to develop (ε, δ) strategies by truncating random variables
while controlling the error to be less than ε. Using Hoeffding
type bounds for bounded random variables.

I Multi-armed-bandits methods have been recently developed
that do this in a sequential and adaptive manner.

Way forward

I Additional information needed to attain log(1/δ) convergence
rates.

I Great deal of structure is typically known about models used
in simulation. Often upper bounds on moments may be
available

I Easy to develop such bounds once suitable Lyapunov
functions can be identified (not to be discussed here)

I Assuming that such bounds are available, one may use them
to develop (ε, δ) strategies by truncating random variables
while controlling the error to be less than ε. Using Hoeffding
type bounds for bounded random variables.

I Multi-armed-bandits methods have been recently developed
that do this in a sequential and adaptive manner.

Way forward

I Additional information needed to attain log(1/δ) convergence
rates.

I Great deal of structure is typically known about models used
in simulation. Often upper bounds on moments may be
available

I Easy to develop such bounds once suitable Lyapunov
functions can be identified (not to be discussed here)

I Assuming that such bounds are available, one may use them
to develop (ε, δ) strategies by truncating random variables
while controlling the error to be less than ε. Using Hoeffding
type bounds for bounded random variables.

I Multi-armed-bandits methods have been recently developed
that do this in a sequential and adaptive manner.

Way forward

I Additional information needed to attain log(1/δ) convergence
rates.

I Great deal of structure is typically known about models used
in simulation. Often upper bounds on moments may be
available

I Easy to develop such bounds once suitable Lyapunov
functions can be identified (not to be discussed here)

I Assuming that such bounds are available, one may use them
to develop (ε, δ) strategies by truncating random variables
while controlling the error to be less than ε. Using Hoeffding
type bounds for bounded random variables.

I Multi-armed-bandits methods have been recently developed
that do this in a sequential and adaptive manner.

Way forward

I Additional information needed to attain log(1/δ) convergence
rates.

I Great deal of structure is typically known about models used
in simulation. Often upper bounds on moments may be
available

I Easy to develop such bounds once suitable Lyapunov
functions can be identified (not to be discussed here)

I Assuming that such bounds are available, one may use them
to develop (ε, δ) strategies by truncating random variables
while controlling the error to be less than ε. Using Hoeffding
type bounds for bounded random variables.

I Multi-armed-bandits methods have been recently developed
that do this in a sequential and adaptive manner.

A useful observation

I Suppose X is a class of non-negative random variables and f
is a strictly increasing convex function.

I Consider the optimization problem

maxX∈X EXI (X ≥ x)

such that Ef (X) ≤ a,

I This has a two point solution relying on observation that if

Y = E [X |X < x]I (X < x) + E [X |X ≥ x]I (X ≥ x)

then EY = EX , EYI (Y ≥ x) = EXI (X ≥ x) and
Ef (Y) ≤ Ef (X).

A useful observation

I Suppose X is a class of non-negative random variables and f
is a strictly increasing convex function.

I Consider the optimization problem

maxX∈X EXI (X ≥ x)

such that Ef (X) ≤ a,

I This has a two point solution relying on observation that if

Y = E [X |X < x]I (X < x) + E [X |X ≥ x]I (X ≥ x)

then EY = EX , EYI (Y ≥ x) = EXI (X ≥ x) and
Ef (Y) ≤ Ef (X).

A useful observation

I Suppose X is a class of non-negative random variables and f
is a strictly increasing convex function.

I Consider the optimization problem

maxX∈X EXI (X ≥ x)

such that Ef (X) ≤ a,

I This has a two point solution relying on observation that if

Y = E [X |X < x]I (X < x) + E [X |X ≥ x]I (X ≥ x)

then EY = EX , EYI (Y ≥ x) = EXI (X ≥ x) and
Ef (Y) ≤ Ef (X).

Obtaining exponential convergence guarantees

I We consider Xε = {X : |EX | > ε} where each X = A− B and
A,B are non-negative.

I We assume that we can find Ra(ε̃),Rb(ε̃) that truncate the
excess mean by at least ε̃ for each such value.

I If X = A− B ∈ Xε, then

AI (A < Ra(βε))− BI (B < Rb(βε)) ∈ X(1−β)ε.

Obtaining exponential convergence guarantees

I We consider Xε = {X : |EX | > ε} where each X = A− B and
A,B are non-negative.

I We assume that we can find Ra(ε̃),Rb(ε̃) that truncate the
excess mean by at least ε̃ for each such value.

I If X = A− B ∈ Xε, then

AI (A < Ra(βε))− BI (B < Rb(βε)) ∈ X(1−β)ε.

Obtaining exponential convergence guarantees

I We consider Xε = {X : |EX | > ε} where each X = A− B and
A,B are non-negative.

I We assume that we can find Ra(ε̃),Rb(ε̃) that truncate the
excess mean by at least ε̃ for each such value.

I If X = A− B ∈ Xε, then

AI (A < Ra(βε))− BI (B < Rb(βε)) ∈ X(1−β)ε.

Our algorithm then is:

1. Generate n independent samples of

AI (A < Ra(βε))− BI (B < Rb(βε)).

2. Refer to these as Y1,Y2, . . . ,Yn and compute

Ȳn =
1

n

n∑
i=1

Yi .

3. If Ȳn ≥ 0, declare that EX > 0.

4. If Ȳn < 0, declare that EX < 0.

Our algorithm then is:

1. Generate n independent samples of

AI (A < Ra(βε))− BI (B < Rb(βε)).

2. Refer to these as Y1,Y2, . . . ,Yn and compute

Ȳn =
1

n

n∑
i=1

Yi .

3. If Ȳn ≥ 0, declare that EX > 0.

4. If Ȳn < 0, declare that EX < 0.

Our algorithm then is:

1. Generate n independent samples of

AI (A < Ra(βε))− BI (B < Rb(βε)).

2. Refer to these as Y1,Y2, . . . ,Yn and compute

Ȳn =
1

n

n∑
i=1

Yi .

3. If Ȳn ≥ 0, declare that EX > 0.

4. If Ȳn < 0, declare that EX < 0.

Our algorithm then is:

1. Generate n independent samples of

AI (A < Ra(βε))− BI (B < Rb(βε)).

2. Refer to these as Y1,Y2, . . . ,Yn and compute

Ȳn =
1

n

n∑
i=1

Yi .

3. If Ȳn ≥ 0, declare that EX > 0.

4. If Ȳn < 0, declare that EX < 0.

Our algorithm then is:

1. Generate n independent samples of

AI (A < Ra(βε))− BI (B < Rb(βε)).

2. Refer to these as Y1,Y2, . . . ,Yn and compute

Ȳn =
1

n

n∑
i=1

Yi .

3. If Ȳn ≥ 0, declare that EX > 0.

4. If Ȳn < 0, declare that EX < 0.

titleUsing Hoeffding Inequality to bound P(FS)

I Suppose that EX < −ε. Then, EYi < −(1− β)ε. Also,

−Rb(βε) ≤ Yi ≤ Ra(βε).

I One can select

nδ =
(Ra(βε) + Rb(βε))2

2(1− β)2ε2
log(1/δ).

I Furthermore, β may be selected to minimize

(Ra(βε) + Rb(βε))2

(1− β)2
.

titleUsing Hoeffding Inequality to bound P(FS)

I Suppose that EX < −ε. Then, EYi < −(1− β)ε. Also,

−Rb(βε) ≤ Yi ≤ Ra(βε).

I One can select

nδ =
(Ra(βε) + Rb(βε))2

2(1− β)2ε2
log(1/δ).

I Furthermore, β may be selected to minimize

(Ra(βε) + Rb(βε))2

(1− β)2
.

titleUsing Hoeffding Inequality to bound P(FS)

I Suppose that EX < −ε. Then, EYi < −(1− β)ε. Also,

−Rb(βε) ≤ Yi ≤ Ra(βε).

I One can select

nδ =
(Ra(βε) + Rb(βε))2

2(1− β)2ε2
log(1/δ).

I Furthermore, β may be selected to minimize

(Ra(βε) + Rb(βε))2

(1− β)2
.

Pure exploration bandit algorithms

I Total n arms. Each arm a when sampled gives a Bernoulli
reward with mean µa > 0.

I Let arm with the largest mean a∗ = arg maxa∈A µa and let
∆a = µa∗ − µa be assumed be positive for all a 6= a∗.

I Even Dar, Mannor and Mansour 2006 devise a sequential
sampling strategy amongst these arms to find a∗ with
probability at least 1− δ, (for a pre-specified small δ) with
total number of samples generated of

O

∑
a 6=a∗

ln(n/δ)

∆2
a

 .

Pure exploration bandit algorithms

I Total n arms. Each arm a when sampled gives a Bernoulli
reward with mean µa > 0.

I Let arm with the largest mean a∗ = arg maxa∈A µa and let
∆a = µa∗ − µa be assumed be positive for all a 6= a∗.

I Even Dar, Mannor and Mansour 2006 devise a sequential
sampling strategy amongst these arms to find a∗ with
probability at least 1− δ, (for a pre-specified small δ) with
total number of samples generated of

O

∑
a 6=a∗

ln(n/δ)

∆2
a

 .

Pure exploration bandit algorithms

I Total n arms. Each arm a when sampled gives a Bernoulli
reward with mean µa > 0.

I Let arm with the largest mean a∗ = arg maxa∈A µa and let
∆a = µa∗ − µa be assumed be positive for all a 6= a∗.

I Even Dar, Mannor and Mansour 2006 devise a sequential
sampling strategy amongst these arms to find a∗ with
probability at least 1− δ, (for a pre-specified small δ) with
total number of samples generated of

O

∑
a 6=a∗

ln(n/δ)

∆2
a

 .

Foundational observation in much of the related Bandit
literature

I Suppose that for an arm a with mean µa, the sample mean
based on t observations is denoted by µ̂ta.

I Let αt =
√

log(5nt2/δ)/t.

I Let
Ea,δ = {|µ̂ta − µa| < αt for all t.}

I Then, from Hoeffding, we have for any t,

P(|µ̂ta − µa| ≥ αt) ≤
2δ

5nt2
.

Foundational observation in much of the related Bandit
literature

I Suppose that for an arm a with mean µa, the sample mean
based on t observations is denoted by µ̂ta.

I Let αt =
√

log(5nt2/δ)/t.

I Let
Ea,δ = {|µ̂ta − µa| < αt for all t.}

I Then, from Hoeffding, we have for any t,

P(|µ̂ta − µa| ≥ αt) ≤
2δ

5nt2
.

Foundational observation in much of the related Bandit
literature

I Suppose that for an arm a with mean µa, the sample mean
based on t observations is denoted by µ̂ta.

I Let αt =
√

log(5nt2/δ)/t.

I Let
Ea,δ = {|µ̂ta − µa| < αt for all t.}

I Then, from Hoeffding, we have for any t,

P(|µ̂ta − µa| ≥ αt) ≤
2δ

5nt2
.

Foundational observation in much of the related Bandit
literature

I Suppose that for an arm a with mean µa, the sample mean
based on t observations is denoted by µ̂ta.

I Let αt =
√

log(5nt2/δ)/t.

I Let
Ea,δ = {|µ̂ta − µa| < αt for all t.}

I Then, from Hoeffding, we have for any t,

P(|µ̂ta − µa| ≥ αt) ≤
2δ

5nt2
.

I Hence, it follows that

P(Ea,δ) ≥ 1− δ/n,

so that if Eδ = ∩aEa,δ, then

P(Eδ) ≥ 1− δ.

I Their algorithm relies on the fact that on Eδ it always picks
the correct winner and on this set quickly fathoms away the
losers.

I Hence, it follows that

P(Ea,δ) ≥ 1− δ/n,

so that if Eδ = ∩aEa,δ, then

P(Eδ) ≥ 1− δ.

I Their algorithm relies on the fact that on Eδ it always picks
the correct winner and on this set quickly fathoms away the
losers.

Successive Rejection Algorithm

I Sample every arm a once and let µ̂ta be the average reward of
arm a by time t;

I Let µ̂tmax = maxa µ̂
t
a and recall that αt =

√
log(5nt2/δ)/t;

I Each arm a such that µ̂tmax − µ̂ta ≥ 2αt is removed from
consideration.

I t = t + 1; Repeat till one arm left.

Successive Rejection Algorithm

I Sample every arm a once and let µ̂ta be the average reward of
arm a by time t;

I Let µ̂tmax = maxa µ̂
t
a and recall that αt =

√
log(5nt2/δ)/t;

I Each arm a such that µ̂tmax − µ̂ta ≥ 2αt is removed from
consideration.

I t = t + 1; Repeat till one arm left.

Successive Rejection Algorithm

I Sample every arm a once and let µ̂ta be the average reward of
arm a by time t;

I Let µ̂tmax = maxa µ̂
t
a and recall that αt =

√
log(5nt2/δ)/t;

I Each arm a such that µ̂tmax − µ̂ta ≥ 2αt is removed from
consideration.

I t = t + 1; Repeat till one arm left.

Successive Rejection Algorithm

I Sample every arm a once and let µ̂ta be the average reward of
arm a by time t;

I Let µ̂tmax = maxa µ̂
t
a and recall that αt =

√
log(5nt2/δ)/t;

I Each arm a such that µ̂tmax − µ̂ta ≥ 2αt is removed from
consideration.

I t = t + 1; Repeat till one arm left.

Graphical inaccurate representation

 	
t	

1	

0	

µ1	

µ2	

Generalizing to heavy tails

I In Bubeck, Cesa-Bianchi, Lugosi 2013, they develop log(1/δ)
algorithms in regret settings when 1 + ε moments of each arm
output are available.

I Analysis again relies on forming a cone, which they do
through truncation and clever usage of Bernstein inequality.

I We perform some minor optimizations on their algorithm.

Generalizing to heavy tails

I In Bubeck, Cesa-Bianchi, Lugosi 2013, they develop log(1/δ)
algorithms in regret settings when 1 + ε moments of each arm
output are available.

I Analysis again relies on forming a cone, which they do
through truncation and clever usage of Bernstein inequality.

I We perform some minor optimizations on their algorithm.

Generalizing to heavy tails

I In Bubeck, Cesa-Bianchi, Lugosi 2013, they develop log(1/δ)
algorithms in regret settings when 1 + ε moments of each arm
output are available.

I Analysis again relies on forming a cone, which they do
through truncation and clever usage of Bernstein inequality.

I We perform some minor optimizations on their algorithm.

